Skip to content

Instantly share code, notes, and snippets.

View daniellerch's full-sized avatar

Daniel Lerch, PhD daniellerch

View GitHub Profile
@daniellerch
daniellerch / cancer-detection.py
Last active April 16, 2019 17:15
Keras/CancerDetection
import os
import glob
import random
import numpy as np
from sklearn.metrics import accuracy_score
from keras.utils import np_utils
from keras.models import Sequential
from keras.preprocessing import image
@daniellerch
daniellerch / face-recognition.py
Last active April 8, 2019 08:11
Keras/VGGFace
import sys
import numpy as np
from PIL import Image
from scipy import misc, ndimage
from keras import Model
from keras import Sequential
from keras.layers import Activation
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers import ZeroPadding2D
@daniellerch
daniellerch / finetuning.py
Created February 16, 2018 20:36
Keras/Finetuning
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
from keras.models import Model
from keras.utils import np_utils
from keras.preprocessing import image
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.inception_resnet_v2 import preprocess_input, decode_predictions
from keras.layers import Dense, GlobalAveragePooling2D
from sklearn.model_selection import train_test_split
@daniellerch
daniellerch / inception_resnet_v2.py
Created February 13, 2018 18:33
Keras/InceptionResNetV2
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.preprocessing import image
from keras.applications.inception_resnet_v2 import preprocess_input, decode_predictions
import numpy as np
model = InceptionResNetV2(weights='imagenet')
img_path = 'aguila.jpg'
img = image.load_img(img_path, target_size=(224, 224))
@daniellerch
daniellerch / mnist.py
Created February 13, 2018 13:46
Keras/MNIST
from keras.datasets import mnist
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.utils import np_utils
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape+(1,))
x_test = x_test.reshape(x_test.shape+(1,))