Skip to content

Instantly share code, notes, and snippets.

@bartolsthoorn
Created April 29, 2017 12:13
Show Gist options
  • Select an option

  • Save bartolsthoorn/36c813a4becec1b260392f5353c8b7cc to your computer and use it in GitHub Desktop.

Select an option

Save bartolsthoorn/36c813a4becec1b260392f5353c8b7cc to your computer and use it in GitHub Desktop.
Simple multi-laber classification example with Pytorch and MultiLabelSoftMarginLoss (https://en.wikipedia.org/wiki/Multi-label_classification)
import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
from torch.autograd import Variable
# (1, 0) => target labels 0+2
# (0, 1) => target labels 1
# (1, 1) => target labels 3
train = []
labels = []
for i in range(10000):
category = (np.random.choice([0, 1]), np.random.choice([0, 1]))
if category == (1, 0):
train.append([np.random.uniform(0.1, 1), 0])
labels.append([1, 0, 1])
if category == (0, 1):
train.append([0, np.random.uniform(0.1, 1)])
labels.append([0, 1, 0])
if category == (0, 0):
train.append([np.random.uniform(0.1, 1), np.random.uniform(0.1, 1)])
labels.append([0, 0, 1])
class _classifier(nn.Module):
def __init__(self, nlabel):
super(_classifier, self).__init__()
self.main = nn.Sequential(
nn.Linear(2, 64),
nn.ReLU(),
nn.Linear(64, nlabel),
)
def forward(self, input):
return self.main(input)
nlabel = len(labels[0]) # => 3
classifier = _classifier(nlabel)
optimizer = optim.Adam(classifier.parameters())
criterion = nn.MultiLabelSoftMarginLoss()
epochs = 5
for epoch in range(epochs):
losses = []
for i, sample in enumerate(train):
inputv = Variable(torch.FloatTensor(sample)).view(1, -1)
labelsv = Variable(torch.FloatTensor(labels[i])).view(1, -1)
output = classifier(inputv)
loss = criterion(output, labelsv)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.append(loss.data.mean())
print('[%d/%d] Loss: %.3f' % (epoch+1, epochs, np.mean(losses)))
$ python multilabel.py
[1/5] Loss: 0.092
[2/5] Loss: 0.005
[3/5] Loss: 0.001
[4/5] Loss: 0.000
[5/5] Loss: 0.000
@jcfgonc
Copy link

jcfgonc commented Jul 18, 2025

Just to warn future people that this code is wrong. MultiLabelSoftMarginLoss() does not use one hot encoding as shown in this example and stored in the variable labels.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment