Skip to content

Instantly share code, notes, and snippets.

@borodicht
Created January 18, 2026 16:36
Show Gist options
  • Select an option

  • Save borodicht/5464c174ed56715f26ff1c1e6e9893fb to your computer and use it in GitHub Desktop.

Select an option

Save borodicht/5464c174ed56715f26ff1c1e6e9893fb to your computer and use it in GitHub Desktop.
1. Генерация синтетических валидных данных:
You are a test data generator for QA automation.
Generate a synthetic dataset of 20 users.
Rules:
- All data must be fictional.
- Do NOT use any real people or real companies.
- Emails must use example domains (example.com, test.com).
- Phone numbers must be format-valid but not real.
- Names must be fictional.
- Ages between 18 and 65.
Return result as a JSON array.
Each user must contain:
- id (uuid)
- firstName
- lastName
- email
- phone
- age
- country
- role (USER, ADMIN, MANAGER)
2. Генерация бизнес-реалистичных профилей:
You are generating business-realistic synthetic users for an online banking system.
Constraints:
- All data must be synthetic.
- No real PII.
- Each user must have:
- profile
- bankAccount
- balance
- status (ACTIVE, BLOCKED, PENDING)
Rules:
- BLOCKED users must have balance = 0
- PENDING users must not have a bank account number
- ACTIVE users must have realistic balance (100–50,000)
Generate 15 users.
Return structured JSON.
3. Генерация пограничных и невалидных данных:
You are a QA engineer generating negative and edge-case test data.
Generate a JSON dataset for user registration.
Include:
- 5 valid users
- 5 invalid users
- 5 edge cases
Invalid examples must include:
- wrong email formats
- too short and too long names
- invalid phone numbers
- missing required fields
Edge cases must include:
- maximum allowed field lengths
- unicode characters
- boundary ages (18, 65)
All data must be fictional.
Return JSON grouped by type: valid, invalid, edge.
4. Генерация данных строго по контракту (schema-driven)
You are a synthetic test data generator.
Generate 30 records that strictly follow this JSON Schema:
{
"id": "uuid",
"email": "string, email format, example domains only",
"password": "8-20 chars, letters and digits",
"age": "integer, 18-65",
"marketingConsent": "boolean",
"createdAt": "ISO 8601 datetime"
}
Rules:
- No real personal data.
- Emails must use example.com or test.com only.
- createdAt must be within last 90 days.
Return ONLY valid JSON.
5. Массовая генерация под performance
You are generating large-scale synthetic data for performance testing.
Generate a dataset of 1,000 fictional users.
Each user must have:
- userId
- email
- password
- accountStatus
- region
- registrationDate
Rules:
- No real data.
- Use only synthetic names and emails.
- Provide realistic distribution:
- 70% ACTIVE
- 20% PENDING
- 10% BLOCKED
Output as downloadable-ready JSON structure.
6. Маскирование существующих данных (без раскрытия PII)
You are a data-masking engine.
I will provide a dataset.
Your task:
- Replace all personal data with synthetic equivalents.
- Keep formats and uniqueness.
- Preserve relationships between records.
- Do NOT output original values.
Mask:
- names
- emails
- phone numbers
- document numbers
Return masked JSON only.
7. Генерация data-factory под автотесты:
You are a Senior QA Automation Engineer.
Based on this user JSON structure, generate a Java test data factory.
Factory must:
- Generate valid users
- Generate invalid users
- Allow overriding any field
- Support random and fixed seed generation
Return:
- Java class
- Example usage in test
8. Контрольный промт (универсальный шаблон):
You are a professional QA test data generator.
Domain: {{SYSTEM_NAME}}
Data type: {{ENTITY}}
Constraints:
- No real PII.
- Must follow this schema: {{SCHEMA}}
- Must include: valid, invalid, and edge cases.
- Dataset size: {{N}} records.
Additional business rules:
{{RULES}}
Return JSON only.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment