Last active
July 16, 2025 08:09
-
-
Save banach-space/d507070e04d7febf3983b779d18ba542 to your computer and use it in GitHub Desktop.
Scalable vectorization for linalg.pack + linalg.unpack
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // Pack + unpack Ops just before vectorization | |
| // NOTE: There are no linalg.pack Ops | |
| // Use -mlir-print-ir-before=iree-codegen-generic-vectorization with iree-compile | |
| %unpack = linalg.unpack %extracted_slice outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %extracted_slice_0 {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[0, 0], [8, 8], [0, 0], [0, 0]]>} : tensor<1x1x8x8xf32> -> tensor<8x8xf32> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // Examples to vectorize | |
| func.func @unpack(%in: tensor<1x1x8x?xf32>, %out: tensor<8x?xf32>) -> tensor<8x?xf32> { | |
| %vs = vector.vscale | |
| %c8 = arith.constant 8 : index | |
| %tile_size = arith.muli %vs, %c8 : index | |
| %unpack = linalg.unpack %in | |
| inner_dims_pos = [0, 1] | |
| inner_tiles = [8, %tile_size] | |
| into %out : tensor<1x1x8x?xf32> -> tensor<8x?xf32> | |
| return %unpack : tensor<8x?xf32> | |
| } | |
| module attributes {transform.with_named_sequence} { | |
| transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { | |
| %0 = transform.structured.match ops{["linalg.unpack"]} in %arg0 : (!transform.any_op) -> !transform.any_op | |
| // TODO: Vector sizes specificaion is insufficient! | |
| transform.structured.vectorize %0 vector_sizes [1, 1] : !transform.any_op | |
| transform.yield | |
| } | |
| } | |
| // ----- | |
| func.func @pack(%in: tensor<1x?xf32>, %out: tensor<1x1x?x1xf32>) -> tensor<1x1x?x1xf32> { | |
| %pad = arith.constant 1.23: f32 | |
| %vs = vector.vscale | |
| %c8 = arith.constant 8 : index | |
| %tile_size = arith.muli %vs, %c8 : index | |
| %pack = linalg.pack %in | |
| padding_value(%pad : f32) | |
| outer_dims_perm = [1, 0] | |
| inner_dims_pos = [1, 0] | |
| inner_tiles = [%tile_size, 1] | |
| into %out : tensor<1x?xf32> -> tensor<1x1x?x1xf32> | |
| return %pack : tensor<1x1x?x1xf32> | |
| } | |
| module attributes {transform.with_named_sequence} { | |
| transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { | |
| %0 = transform.structured.match ops{["linalg.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op | |
| // TODO: Vector sizes specificaion is insufficient! | |
| transform.structured.vectorize %0 vector_sizes [1, 1] : !transform.any_op | |
| transform.yield | |
| } | |
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // Pack + unpack Ops just before vectorization | |
| // NOTE - there is not linalg.pack for the output tensor, which is initialised with 0s | |
| // Use -mlir-print-ir-before=iree-codegen-generic-vectorization with iree-compile | |
| %pack = linalg.pack %extracted_slice outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %extracted_slice_0 {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[0, 0], [1, 1]]>} : tensor<8x1xf32> -> tensor<1x1x8x1xf32> | |
| %pack = linalg.pack %extracted_slice outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [4, 1] into %extracted_slice_0 {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[0, 0], [1, 1]]>} : tensor<4x1xf32> -> tensor<1x1x4x1xf32> | |
| %unpack = linalg.unpack %extracted_slice outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 4] into %extracted_slice_0 {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[0, 0], [8, 4], [0, 0], [0, 0]]>} : tensor<1x1x8x4xf32> -> tensor<8x4xf32> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment