Created
May 8, 2018 19:26
-
-
Save dariocazzani/17c7877b967c9393a18c24695bea0dbb to your computer and use it in GitHub Desktop.
WorldModels-VAE-Network
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class Network(object): | |
| # Create model | |
| def __init__(self): | |
| self.image = tf.placeholder(tf.float32, [None, 96, 96, 3], name='image') | |
| self.resized_image = tf.image.resize_images(self.image, [64, 64]) | |
| tf.summary.image('resized_image', self.resized_image, 20) | |
| self.z_mu, self.z_logvar = self.encoder(self.resized_image) | |
| self.z = self.sample_z(self.z_mu, self.z_logvar) | |
| self.reconstructions = self.decoder(self.z) | |
| tf.summary.image('reconstructions', self.reconstructions, 20) | |
| self.merged = tf.summary.merge_all() | |
| self.loss = self.compute_loss() | |
| def sample_z(self, mu, logvar): | |
| eps = tf.random_normal(shape=tf.shape(mu)) | |
| return mu + tf.exp(logvar / 2) * eps | |
| def encoder(self, x): | |
| x = tf.layers.conv2d(x, filters=32, kernel_size=4, strides=2, padding='valid', activation=tf.nn.relu) | |
| x = tf.layers.conv2d(x, filters=64, kernel_size=4, strides=2, padding='valid', activation=tf.nn.relu) | |
| x = tf.layers.conv2d(x, filters=128, kernel_size=4, strides=2, padding='valid', activation=tf.nn.relu) | |
| x = tf.layers.conv2d(x, filters=256, kernel_size=4, strides=2, padding='valid', activation=tf.nn.relu) | |
| x = tf.layers.flatten(x) | |
| z_mu = tf.layers.dense(x, units=32, name='z_mu') | |
| z_logvar = tf.layers.dense(x, units=32, name='z_logvar') | |
| return z_mu, z_logvar | |
| def decoder(self, z): | |
| x = tf.layers.dense(z, 1024, activation=None) | |
| x = tf.reshape(x, [-1, 1, 1, 1024]) | |
| x = tf.layers.conv2d_transpose(x, filters=128, kernel_size=5, strides=2, padding='valid', activation=tf.nn.relu) | |
| x = tf.layers.conv2d_transpose(x, filters=64, kernel_size=5, strides=2, padding='valid', activation=tf.nn.relu) | |
| x = tf.layers.conv2d_transpose(x, filters=32, kernel_size=6, strides=2, padding='valid', activation=tf.nn.relu) | |
| x = tf.layers.conv2d_transpose(x, filters=3, kernel_size=6, strides=2, padding='valid', activation=tf.nn.sigmoid) | |
| return x |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment