Skip to content

Instantly share code, notes, and snippets.

@afflom
Last active January 20, 2026 07:30
Show Gist options
  • Select an option

  • Save afflom/8208eb455fef446fa4968c0311c75949 to your computer and use it in GitHub Desktop.

Select an option

Save afflom/8208eb455fef446fa4968c0311c75949 to your computer and use it in GitHub Desktop.
UOR Foundation - Foundation Model - Categorical X
{
"@context": {
"@base": "https://uor.foundation/categorical-x/v1/",
"@vocab": "https://uor.foundation/categorical-x/v1#",
"AlgebraicProperty": "cx:AlgebraicProperty",
"ApproximateNumber": "cx:ApproximateNumber",
"ArbitraryPrecisionContext": "cx:ArbitraryPrecisionContext",
"AssertionStatus": "cx:AssertionStatus",
"AutomorphismGroup": "cx:AutomorphismGroup",
"Axiom": "cx:Axiom",
"AxiomsContainer": "cx:AxiomsContainer",
"Ball": "cx:Ball",
"BaseCaseValue": "cx:BaseCaseValue",
"CategoricalStructure": "cxm:CategoricalStructure",
"CategoricalStructureKind": "cxm:CategoricalStructureKind",
"Category": "cx:Category",
"CocycleClass": "cx:CocycleClass",
"CocycleRelation": "cx:CocycleRelation",
"CompositionLaw": "cxm:CompositionLaw",
"ComputationArtifact": "cx:ComputationArtifact",
"ConstantsContainer": "cx:ConstantsContainer",
"ConstructionRule": "cxm:ConstructionRule",
"ConstructorFunctor": "cxm:ConstructorFunctor",
"ConstructorFunctorsContainer": "cxm:ConstructorFunctorsContainer",
"ConversionMorphism": "cx:ConversionMorphism",
"Correspondence": "cx:Correspondence",
"CorrespondencesContainer": "cx:CorrespondencesContainer",
"CountingFunctionInstance": "cx:CountingFunctionInstance",
"CountingSequence": "cx:CountingSequence",
"DedekindNumber": "cx:DedekindNumber",
"DerivationChain": "cxm:DerivationChain",
"DerivationConstraints": "cxm:DerivationConstraints",
"DerivationLevel": "cxm:DerivationLevel",
"DerivationRule": "cx:DerivationRule",
"DerivationRuleValue": "cx:DerivationRuleValue",
"DerivationSource": "cxm:DerivationSource",
"DerivationStep": "cxm:DerivationStep",
"DerivedConstant": "cx:DerivedConstant",
"DerivedOperation": "cx:DerivedOperation",
"DigitSet": "cx:DigitSet",
"DigitSymbol": "cx:DigitSymbol",
"DimensionSpec": "cx:DimensionSpec",
"ExactNumber": "cx:ExactNumber",
"ExtendedLieGroup": "cx:ExtendedLieGroup",
"Extension": "cxm:Extension",
"ExtensionPoint": "cxm:ExtensionPoint",
"FilterInstance": "cx:FilterInstance",
"FiniteGroup": "cx:FiniteGroup",
"FirstOrderType": "cx:FirstOrderType",
"FixedPrecisionContext": "cx:FixedPrecisionContext",
"FreeConstruction": "cxm:FreeConstruction",
"Integers": "cx:Integers",
"IntegersContainer": "cx:IntegersContainer",
"Interval": "cx:Interval",
"LatticeInstance": "cx:LatticeInstance",
"LieGroup": "cx:LieGroup",
"Literal": "cx:Literal",
"MetaContainer": "cxm:MetaContainer",
"MetamodelEntity": "cxm:MetamodelEntity",
"MixedRadixSystem": "cx:MixedRadixSystem",
"NamedOctave": "cx:NamedOctave",
"NaturalNumbers": "cx:NaturalNumbers",
"NonPositionalSystem": "cx:NonPositionalSystem",
"Number": "cx:Number",
"Numeral": "cx:Numeral",
"NumeralSystem": "cx:NumeralSystem",
"NumericAssertion": "cx:NumericAssertion",
"NumericDomain": "cx:NumericDomain",
"OctaveCocycle": "cx:OctaveCocycle",
"OctaveConstants": "cx:OctaveConstants",
"OperationsContainer": "cx:OperationsContainer",
"Operator": "cx:Operator",
"OperatorsContainer": "cx:OperatorsContainer",
"ParameterSpec": "cxm:ParameterSpec",
"Periodicity": "cx:Periodicity",
"PeriodicityContainer": "cx:PeriodicityContainer",
"PhaseAlignment": "cx:PhaseAlignment",
"PhaseBehavior": "cx:PhaseBehavior",
"PhaseMapEntry": "cx:PhaseMapEntry",
"PhaseModification": "cx:PhaseModification",
"PhaseTransition": "cx:PhaseTransition",
"PhaseType": "cx:PhaseType",
"PhasesContainer": "cx:PhasesContainer",
"PositionalSystem": "cx:PositionalSystem",
"PrecisionContext": "cx:PrecisionContext",
"Primitive": "cx:Primitive",
"PrimitiveOperation": "cx:PrimitiveOperation",
"PrimitiveRelation": "cx:PrimitiveRelation",
"PrimitivesContainer": "cx:PrimitivesContainer",
"Projection": "cx:Projection",
"ProjectionsContainer": "cx:ProjectionsContainer",
"Proof": "cx:Proof",
"ProofStep": "cx:ProofStep",
"PropertiesContainer": "cx:PropertiesContainer",
"Rationals": "cx:Rationals",
"RegimeRule": "cx:RegimeRule",
"RelationsContainer": "cx:RelationsContainer",
"RepresentativeRule": "cx:RepresentativeRule",
"RoundingMode": "cx:RoundingMode",
"SecondOrderType": "cx:SecondOrderType",
"SequenceEntry": "cx:SequenceEntry",
"SieveInstance": "cx:SieveInstance",
"SingletonInstance": "cx:SingletonInstance",
"StrataContainer": "cx:StrataContainer",
"Stratum": "cx:Stratum",
"StructuralType": "cx:StructuralType",
"Theorem": "cx:Theorem",
"TowerContainer": "cx:TowerContainer",
"TowerLevel": "cx:TowerLevel",
"TowerLevelsContainer": "cx:TowerLevelsContainer",
"TowerTransition": "cx:TowerTransition",
"TransitionCocycle": "cx:TransitionCocycle",
"TransitionsContainer": "cx:TransitionsContainer",
"TypeConstructor": "cxm:TypeConstructor",
"TypeConstructorsContainer": "cxm:TypeConstructorsContainer",
"TypeLevel": "cx:TypeLevel",
"TypeVariable": "cx:TypeVariable",
"TypesContainer": "cx:TypesContainer",
"UniversalProperty": "cxm:UniversalProperty",
"UniversalPropertyKind": "cxm:UniversalPropertyKind",
"Verification": "cx:Verification",
"VerificationStatus": "cxm:VerificationStatus",
"ZeroDivisorGeometry": "cx:ZeroDivisorGeometry",
"activatesAt": {
"@id": "cx:activatesAt",
"@type": "@id"
},
"activatesAtIndex": {
"@id": "cx:activatesAtIndex",
"@type": "xsd:integer"
},
"activationCondition": {
"@id": "cx:activationCondition"
},
"adjointTo": {
"@id": "cxm:adjointTo",
"@type": "@id"
},
"adjunctionCounit": {
"@id": "cx:adjunctionCounit"
},
"adjunctionUnit": {
"@id": "cx:adjunctionUnit"
},
"algebra": {
"@id": "cx:algebra"
},
"antichain": {
"@id": "cx:antichain"
},
"appliesOperation": {
"@id": "cx:appliesOperation",
"@type": "@id"
},
"appliesTo": {
"@id": "cxm:appliesTo",
"@type": "@id"
},
"assertsValue": {
"@id": "cx:assertsValue",
"@type": "@id"
},
"asymptoticBehavior": {
"@id": "cx:asymptoticBehavior"
},
"atBoundary": {
"@id": "cx:atBoundary",
"@type": "@id"
},
"atDerivationLevel": {
"@id": "cxm:atDerivationLevel",
"@type": "@id"
},
"automorphismDimensionRule": {
"@id": "cx:automorphismDimensionRule"
},
"base": {
"@id": "cx:base"
},
"baseCase": {
"@id": "cx:baseCase",
"@type": "@id"
},
"baseStructure": {
"@id": "cx:baseStructure"
},
"bound": {
"@id": "cx:bound"
},
"breaks": {
"@id": "cx:breaks"
},
"canDeriveFrom": {
"@id": "cxm:canDeriveFrom",
"@type": "@id"
},
"cardinality": {
"@id": "cx:cardinality",
"@type": "xsd:integer"
},
"categorical": {
"@id": "cx:categorical"
},
"categoricalDerivation": {
"@id": "cx:categoricalDerivation"
},
"categoricalOrder": {
"@container": "@list",
"@id": "cx:categoricalOrder"
},
"categoricalOrigin": {
"@id": "cx:categoricalOrigin",
"@type": "@id"
},
"classFormula": {
"@id": "cx:classFormula"
},
"cocycle": {
"@id": "cx:cocycle",
"@type": "@id"
},
"cocycleClass": {
"@id": "cx:cocycleClass"
},
"cocycleClassRule": {
"@id": "cx:cocycleClassRule"
},
"codomain": {
"@id": "cx:codomain",
"@type": "@id"
},
"codomainCategory": {
"@id": "cx:codomainCategory"
},
"cohomologyClass": {
"@id": "cx:cohomologyClass"
},
"comment": "rdfs:comment",
"components": {
"@id": "cx:components",
"@type": "@id"
},
"computedValue": {
"@id": "cx:computedValue"
},
"confidence": {
"@id": "cx:confidence",
"@type": "xsd:decimal"
},
"conformsTo": {
"@id": "dcterms:conformsTo",
"@type": "@id"
},
"conjecture": {
"@id": "cx:conjecture"
},
"constructionFormula": {
"@id": "cx:constructionFormula"
},
"constructionRules": {
"@container": "@set",
"@id": "cx:constructionRules",
"@type": "@id"
},
"containedIn": {
"@id": "cx:containedIn",
"@type": "@id"
},
"contains": {
"@container": "@set",
"@id": "cx:contains",
"@type": "@id"
},
"continuation": {
"@id": "cx:continuation"
},
"coprime": {
"@id": "cx:coprime"
},
"correspondsTo": {
"@container": "@set",
"@id": "cx:correspondsTo",
"@type": "@id"
},
"creator": {
"@id": "dcterms:creator"
},
"criticalConstant": {
"@id": "cx:criticalConstant"
},
"criticalLine": {
"@id": "cx:criticalLine",
"@type": "@id"
},
"cx": "https://uor.foundation/categorical-x/v1#",
"cxm": "https://uor.foundation/categorical-x/v1/meta#",
"cxs": "https://uor.foundation/categorical-x/v1/schema#",
"dcterms": "http://purl.org/dc/terms/",
"dedekind": {
"@id": "cx:dedekind"
},
"definesObject": {
"@id": "cxm:definesObject",
"@type": "@id"
},
"degreeRule": {
"@id": "cx:degreeRule"
},
"denotes": {
"@id": "cx:denotes",
"@type": "@id"
},
"depth": {
"@id": "cx:depth"
},
"derivation": {
"@id": "cx:derivation",
"@type": "@id"
},
"derivationDepth": {
"@id": "cxm:derivationDepth",
"@type": "xsd:integer"
},
"derivedFrom": {
"@container": "@set",
"@id": "cx:derivedFrom",
"@type": "@id"
},
"derives": {
"@container": "@set",
"@id": "cx:derives",
"@type": "@id"
},
"description": "rdfs:comment",
"diagramShape": {
"@id": "cx:diagramShape"
},
"dimension": {
"@id": "cx:dimension",
"@type": "xsd:integer"
},
"dimensionRule": {
"@id": "cx:dimensionRule"
},
"domain": {
"@id": "cx:domain"
},
"domainCategory": {
"@id": "cx:domainCategory"
},
"doublingFunctor": {
"@id": "cx:doublingFunctor"
},
"efficiencyGain": {
"@id": "cx:efficiencyGain"
},
"embedsInto": {
"@id": "cx:embedsInto",
"@type": "@id"
},
"encoding": {
"@id": "cx:encoding"
},
"etaDedekind": {
"@id": "cx:etaDedekind",
"@type": "@id"
},
"exactValue": {
"@id": "cx:exactValue"
},
"existenceCondition": {
"@id": "cx:existenceCondition"
},
"expanded": {
"@id": "cx:expanded"
},
"explicitFormula": {
"@id": "cx:explicitFormula",
"@type": "@id"
},
"exponent": {
"@id": "cx:exponent",
"@type": "@id"
},
"exponentMax": {
"@id": "cx:exponentMax",
"@type": "xsd:integer"
},
"exponentMin": {
"@id": "cx:exponentMin",
"@type": "xsd:integer"
},
"extendsConstructor": {
"@id": "cxm:extendsConstructor",
"@type": "@id"
},
"fValueRule": {
"@id": "cx:fValueRule"
},
"factor1": {
"@id": "cx:factor1",
"@type": "@id"
},
"factor2": {
"@id": "cx:factor2",
"@type": "@id"
},
"filterCorrespondence": {
"@id": "cx:filterCorrespondence",
"@type": "@id"
},
"followsPhase": {
"@id": "cx:followsPhase",
"@type": "@id"
},
"forgetfulFunctor": {
"@id": "cx:forgetfulFunctor"
},
"form": {
"@id": "cx:form"
},
"formula": {
"@id": "cx:formula"
},
"functorFormula": {
"@id": "cx:functorFormula"
},
"functorSource": {
"@id": "cx:functorSource",
"@type": "@id"
},
"functorTarget": {
"@id": "cx:functorTarget",
"@type": "@id"
},
"gValues": {
"@id": "cx:gValues",
"@type": "@id"
},
"generatedAt": {
"@id": "dcterms:created",
"@type": "xsd:dateTime"
},
"generatesType": {
"@id": "cx:generatesType",
"@type": "@id"
},
"generator": {
"@id": "cx:generator"
},
"governedBy": {
"@id": "cx:governedBy",
"@type": "@id"
},
"governs": {
"@container": "@set",
"@id": "cx:governs",
"@type": "@id"
},
"governsPhase": {
"@id": "cx:governsPhase",
"@type": "@id"
},
"groupRule": {
"@id": "cx:groupRule"
},
"groupType": {
"@id": "cx:groupType"
},
"hasAssertion": {
"@id": "cx:hasAssertion",
"@type": "@id"
},
"hasAutomorphismGroup": {
"@id": "cx:hasAutomorphismGroup",
"@type": "@id"
},
"hasBaseStructure": {
"@id": "cxm:hasBaseStructure",
"@type": "@id"
},
"hasCategoricalStructure": {
"@id": "cxm:hasCategoricalStructure",
"@type": "@id"
},
"hasCocycle": {
"@id": "cx:hasCocycle",
"@type": "@id"
},
"hasCompositionLaw": {
"@id": "cxm:hasCompositionLaw",
"@type": "@id"
},
"hasConstructionRule": {
"@id": "cx:hasConstructionRule",
"@type": "@id"
},
"hasConversion": {
"@id": "cx:hasConversion",
"@type": "@id"
},
"hasDerivationChain": {
"@id": "cxm:hasDerivationChain",
"@type": "@id"
},
"hasDerivationConstraints": {
"@id": "cxm:hasDerivationConstraints",
"@type": "@id"
},
"hasDerivationSource": {
"@id": "cx:hasDerivationSource",
"@type": "@id"
},
"hasDerivationStep": {
"@id": "cxm:hasDerivationStep",
"@type": "@id"
},
"hasDimension": {
"@id": "cx:hasDimension",
"@type": "@id"
},
"hasEntry": {
"@id": "cx:hasEntry",
"@type": "@id"
},
"hasFormula": {
"@id": "cx:hasFormula"
},
"hasInstance": {
"@container": "@set",
"@id": "cx:hasInstance",
"@type": "@id"
},
"hasInterval": {
"@id": "cx:hasInterval",
"@type": "@id"
},
"hasOperands": {
"@container": "@list",
"@id": "cx:hasOperands",
"@type": "@id"
},
"hasParameter": {
"@id": "cx:hasParameter",
"@type": "@id"
},
"hasPart": {
"@container": "@set",
"@id": "cx:hasPart",
"@type": "@id"
},
"hasPrecisionContext": {
"@id": "cx:hasPrecisionContext",
"@type": "@id"
},
"hasProof": {
"@id": "cx:hasProof",
"@type": "@id"
},
"hasProofStep": {
"@id": "cx:hasProofStep",
"@type": "@id"
},
"hasRadices": {
"@id": "cx:hasRadices"
},
"hasRadix": {
"@id": "cx:hasRadix",
"@type": "xsd:integer"
},
"hasSignature": {
"@id": "cx:hasSignature"
},
"hasTypeParameter": {
"@id": "cx:hasTypeParameter",
"@type": "@id"
},
"hasUniversalProperty": {
"@id": "cx:hasUniversalProperty"
},
"hasUniversalPropertyKind": {
"@id": "cxm:hasUniversalPropertyKind",
"@type": "@id"
},
"hasValue": {
"@id": "cx:hasValue"
},
"hasVerificationStatus": {
"@id": "cxm:hasVerificationStatus",
"@type": "@id"
},
"implementsExtensionPoint": {
"@id": "cxm:implementsExtensionPoint",
"@type": "@id"
},
"inCategory": {
"@id": "cxm:inCategory",
"@type": "@id"
},
"inDomain": {
"@id": "cx:inDomain",
"@type": "@id"
},
"inPrimitives": {
"@id": "cx:inPrimitives"
},
"inSystem": {
"@id": "cx:inSystem",
"@type": "@id"
},
"inclusive": {
"@id": "cx:inclusive",
"@type": "xsd:boolean"
},
"index": {
"@id": "cx:index",
"@type": "xsd:integer"
},
"instanceOf": {
"@id": "cx:instanceOf",
"@type": "@id"
},
"isDefinedBy": {
"@id": "rdfs:isDefinedBy",
"@type": "@id"
},
"isDiscrete": {
"@id": "cx:isDiscrete",
"@type": "xsd:boolean"
},
"isFinite": {
"@id": "cx:isFinite",
"@type": "xsd:boolean"
},
"isOrdered": {
"@id": "cx:isOrdered",
"@type": "xsd:boolean"
},
"k": {
"@id": "cx:k",
"@type": "xsd:integer"
},
"label": "rdfs:label",
"latticeIsomorphism": {
"@id": "cx:latticeIsomorphism",
"@type": "@id"
},
"lawExpression": {
"@id": "cx:lawExpression"
},
"leechDimension": {
"@id": "cx:leechDimension",
"@type": "@id"
},
"level": {
"@id": "cx:level",
"@type": "xsd:integer"
},
"levelIndex": {
"@id": "cx:levelIndex",
"@type": "xsd:integer"
},
"lexicalValue": {
"@id": "cx:lexicalValue"
},
"lhs": {
"@id": "cx:lhs"
},
"license": {
"@id": "dcterms:license",
"@type": "@id"
},
"losesProperty": {
"@id": "cx:losesProperty",
"@type": "@id"
},
"lostAtLevel": {
"@id": "cx:lostAtLevel",
"@type": "@id"
},
"lostPropertyRule": {
"@id": "cx:lostPropertyRule"
},
"lowerBound": {
"@id": "cx:lowerBound"
},
"map": {
"@id": "cx:map"
},
"mapsPhase": {
"@container": "@set",
"@id": "cx:mapsPhase",
"@type": "@id"
},
"maxDerivationLevel": {
"@id": "cxm:maxDerivationLevel",
"@type": "xsd:integer"
},
"modifiedAtLevel": {
"@id": "cx:modifiedAtLevel",
"@type": "@id"
},
"monsterAntichain": {
"@id": "cx:monsterAntichain",
"@type": "@id"
},
"morphismMapping": {
"@id": "cx:morphismMapping"
},
"multiplicityRule": {
"@id": "cx:multiplicityRule"
},
"n": {
"@id": "cx:n",
"@type": "xsd:integer"
},
"name": "rdfs:label",
"naturalComponents": {
"@id": "cx:naturalComponents"
},
"note": {
"@id": "cx:note"
},
"numericalOrder": {
"@container": "@list",
"@id": "cx:numericalOrder"
},
"objectMapping": {
"@id": "cx:objectMapping"
},
"octaveCorrection": {
"@id": "cx:octaveCorrection",
"@type": "@id"
},
"oeisId": {
"@id": "cx:oeisId"
},
"operatesOn": {
"@container": "@set",
"@id": "cx:operatesOn",
"@type": "@id"
},
"order": {
"@container": "@list",
"@id": "cx:order",
"@type": "@id"
},
"owl": "http://www.w3.org/2002/07/owl#",
"parameterCondition": {
"@id": "cx:parameterCondition"
},
"parameterDomain": {
"@id": "cx:parameterDomain"
},
"parameterVariable": {
"@id": "cx:parameterVariable"
},
"partOf": {
"@id": "cx:partOf",
"@type": "@id"
},
"pattern": {
"@id": "cx:pattern"
},
"period": {
"@id": "cx:period",
"@type": "@id"
},
"periodicity": {
"@id": "cx:periodicity",
"@type": "@id"
},
"phase": {
"@id": "cx:phase",
"@type": "@id"
},
"phaseAlignment": {
"@container": "@set",
"@id": "cx:phaseAlignment",
"@type": "@id"
},
"phaseBoundary": {
"@id": "cx:phaseBoundary",
"@type": "@id"
},
"phaseFormula": {
"@id": "cx:phaseFormula"
},
"phaseII": {
"@id": "cx:phaseII",
"@type": "@id"
},
"phaseIV": {
"@id": "cx:phaseIV",
"@type": "@id"
},
"phaseRange": {
"@id": "cx:phaseRange"
},
"preTrialityRegime": {
"@id": "cx:preTrialityRegime",
"@type": "@id"
},
"precedesPhase": {
"@id": "cx:precedesPhase",
"@type": "@id"
},
"precisionBits": {
"@id": "cx:precisionBits",
"@type": "xsd:integer"
},
"precisionDigits": {
"@id": "cx:precisionDigits",
"@type": "xsd:integer"
},
"preserves": {
"@container": "@set",
"@id": "cx:preserves",
"@type": "@id"
},
"prime": {
"@id": "cx:prime"
},
"product": {
"@id": "cx:product",
"@type": "xsd:integer"
},
"projectsTo": {
"@id": "cx:projectsTo",
"@type": "@id"
},
"proof": {
"@id": "cx:proof"
},
"proofStep": {
"@container": "@list",
"@id": "cx:proofStep",
"@type": "@id"
},
"propertyClosureDimension": {
"@id": "cx:propertyClosureDimension"
},
"propertyClosureLevel": {
"@id": "cx:propertyClosureLevel",
"@type": "xsd:integer"
},
"proves": {
"@id": "cx:proves",
"@type": "@id"
},
"providesConstructor": {
"@id": "cxm:providesConstructor",
"@type": "@id"
},
"publisher": {
"@id": "dcterms:publisher"
},
"range": {
"@id": "cx:range"
},
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"relation": {
"@id": "cx:relation",
"@type": "@id"
},
"relationToDedekind": {
"@id": "cx:relationToDedekind"
},
"relations": {
"@container": "@list",
"@id": "cx:relations"
},
"representative": {
"@id": "cx:representative"
},
"representativeRule": {
"@id": "cx:representativeRule",
"@type": "@id"
},
"requiresStructure": {
"@id": "cxm:requiresStructure",
"@type": "@id"
},
"resolutionComplexity": {
"@id": "cx:resolutionComplexity"
},
"resolutionMethod": {
"@id": "cx:resolutionMethod"
},
"resolutionRules": {
"@id": "cx:resolutionRules",
"@type": "@id"
},
"result": {
"@id": "cx:result"
},
"rhs": {
"@id": "cx:rhs"
},
"roundingMode": {
"@id": "cx:roundingMode",
"@type": "@id"
},
"rule": {
"@id": "cx:rule"
},
"rules": {
"@container": "@set",
"@id": "cx:rules",
"@type": "@id"
},
"sameAs": {
"@id": "owl:sameAs",
"@type": "@id"
},
"satisfiesUniversalProperty": {
"@id": "cxm:satisfiesUniversalProperty",
"@type": "@id"
},
"schemaOrg": "https://schema.org/",
"sectorProof": {
"@id": "cx:sectorProof",
"@type": "@id"
},
"sequenceIndex": {
"@id": "cx:sequenceIndex",
"@type": "xsd:integer"
},
"sharedStructure": {
"@id": "cx:sharedStructure",
"@type": "@id"
},
"sharedType": {
"@id": "cx:sharedType"
},
"signature": {
"@id": "cx:signature"
},
"significance": {
"@id": "cx:significance"
},
"skos": "http://www.w3.org/2004/02/skos/core#",
"source": {
"@id": "cx:source",
"@type": "@id"
},
"sourceAxiom": {
"@id": "cx:sourceAxiom"
},
"sourceLevel": {
"@id": "cx:sourceLevel",
"@type": "@id"
},
"sourcePhase": {
"@id": "cx:sourcePhase"
},
"stabilityCondition": {
"@id": "cx:stabilityCondition"
},
"statement": {
"@id": "cx:statement"
},
"status": {
"@id": "cx:status"
},
"stepDependsOn": {
"@id": "cxm:stepDependsOn",
"@type": "@id"
},
"stepProduces": {
"@id": "cxm:stepProduces",
"@type": "@id"
},
"stepVia": {
"@id": "cxm:stepVia",
"@type": "@id"
},
"structuralFormula": {
"@id": "cx:structuralFormula"
},
"supportedBy": {
"@id": "cx:supportedBy",
"@type": "@id"
},
"symbol": {
"@id": "cx:symbol"
},
"targetCategory": {
"@id": "cx:targetCategory",
"@type": "@id"
},
"targetField": {
"@id": "cx:targetField"
},
"targetLevel": {
"@id": "cx:targetLevel",
"@type": "@id"
},
"targetPhase": {
"@id": "cx:targetPhase"
},
"targets": {
"@container": "@set",
"@id": "cx:targets",
"@type": "@id"
},
"terminalAxiom": {
"@id": "cxm:terminalAxiom",
"@type": "@id"
},
"termination": {
"@id": "cx:termination"
},
"tracesToAxiom": {
"@id": "cx:tracesToAxiom",
"@type": "@id"
},
"transitionLevel": {
"@id": "cx:transitionLevel",
"@type": "xsd:integer"
},
"trialityInvariant": {
"@id": "cx:trialityInvariant",
"@type": "xsd:boolean"
},
"trialityRegime": {
"@id": "cx:trialityRegime",
"@type": "@id"
},
"trialityTheorem": {
"@id": "cx:trialityTheorem",
"@type": "@id"
},
"type": {
"@id": "cx:type"
},
"typeParameterDomain": {
"@id": "cx:typeParameterDomain",
"@type": "@id"
},
"uniquenessCondition": {
"@id": "cx:uniquenessCondition"
},
"universalArrow": {
"@id": "cx:universalArrow"
},
"upperBound": {
"@id": "cx:upperBound"
},
"usesDigitSet": {
"@id": "cx:usesDigitSet",
"@type": "@id"
},
"usesRuntimeConstruct": {
"@id": "cx:usesRuntimeConstruct",
"@type": "@id"
},
"validationRule": {
"@id": "cx:validationRule"
},
"value": {
"@id": "cx:value"
},
"values": {
"@container": "@set",
"@id": "cx:values",
"@type": "@id"
},
"verification": {
"@id": "cx:verification",
"@type": "@id"
},
"verificationStatus": {
"@id": "cx:verificationStatus"
},
"version": {
"@id": "owl:versionInfo"
},
"viaIsomorphism": {
"@id": "cx:viaIsomorphism"
},
"when": {
"@id": "cx:when"
},
"whyPentality": {
"@id": "cx:whyPentality"
},
"whySeptality": {
"@id": "cx:whySeptality"
},
"whyT": {
"@id": "cx:whyT"
},
"xsd": "http://www.w3.org/2001/XMLSchema#",
"yieldsValue": {
"@id": "cx:yieldsValue"
}
},
"@graph": [
{
"@id": "owl:Class",
"@type": "rdfs:Class",
"label": "Class"
},
{
"@id": "owl:ObjectProperty",
"@type": "rdfs:Class",
"label": "Object Property"
},
{
"@id": "owl:DatatypeProperty",
"@type": "rdfs:Class",
"label": "Datatype Property"
},
{
"@id": "cx:SingletonInstance",
"@type": "owl:Class",
"comment": "The unique canonical instance of the Categorical X structure",
"label": "Singleton Instance"
},
{
"@id": "cx:Primitive",
"@type": "owl:Class",
"comment": "Atomic element that cannot be decomposed further",
"label": "Primitive"
},
{
"@id": "cx:Axiom",
"@type": "owl:Class",
"comment": "Foundational assertion",
"label": "Axiom"
},
{
"@id": "cx:DerivedConstant",
"@type": "owl:Class",
"comment": "Constant derived from primitives via operations",
"label": "Derived Constant"
},
{
"@id": "cx:TypeLevel",
"@type": "owl:Class",
"comment": "A level in the type hierarchy",
"label": "Type Level"
},
{
"@id": "cx:TowerLevel",
"@type": "owl:Class",
"comment": "A level in the Cayley-Dickson tower",
"label": "Tower Level"
},
{
"@id": "cx:TowerTransition",
"@type": "owl:Class",
"comment": "Cayley-Dickson doubling functor between levels",
"label": "Tower Transition"
},
{
"@id": "cx:Operator",
"@type": "owl:Class",
"comment": "Closure operation on the categorical structure",
"label": "Operator"
},
{
"@id": "cx:Projection",
"@type": "owl:Class",
"comment": "Domain-specific functor from the categorical structure",
"label": "Projection"
},
{
"@id": "cx:Correspondence",
"@type": "owl:Class",
"comment": "Cross-projection relationship",
"label": "Correspondence"
},
{
"@id": "cx:PhaseTransition",
"@type": "owl:Class",
"comment": "Boundary point in phase behavior",
"label": "Phase Transition"
},
{
"@id": "cx:PhaseBehavior",
"@type": "owl:Class",
"comment": "Operational formula for a phase",
"label": "Phase Behavior"
},
{
"@id": "cx:PhaseModification",
"@type": "owl:Class",
"comment": "Operator behavior modification at a phase boundary",
"label": "Phase Modification"
},
{
"@id": "cx:AutomorphismGroup",
"@type": "owl:Class",
"comment": "Symmetry group of an algebra",
"label": "Automorphism Group"
},
{
"@id": "cx:CocycleClass",
"@type": "owl:Class",
"comment": "Cohomological obstruction class",
"label": "Cocycle Class"
},
{
"@id": "cx:AlgebraicProperty",
"@type": "owl:Class",
"comment": "Property that may be lost in the tower",
"label": "Algebraic Property"
},
{
"@id": "cx:Category",
"@type": "owl:Class",
"comment": "Target category for projections",
"label": "Mathematical Category"
},
{
"@id": "cx:Stratum",
"@type": "owl:Class",
"comment": "Stratification of tower levels",
"label": "Stratum"
},
{
"@id": "cx:DimensionSpec",
"@type": "owl:Class",
"comment": "Dimension specification",
"label": "Dimension Spec"
},
{
"@id": "cx:DerivationRule",
"@type": "owl:Class",
"comment": "Rule for deriving values",
"label": "Derivation Rule"
},
{
"@id": "cx:Theorem",
"@type": "owl:Class",
"comment": "Mathematical theorem",
"label": "Theorem"
},
{
"@id": "cx:Proof",
"@type": "owl:Class",
"comment": "Mathematical proof",
"label": "Proof"
},
{
"@id": "cx:ProofStep",
"@type": "owl:Class",
"comment": "Step in a proof",
"label": "Proof Step"
},
{
"@id": "cx:CriticalBoundary",
"@type": "owl:Class",
"comment": "Axiom-derived boundary constraint (T=3 division, O=8 tower)",
"label": "Critical Boundary"
},
{
"@id": "cx:CompletenessCertificate",
"@type": "owl:Class",
"comment": "Formal guarantee of lossless coverage for arbitrary scale",
"label": "Completeness Certificate"
},
{
"@id": "cx:PrimitiveOperation",
"@type": "owl:Class",
"comment": "Basic arithmetic operation",
"label": "Primitive Operation"
},
{
"@id": "cx:PrimitiveRelation",
"@type": "owl:Class",
"comment": "Basic mathematical relation",
"label": "Primitive Relation"
},
{
"@id": "cx:DerivedOperation",
"@type": "owl:Class",
"comment": "Operation derived from primitives",
"label": "Derived Operation"
},
{
"@id": "cx:FirstOrderType",
"@type": "owl:Class",
"comment": "Type from binary operations on primitives",
"label": "First-Order Type"
},
{
"@id": "cx:SecondOrderType",
"@type": "owl:Class",
"comment": "Type from first-order types",
"label": "Second-Order Type"
},
{
"@id": "cx:StructuralType",
"@type": "owl:Class",
"comment": "Abstract structural type",
"label": "Structural Type"
},
{
"@id": "cx:OctaveCocycle",
"@type": "owl:Class",
"comment": "Fundamental octave cocycle",
"label": "Octave Cocycle"
},
{
"@id": "cx:OctaveConstants",
"@type": "owl:Class",
"comment": "Octave correction constants",
"label": "Octave Constants"
},
{
"@id": "cx:NamedOctave",
"@type": "owl:Class",
"comment": "Named octave in periodicity",
"label": "Named Octave"
},
{
"@id": "cx:PhaseAlignment",
"@type": "owl:Class",
"comment": "Alignment of phases across projections",
"label": "Phase Alignment"
},
{
"@id": "cx:PhaseMapEntry",
"@type": "owl:Class",
"comment": "Entry in phase mapping",
"label": "Phase Map Entry"
},
{
"@id": "cx:BaseCaseValue",
"@type": "owl:Class",
"comment": "Base case value for resolution",
"label": "Base Case Value"
},
{
"@id": "cx:LatticeInstance",
"@type": "owl:Class",
"comment": "Instance of a lattice structure",
"label": "Lattice Instance"
},
{
"@id": "cx:FilterInstance",
"@type": "owl:Class",
"comment": "Instance of a filter structure",
"label": "Filter Instance"
},
{
"@id": "cx:SieveInstance",
"@type": "owl:Class",
"comment": "Instance of a sieve structure",
"label": "Sieve Instance"
},
{
"@id": "cx:FiniteGroup",
"@type": "owl:Class",
"comment": "Finite automorphism group",
"label": "Finite Group"
},
{
"@id": "cx:LieGroup",
"@type": "owl:Class",
"comment": "Continuous automorphism group",
"label": "Lie Group"
},
{
"@id": "cx:PrimitivesContainer",
"@type": "owl:Class",
"comment": "Container for primitive elements",
"label": "Primitives Container"
},
{
"@id": "cx:IntegersContainer",
"@type": "owl:Class",
"comment": "Container for primitive integers",
"label": "Integers Container"
},
{
"@id": "cx:OperationsContainer",
"@type": "owl:Class",
"comment": "Container for primitive operations",
"label": "Operations Container"
},
{
"@id": "cx:RelationsContainer",
"@type": "owl:Class",
"comment": "Container for primitive relations",
"label": "Relations Container"
},
{
"@id": "cx:TowerContainer",
"@type": "owl:Class",
"comment": "Container for tower structure",
"label": "Tower Container"
},
{
"@id": "cx:TowerLevelsContainer",
"@type": "owl:Class",
"comment": "Container for tower levels",
"label": "Tower Levels Container"
},
{
"@id": "cx:TransitionsContainer",
"@type": "owl:Class",
"comment": "Container for tower transitions",
"label": "Transitions Container"
},
{
"@id": "cx:StrataContainer",
"@type": "owl:Class",
"comment": "Container for tower strata",
"label": "Strata Container"
},
{
"@id": "cx:OperatorsContainer",
"@type": "owl:Class",
"comment": "Container for categorical operators",
"label": "Operators Container"
},
{
"@id": "cx:ProjectionsContainer",
"@type": "owl:Class",
"comment": "Container for projections",
"label": "Projections Container"
},
{
"@id": "cx:CorrespondencesContainer",
"@type": "owl:Class",
"comment": "Container for correspondences",
"label": "Correspondences Container"
},
{
"@id": "cx:TypesContainer",
"@type": "owl:Class",
"comment": "Container for type system",
"label": "Types Container"
},
{
"@id": "cx:AxiomsContainer",
"@type": "owl:Class",
"comment": "Container for axioms",
"label": "Axioms Container"
},
{
"@id": "cx:ConstantsContainer",
"@type": "owl:Class",
"comment": "Container for constants",
"label": "Constants Container"
},
{
"@id": "cx:PhasesContainer",
"@type": "owl:Class",
"comment": "Container for phase system",
"label": "Phases Container"
},
{
"@id": "cx:DedekindNumber",
"@type": "owl:Class",
"comment": "Dedekind number D(n) counting antichains",
"label": "Dedekind Number"
},
{
"@id": "cx:Lattice",
"@type": "owl:Class",
"comment": "Mathematical lattice structure",
"label": "Lattice"
},
{
"@id": "cx:Filter",
"@type": "owl:Class",
"comment": "Mathematical filter structure",
"label": "Filter"
},
{
"@id": "cx:Sieve",
"@type": "owl:Class",
"comment": "Mathematical sieve structure",
"label": "Sieve"
},
{
"@id": "cx:CountingFunction",
"@type": "owl:Class",
"comment": "Function counting combinatorial objects",
"label": "Counting Function"
},
{
"@id": "cx:ArithmeticObject",
"@type": "owl:Class",
"comment": "Object in arithmetic projection",
"label": "Arithmetic Object"
},
{
"@id": "cx:CombinatorialObject",
"@type": "owl:Class",
"comment": "Object in combinatorial projection",
"label": "Combinatorial Object"
},
{
"@id": "cx:SpectralObject",
"@type": "owl:Class",
"comment": "Object in spectral projection",
"label": "Spectral Object"
},
{
"@id": "cx:ModularObject",
"@type": "owl:Class",
"comment": "Object in modular projection",
"label": "Modular Object"
},
{
"@id": "cx:PrimeSystem",
"@type": "owl:Class",
"comment": "Prime number system in arithmetic projection",
"label": "Prime System"
},
{
"@id": "cx:ResidueClass",
"@type": "owl:Class",
"comment": "Residue class modular arithmetic",
"label": "Residue Class"
},
{
"@id": "cx:SporadicGroup",
"@type": "owl:Class",
"comment": "Sporadic simple group",
"label": "Sporadic Group"
},
{
"@id": "cx:MathieuGroup",
"@type": "owl:Class",
"comment": "Mathieu sporadic group",
"label": "Mathieu Group"
},
{
"@id": "cx:ConwayGroup",
"@type": "owl:Class",
"comment": "Conway sporadic group",
"label": "Conway Group"
},
{
"@id": "cx:MonsterGroup",
"@type": "owl:Class",
"comment": "Monster simple group",
"label": "Monster Group"
},
{
"@id": "cx:BabyMonster",
"@type": "owl:Class",
"comment": "Baby Monster sporadic group",
"label": "Baby Monster"
},
{
"@id": "cx:LeechLattice",
"@type": "owl:Class",
"comment": "24-dimensional even unimodular lattice",
"label": "Leech Lattice"
},
{
"@id": "cx:E8Lattice",
"@type": "owl:Class",
"comment": "E8 root lattice",
"label": "E8 Lattice"
},
{
"@id": "cx:ModularForm",
"@type": "owl:Class",
"comment": "Holomorphic function on upper half-plane",
"label": "Modular Form"
},
{
"@id": "cx:JFunction",
"@type": "owl:Class",
"comment": "Klein j-invariant",
"label": "J Function"
},
{
"@id": "cx:MoonshineModule",
"@type": "owl:Class",
"comment": "Graded vertex algebra for moonshine",
"label": "Moonshine Module"
},
{
"@id": "cx:GolayCode",
"@type": "owl:Class",
"comment": "Extended binary Golay code",
"label": "Golay Code"
},
{
"@id": "cx:HammingCode",
"@type": "owl:Class",
"comment": "Error-correcting Hamming code",
"label": "Hamming Code"
},
{
"@id": "cx:ReedMullerCode",
"@type": "owl:Class",
"comment": "Reed-Muller error-correcting code",
"label": "Reed-Muller Code"
},
{
"@id": "cx:Spinor",
"@type": "owl:Class",
"comment": "Spinor representation",
"label": "Spinor"
},
{
"@id": "cx:CliffordAlgebra",
"@type": "owl:Class",
"comment": "Clifford algebra structure",
"label": "Clifford Algebra"
},
{
"@id": "cx:ExceptionalGroup",
"@type": "owl:Class",
"comment": "Exceptional Lie group",
"label": "Exceptional Group"
},
{
"@id": "cx:TrialityAutomorphism",
"@type": "owl:Class",
"comment": "Triality outer automorphism of D4",
"label": "Triality Automorphism"
},
{
"@id": "cx:OctonionAlgebra",
"@type": "owl:Class",
"comment": "8-dimensional normed division algebra",
"label": "Octonion Algebra"
},
{
"@id": "cx:QuaternionAlgebra",
"@type": "owl:Class",
"comment": "4-dimensional normed division algebra",
"label": "Quaternion Algebra"
},
{
"@id": "cx:ComplexNumbers",
"@type": "owl:Class",
"comment": "2-dimensional normed division algebra",
"label": "Complex Numbers"
},
{
"@id": "cx:RealNumbers",
"@type": "owl:Class",
"comment": "1-dimensional normed division algebra",
"label": "Real Numbers"
},
{
"@id": "cx:Sedenions",
"@type": "owl:Class",
"comment": "16-dimensional Cayley-Dickson algebra",
"label": "Sedenions"
},
{
"@id": "cx:CayleyDicksonConstruction",
"@type": "owl:Class",
"comment": "Procedure for doubling algebras",
"label": "Cayley-Dickson Construction"
},
{
"@id": "cx:NormedDivisionAlgebra",
"@type": "owl:Class",
"comment": "Algebra with multiplicative norm",
"label": "Normed Division Algebra"
},
{
"@id": "cx:CompositionAlgebra",
"@type": "owl:Class",
"comment": "Algebra satisfying composition property",
"label": "Composition Algebra"
},
{
"@id": "cx:AlternativeAlgebra",
"@type": "owl:Class",
"comment": "Algebra satisfying alternative law",
"label": "Alternative Algebra"
},
{
"@id": "cx:FlexibleAlgebra",
"@type": "owl:Class",
"comment": "Algebra satisfying flexible identity",
"label": "Flexible Algebra"
},
{
"@id": "cx:PowerAssociativeAlgebra",
"@type": "owl:Class",
"comment": "Algebra where powers associate",
"label": "Power Associative Algebra"
},
{
"@id": "cx:JordanAlgebra",
"@type": "owl:Class",
"comment": "Commutative non-associative algebra",
"label": "Jordan Algebra"
},
{
"@id": "cx:ExceptionalJordan",
"@type": "owl:Class",
"comment": "27-dimensional exceptional Jordan algebra",
"label": "Exceptional Jordan"
},
{
"@id": "cx:FreudenthalMagicSquare",
"@type": "owl:Class",
"comment": "Magic square of Lie algebras",
"label": "Freudenthal Magic Square"
},
{
"@id": "cx:G2Group",
"@type": "owl:Class",
"comment": "Exceptional G2 automorphism group of octonions",
"label": "G2 Group"
},
{
"@id": "cx:F4Group",
"@type": "owl:Class",
"comment": "Exceptional F4 Lie group",
"label": "F4 Group"
},
{
"@id": "cx:E6Group",
"@type": "owl:Class",
"comment": "Exceptional E6 Lie group",
"label": "E6 Group"
},
{
"@id": "cx:E7Group",
"@type": "owl:Class",
