Skip to content

Instantly share code, notes, and snippets.

@brouwerfp
Last active July 18, 2023 15:24
Show Gist options
  • Select an option

  • Save brouwerfp/cee573a53f0f25f76b6cb0e14dc84d05 to your computer and use it in GitHub Desktop.

Select an option

Save brouwerfp/cee573a53f0f25f76b6cb0e14dc84d05 to your computer and use it in GitHub Desktop.
s / t
where t ≠ 0
s / t = As / At
where 1 / 2 <= At < 1
As / At = As / {1-(1-At)}
∴ 0 < (1-At) <= 1 / 2
As / {1-(1-At)} = As*{1+(1-At)} / {1-(1-At)^2}
∴ 0 < (1-At)^2 <= 1 / 4
As*{1+(1-At)} / {1-(1-At)^2} = As*{1+(1-At)}*{1+(1-At)^2} / {1-(1-At)^4}
∴ 0 < (1-At)^4 <= 1 / 16
∴ s / t = As / At = As*Π_{k∈[0, n)}{1+(1-At)^2^k} / {1-(1-At)^2^n}
∴ 0 < (1-At)^2^n <= (1 / 2)^2^n
∴ s / t = lim_{n → ∞} As*Π_{k∈[0, n)}{1+(1-At)^2^k} / {1-(1-At)^2^n} = As*Π_{k∈[0, ∞)}{1+(1-At)^2^k}
where 0 < s / t - As*Π_{k∈[0, n)}{1+(1-At)^2^k} = {(1-At)^2^n}*s / t <= {(1 / 2)^2^n}*s / t = s / (2^2^n)*t
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment