GTX980 + Core i7 -6700K @ 4.00GHz + ubuntu 16.04 chainer
alexnet Average Forward: 51.7668122186 ms Average Backward: 122.44968462 ms Average Total: 174.216496838 ms
googlenet Average Forward: 234.798005846 ms
GTX980 + Core i7 -6700K @ 4.00GHz + ubuntu 16.04 chainer
alexnet Average Forward: 51.7668122186 ms Average Backward: 122.44968462 ms Average Total: 174.216496838 ms
googlenet Average Forward: 234.798005846 ms
| import theano.tensor as T | |
| from theano import function | |
| x = T.dscalar('x') | |
| z = x**2 | |
| gz = T.grad(z, x) | |
| f = function([x], gz) | |
| print(f(12.2)) |
| #!/bin/bash | |
| python test.py -m "text message" |
| #!/bin/bash | |
| python test.py -m "text message" |
| class SVM(object): | |
| def __init__(self,n_in,c0=1,c1=1,loss = RAMP_LOSS,gamma = 0.5): | |
| self.dim = n_in | |
| self.w = np.zeros(n_in) | |
| self.b = np.zeros(1) | |
| self.c0 = c0 | |
| self.c1 = c1 | |
| self.gamma = gamma | |
| self.x = None | |
| self.y = None |
| #include <Eigen/Core> | |
| #include <Eigen/Sparse> | |
| using namespace std; | |
| using namespace Eigen; | |
| void sinitialize(VectorXd &s,double mu,unsigned int sizex,VectorXd &x) | |
| { | |
| for (unsigned int i=0;i<sizex;i++) | |
| if (x[i]!=0)s[i] = mu/x[i]; | |
| else s[i]=0.1; |
| dot_globl :min_caml_read_int | |
| label :min_caml_read_int | |
| read at | |
| sll at, at, 8 | |
| read at | |
| sll at, at, 8 | |
| read at | |
| sll at, at, 8 | |
| read at | |
| add v0, at, zero |
| let rec create_2dmatrix a b c d = | |
| let matrix = Array.create 2 (Array.create 0 0.0) in | |
| matrix.(0)<-Array.create 2 0.0; | |
| matrix.(1)<-Array.create 2 0.0; | |
| let mx_0 = matrix.(0) in | |
| mx_0.(0)<- a; | |
| mx_0.(1)<- b; | |
| let mx_1 = matrix.(1) in | |
| mx_1.(0)<- c; | |
| mx_1.(1)<- d; |