start new:
tmux
start new with session name:
tmux new -s myname
| import numpy as np | |
| import librosa | |
| import time | |
| import os | |
| import pygame | |
| steps =[ | |
| """ | |
| o | |
| \ / |
| def minitaur_config(): | |
| # General | |
| algorithm = ppo.PPOAlgorithm | |
| num_agents = 10 | |
| eval_episodes = 30 | |
| use_gpu = False | |
| # Environment | |
| env = 'MinitaurBulletEnv-v0' | |
| max_length = 1000 | |
| steps = 1e7 # 10M |
| """ | |
| Create train, valid, test iterators for CIFAR-10 [1]. | |
| Easily extended to MNIST, CIFAR-100 and Imagenet. | |
| [1]: https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4 | |
| """ | |
| import torch | |
| import numpy as np |
| #!/bin/bash | |
| baseurl="http://cvlab.hanyang.ac.kr/tracker_benchmark" | |
| wget "$baseurl/datasets.html" | |
| cat datasets.html | grep '\.zip' | sed -e 's/\.zip".*/.zip/' | sed -e s'/.*"//' >files.txt | |
| cat files.txt | xargs -n 1 -P 8 -I {} wget -c "$baseurl/{}" |
| %% This part goes in preamble | |
| \newcommand{\dummyfig}[1]{ | |
| \centering | |
| \fbox{ | |
| \begin{minipage}[c][0.33\textheight][c]{0.5\textwidth} | |
| \centering{#1} | |
| \end{minipage} | |
| } | |
| } |