Skip to content

Instantly share code, notes, and snippets.

@ceroper
Forked from agramfort/ranking.py
Last active January 3, 2026 02:51
Show Gist options
  • Select an option

  • Save ceroper/58675b2ac2c73b66f24f63c32e837af2 to your computer and use it in GitHub Desktop.

Select an option

Save ceroper/58675b2ac2c73b66f24f63c32e837af2 to your computer and use it in GitHub Desktop.
Pairwise ranking using scikit-learn LinearSVC
"""
Implementation of pairwise ranking using scikit-learn LinearSVC
Reference: "Large Margin Rank Boundaries for Ordinal Regression", R. Herbrich,
T. Graepel, K. Obermayer.
Authors: Fabian Pedregosa <fabian@fseoane.net>
Alexandre Gramfort <alexandre.gramfort@inria.fr>
Caroline Roper <https://www.linkedin.com/in/caroline-roper-2b623628/>
"""
import itertools
import numpy as np
from sklearn import svm, linear_model
from sklearn.model_selection import KFold
def transform_pairwise(X, y):
"""Transforms data into pairs with balanced labels for ranking
Transforms a n-class ranking problem into a two-class classification
problem. Subclasses implementing particular strategies for choosing
pairs should override this method.
In this method, all pairs are choosen, except for those that have the
same target value. The output is an array of balanced classes, i.e.
there are the same number of -1 as +1
Parameters
----------
X : array, shape (n_samples, n_features)
The data
y : array, shape (n_samples,) or (n_samples, 2)
Target labels. If it's a 2D array, the second column represents
the grouping of samples, i.e., samples with different groups will
not be considered.
Returns
-------
X_trans : array, shape (k, n_feaures)
Data as pairs
y_trans : array, shape (k,)
Output class labels, where classes have values {-1, +1}
"""
X_new = []
y_new = []
y = np.asarray(y)
if y.ndim == 1:
y = np.c_[y, np.ones(y.shape[0])]
comb = itertools.combinations(range(X.shape[0]), 2)
for k, (i, j) in enumerate(comb):
if y[i, 0] == y[j, 0] or y[i, 1] != y[j, 1]:
# skip if same target or different group
continue
X_new.append(X[i] - X[j])
y_new.append(np.sign(y[i, 0] - y[j, 0]))
# output balanced classes
if y_new[-1] != (-1) ** k:
y_new[-1] = - y_new[-1]
X_new[-1] = - X_new[-1]
return np.asarray(X_new), np.asarray(y_new).ravel()
class RankSVM(svm.LinearSVC):
"""Performs pairwise ranking with an underlying LinearSVC model
Input should be a n-class ranking problem, this object will convert it
into a two-class classification problem, a setting known as
`pairwise ranking`.
See object :ref:`svm.LinearSVC` for a full description of parameters.
"""
def fit(self, X, y):
"""
Fit a pairwise ranking model.
Parameters
----------
X : array, shape (n_samples, n_features)
y : array, shape (n_samples,) or (n_samples, 2)
Returns
-------
self
"""
X_trans, y_trans = transform_pairwise(X, y)
super(RankSVM, self).fit(X_trans, y_trans)
return self
def predict_group(self, X):
"""
Predict an ordering on X. For a list of n samples, this method
returns a list from 0 to n-1 with the relative order of the rows of X.
Parameters
----------
X : array, shape (n_samples, n_features)
Returns
-------
ord : array, shape (n_samples,)
Returns a list of integers representing the relative order of
the rows in X.
"""
if hasattr(self, 'coef_'):
return np.argsort(np.dot(X, self.coef_.T).ravel())
else:
raise ValueError("Must call fit() prior to predict()")
def predict(self, X):
"""
Parameters
----------
X: 2D numpy array, shape (n_samples, n_features + 1), last column is group id, rest are features
Returns
-------
y_pred: numpy array, length n_samples, the model predictions
"""
if not hasattr(self, 'coef_'):
raise ValueError("Must call fit() prior to predict()")
# Split features and group ids
group_ids = X[:, -1]
X_data = X[:, :-1]
# Map each group to the indices belonging to it
from collections import defaultdict
group_to_indices = defaultdict(list)
for idx, gid in enumerate(group_ids):
group_to_indices[gid].append(idx)
y_pred = np.empty(len(X_data), dtype=object) # Use object dtype to allow storing ints or other types
for gid, indices in group_to_indices.items():
# Extract features for this group
x_group = X_data[indices, :]
# Fill missing values if needed (e.g., with 0)
x_group = np.nan_to_num(x_group) # replaces NaN with 0
x_group = x_group.astype(np.int32)
# Predict for the group
preds_group = self.predict_group(x_group)
# Assign predictions to correct positions
y_pred[indices] = preds_group
return y_pred
def score_group(self, X, y):
"""
Because we transformed into a pairwise problem, chance level is at 0.5
"""
X_trans, y_trans = transform_pairwise(X, y)
return np.mean(super(RankSVM, self).predict(X_trans) == y_trans)
if __name__ == '__main__':
# as showcase, we will create some non-linear data
# and print the performance of ranking vs linear regression
np.random.seed(1)
n_samples, n_features = 300, 5
true_coef = np.random.randn(n_features)
X = np.random.randn(n_samples, n_features)
noise = np.random.randn(n_samples) / np.linalg.norm(true_coef)
y = np.dot(X, true_coef)
y = np.arctan(y) # add non-linearities
y += .1 * noise # add noise
Y = np.c_[y, np.mod(np.arange(n_samples), 5)] # add query fake id
cv = KFold(5)
i, (train, test) = next(enumerate(cv.split(X)))
# make a simple plot out of it
import matplotlib.pyplot as pl
pl.scatter(np.dot(X, true_coef), y)
pl.title('Data to be learned')
pl.xlabel('<X, coef>')
pl.ylabel('y')
pl.show()
# print the performance of ranking
rank_svm = RankSVM().fit(X[train], Y[train])
print ('Performance of ranking ', rank_svm.score_group(X[test], Y[test]))
# and that of linear regression
ridge = linear_model.RidgeCV(fit_intercept=True)
ridge.fit(X[train], y[train])
X_test_trans, y_test_trans = transform_pairwise(X[test], y[test])
score = np.mean(np.sign(np.dot(X_test_trans, ridge.coef_)) == y_test_trans)
print ('Performance of linear regression ', score)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment