Install visdom on your local system and remote server.
pip3 install visdom
On remote server, do:
| import cv2 | |
| import json | |
| import pandas as pd | |
| import numpy as np | |
| def convert_to_pandas(content): | |
| events = [] | |
| for obj in content: | |
| for f in obj['frames']: | |
| events.append({ |
| """ | |
| Create train, valid, test iterators for CIFAR-10 [1]. | |
| Easily extended to MNIST, CIFAR-100 and Imagenet. | |
| [1]: https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4 | |
| """ | |
| import torch | |
| import numpy as np |
| import glob | |
| import os | |
| import json | |
| class WikiDoc(object): | |
| def __init__(self, url, text, id, title): | |
| self.url = url | |
| self.text = text | |
| self.id = id |
| from PIL import Image | |
| import sys | |
| import os | |
| import math | |
| import numpy as np | |
| ########################################################################################### | |
| # script to generate moving mnist video dataset (frame by frame) as described in | |
| # [1] arXiv:1502.04681 - Unsupervised Learning of Video Representations Using LSTMs | |
| # Srivastava et al |