I get the ISO, which is about 530MB large, and burn it on the USB key.
$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 1 3.8G 0 disk
└─sda1 8:1 1 3.8G 0 part
| from sklearn.datasets import fetch_openml | |
| from sklearn.pipeline import Pipeline, make_pipeline | |
| from sklearn.compose import ColumnTransformer, make_column_selector | |
| from sklearn.impute import SimpleImputer | |
| from sklearn.preprocessing import StandardScaler, OneHotEncoder, FunctionTransformer | |
| from sklearn.linear_model import LinearRegression | |
| from sklearn.tree import DecisionTreeRegressor | |
| from sklearn.model_selection import train_test_split | |
| from mlxtend.regressor import StackingRegressor |
| #include <ext/stdio_filebuf.h> // For stdio_filebuf | |
| #include <unistd.h> // For pipe, close | |
| #include <cstdlib> // For _Exit | |
| #include <memory> // For unique_ptr | |
| #include <sys/types.h> // For pid_t | |
| #include <sys/wait.h> // For waitpid | |
| #include <stdio.h> // For perror | |
| #include <iostream> | |
| #include <cassert> | |
| #include <string> |
| def flatten(a): | |
| return sum(a, []) | |
| def local_minima(a): | |
| if len(a) < 2: | |
| return list(range(len(a))) | |
| lmin = True | |
| curr = list() | |
| local_minima = list() |
| #include <iostream> | |
| #include <string> | |
| #include <typeinfo> | |
| #include <cxxabi.h> | |
| std::string classname(const std::type_info& ti) { | |
| int status; | |
| return abi::__cxa_demangle(ti.name(), 0, 0, &status); | |
| } |
| #include <algorithm> | |
| #include <chrono> | |
| #include <functional> | |
| #include <future> | |
| #include <iomanip> | |
| #include <iostream> | |
| #include <random> | |
| #include "pcg_random.hpp" // Random number generator |