"comment": "Exceptional E7 Lie group",
"label": "E7 Group"
},
{
"@id": "cx:E8Group",
"@type": "owl:Class",
"comment": "Exceptional E8 Lie group",
"label": "E8 Group"
},
{
"@id": "cx:SubobjectClassifier",
"@type": "owl:Class",
"comment": "Object Ω classifying subobjects in categorical structure",
"label": "Subobject Classifier"
},
{
"@id": "cx:CardinalityFunctor",
"@type": "owl:Class",
"comment": "Functor |·| mapping objects to their cardinality",
"label": "Cardinality Functor"
},
{
"@id": "cx:MetamodelEntity",
"@type": "owl:Class",
"comment": "Superclass for all specification/generation entities (non-domain). Uses cxm: namespace.",
"label": "Metamodel Entity"
},
{
"@id": "cx:TypeConstructor",
"@type": "owl:Class",
"comment": "Generative mechanism that produces RDF instances from parameters. Subclass of MetamodelEntity.",
"label": "Type Constructor"
},
{
"@id": "cx:ConstructorFunctor",
"@type": "owl:Class",
"comment": "Morphism between TypeConstructors, e.g., Cayley-Dickson doubling functor. Subclass of MetamodelEntity.",
"label": "Constructor Functor"
},
{
"@id": "cx:ConstructionRule",
"@type": "owl:Class",
"comment": "Rule mapping a parameter to a field value via formula. Subclass of MetamodelEntity.",
"label": "Construction Rule"
},
{
"@id": "cx:ParameterSpec",
"@type": "owl:Class",
"comment": "Specification of parameters for a TypeConstructor (variable, domain, condition). Subclass of MetamodelEntity.",
"label": "Parameter Specification"
},
{
"@id": "cx:DerivationSource",
"@type": "owl:Class",
"comment": "Source tracing a derived value back to axioms T=3 or O=8. Subclass of MetamodelEntity.",
"label": "Derivation Source"
},
{
"@id": "cx:MetaContainer",
"@type": "owl:Class",
"comment": "Container for meta-level generative constructs (TypeConstructors, Functors). Subclass of MetamodelEntity.",
"label": "Meta Container"
},
{
"@id": "cx:TypeConstructorsContainer",
"@type": "owl:Class",
"comment": "Container for TypeConstructor definitions. Subclass of MetamodelEntity.",
"label": "TypeConstructors Container"
},
{
"@id": "cx:ConstructorFunctorsContainer",
"@type": "owl:Class",
"comment": "Container for ConstructorFunctor definitions. Subclass of MetamodelEntity.",
"label": "ConstructorFunctors Container"
},
{
"@id": "cx:DerivationLevel",
"@type": "owl:Class",
"comment": "Level in the stratified derivation hierarchy (Axiom -> DerivedConstant -> Formula -> Construction -> Extension). Subclass of MetamodelEntity.",
"label": "Derivation Level"
},
{
"@id": "cx:ExtensionPoint",
"@type": "owl:Class",
"comment": "Declares what can be extended and the categorical structure required. Subclass of MetamodelEntity.",
"label": "Extension Point"
},
{
"@id": "cx:UniversalProperty",
"@type": "owl:Class",
"comment": "Defines objects by their mapping properties (Initial, Terminal, Limit, Colimit, Adjoint, Free). Subclass of MetamodelEntity.",
"label": "Universal Property"
},
{
"@id": "cx:UniversalPropertyKind",
"@type": "owl:Class",
"comment": "The kind of universal property (Initial, Terminal, Limit, Colimit, LeftAdjoint, RightAdjoint, Free, Cofree).",
"label": "Universal Property Kind"
},
{
"@id": "cx:FreeConstruction",
"@type": "owl:Class",
"comment": "TypeConstructor that generates minimal structures via universal property. Subclass of TypeConstructor.",
"label": "Free Construction"
},
{
"@id": "cx:Extension",
"@type": "owl:Class",
"comment": "Concrete implementation of an ExtensionPoint with complete derivation chain. Subclass of MetamodelEntity.",
"label": "Extension"
},
{
"@id": "cx:DerivationChain",
"@type": "owl:Class",
"comment": "Complete chain of derivation steps tracing back to axioms T=3 and O=8.",
"label": "Derivation Chain"
},
{
"@id": "cx:DerivationStep",
"@type": "owl:Class",
"comment": "Single step in a derivation chain (produces, depends_on, via).",
"label": "Derivation Step"
},
{
"@id": "cx:CompositionLaw",
"@type": "owl:Class",
"comment": "Law that must be preserved by extensions (associativity, identity, functoriality, naturality).",
"label": "Composition Law"
},
{
"@id": "cx:CategoricalStructureKind",
"@type": "owl:Class",
"comment": "Kind of categorical structure (Functor, NaturalTransformation, Adjunction, Monad, Endofunctor).",
"label": "Categorical Structure Kind"
},
{
"@id": "cx:CategoricalStructure",
"@type": "owl:Class",
"comment": "Concrete categorical structure with object/morphism mappings, components, unit/counit.",
"label": "Categorical Structure"
},
{
"@id": "cx:DerivationConstraints",
"@type": "owl:Class",
"comment": "Constraints on derivation chains (required axioms, max derivation level).",
"label": "Derivation Constraints"
},
{
"@id": "cx:VerificationStatus",
"@type": "owl:Class",
"comment": "Status of extension verification (Verified, Pending, Failed, Unchecked).",
"label": "Verification Status"
},
{
"@id": "cx:Number",
"@type": "owl:Class",
"comment": "Abstract numeric value (domain element).",
"label": "Number"
},
{
"@id": "cx:NumericDomain",
"@type": "owl:Class",
"comment": "A set/structure in which numbers live (ℕ, ℤ, ℚ, ℝ, ℂ).",
"label": "Numeric Domain"
},
{
"@id": "cx:NaturalNumbers",
"@type": "owl:Class",
"comment": "Domain ℕ with 0, successor; canonical counting domain.",
"label": "Natural Numbers"
},
{
"@id": "cx:Integers",
"@type": "owl:Class",
"comment": "Domain ℤ.",
"label": "Integers"
},
{
"@id": "cx:Rationals",
"@type": "owl:Class",
"comment": "Domain ℚ.",
"label": "Rationals"
},
{
"@id": "cx:ExactNumber",
"@type": "owl:Class",
"comment": "A number represented exactly (BigInt, rational).",
"label": "Exact Number"
},
{
"@id": "cx:ApproximateNumber",
"@type": "owl:Class",
"comment": "A number with finite precision (float, interval, ball).",
"label": "Approximate Number"
},
{
"@id": "cx:Numeral",
"@type": "owl:Class",
"comment": "A syntactic representation of a number in some numeral system.",
"label": "Numeral"
},
{
"@id": "cx:NumeralSystem",
"@type": "owl:Class",
"comment": "A scheme for representing numbers (positional, mixed-radix, etc.).",
"label": "Numeral System"
},
{
"@id": "cx:PositionalSystem",
"@type": "owl:Class",
"comment": "Fixed-radix positional representation (e.g., decimal, binary).",
"label": "Positional System"
},
{
"@id": "cx:MixedRadixSystem",
"@type": "owl:Class",
"comment": "Variable radices per position (e.g., mod-96 CRT, factorial).",
"label": "Mixed-Radix System"
},
{
"@id": "cx:NonPositionalSystem",
"@type": "owl:Class",
"comment": "Non-positional representation (e.g., continued fractions, Roman).",
"label": "Non-Positional System"
},
{
"@id": "cx:DigitSet",
"@type": "owl:Class",
"comment": "Alphabet of digit symbols used by a numeral system.",
"label": "Digit Set"
},
{
"@id": "cx:DigitSymbol",
"@type": "owl:Class",
"comment": "A symbol used as a digit (character, token, glyph).",
"label": "Digit Symbol"
},
{
"@id": "cx:ConversionMorphism",
"@type": "owl:Class",
"comment": "A morphism between numeral systems (parse/print + correctness).",
"label": "Conversion Morphism"
},
{
"@id": "cx:PrecisionContext",
"@type": "owl:Class",
"comment": "Defines precision/rounding/exponent constraints for numerics.",
"label": "Precision Context"
},
{
"@id": "cx:ArbitraryPrecisionContext",
"@type": "owl:Class",
"comment": "Unbounded precision (BigInt, exact rational).",
"label": "Arbitrary Precision Context"
},
{
"@id": "cx:FixedPrecisionContext",
"@type": "owl:Class",
"comment": "Fixed precision and exponent range (IEEE-like, mod-96).",
"label": "Fixed Precision Context"
},
{
"@id": "cx:RoundingMode",
"@type": "owl:Class",
"comment": "Rounding policy (ties-to-even, toward-zero, etc.).",
"label": "Rounding Mode"
},
{
"@id": "cx:Interval",
"@type": "owl:Class",
"comment": "[lower, upper] bound for approximate values.",
"label": "Interval"
},
{
"@id": "cx:Ball",
"@type": "owl:Class",
"comment": "Midpoint + radius bound (ball arithmetic).",
"label": "Ball"
},
{
"@id": "cx:NumericAssertion",
"@type": "owl:Class",
"comment": "Epistemic wrapper: computed/predicted/bounded with provenance.",
"label": "Numeric Assertion"
},
{
"@id": "cx:AssertionStatus",
"@type": "owl:Class",
"comment": "ComputedExact, ComputedApprox, Predicted, Conjectured, Bounded, Unknown.",
"label": "Assertion Status"
},
{
"@id": "cx:ComputationArtifact",
"@type": "owl:Class",
"comment": "Program run, proof certificate, or derivation trace.",
"label": "Computation Artifact"
},
{
"@id": "cx:CountingSequence",
"@type": "owl:Class",
"comment": "A counting function ℕ → NumericDomain.",
"label": "Counting Sequence"
},
{
"@id": "cx:SequenceEntry",
"@type": "owl:Class",
"comment": "An indexed entry in a counting sequence with epistemic status.",
"label": "Sequence Entry"
},
{
"@id": "cx:TypeVariable",
"@type": "owl:Class",
"comment": "A metavariable for polymorphic signatures (distinct from T=3 axiom).",
"label": "Type Variable"
},
{
"@id": "cx:UniversalOperator",
"@type": "owl:Class",
"comment": "The categorical limit M_∞ of gauge extensions.",
"label": "Universal Operator"
},
{
"@id": "cx:GaugeTower",
"@type": "owl:Class",
"comment": "Directed system of gauge extensions {2,3}→{2,3,5}→...",
"label": "Gauge Tower"
},
{
"@id": "cx:GaugeLevel",
"@type": "owl:Class",
"comment": "Single level in the gauge tower with prime set.",
"label": "Gauge Level"
},
{
"@id": "cx:SpectralTriple",
"@type": "owl:Class",
"comment": "AltSpec(480) × ZDSpec(15) × JordSpec(27) = 522 dimensions.",
"label": "Spectral Triple"
},
{
"@id": "cx:SpectralPrime",
"@type": "owl:Class",
"comment": "Prime arising from transfer eigenvalue structure.",
"label": "Spectral Prime"
},
{
"@id": "cx:PhaseBridge",
"@type": "owl:Class",
"comment": "Linking factor between triality phases (401, 433).",
"label": "Phase Bridge"
},
{
"@id": "cx:Diagram",
"@type": "owl:Class",
"comment": "Functor from index category to target category.",
"label": "Diagram"
},
{
"@id": "cx:Cone",
"@type": "owl:Class",
"comment": "Natural transformation from constant diagram to F.",
"label": "Cone"
},
{
"@id": "cx:Limit",
"@type": "owl:Class",
"comment": "Universal cone over a diagram.",
"label": "Limit"
},
{
"@id": "cx:IndexCategory",
"@type": "owl:Class",
"comment": "Shape category indexing a diagram.",
"label": "Index Category"
},
{
"@id": "cx:Gauge",
"@type": "owl:Class",
"comment": "Finite prime-indexed approximation to the universal operator.",
"label": "Gauge"
},
{
"@id": "cx:GaugesContainer",
"@type": "owl:Class",
"comment": "Container for gauge structures.",
"label": "Gauges Container"
},
{
"@id": "cx:Hub",
"@type": "owl:Class",
"comment": "Categorical boundary for hierarchical state management.",
"label": "Hub"
},
{
"@id": "cx:HubsContainer",
"@type": "owl:Class",
"comment": "Container for hub boundaries.",
"label": "Hubs Container"
},
{
"@id": "cx:ExtensionFunctor",
"@type": "owl:Class",
"comment": "Gauge extension E_p: Ω_P → Ω_{P∪{p}} for prime p.",
"label": "Extension Functor"
},
{
"@id": "cx:LimitProjection",
"@type": "owl:Class",
"comment": "Projection πᵢ: M_∞ → Ωᵢ from universal limit to gauge level.",
"label": "Limit Projection"
},
{
"@id": "cx:FunctorsContainer",
"@type": "owl:Class",
"comment": "Container for extension functors.",
"label": "Functors Container"
},
{
"@id": "cx:LimitProjectionsContainer",
"@type": "owl:Class",
"comment": "Container for limit projections.",
"label": "Limit Projections Container"
},
{
"@id": "cx:IndexCategoriesContainer",
"@type": "owl:Class",
"comment": "Container for index category instances.",
"label": "Index Categories Container"
},
{
"@id": "cx:TrialityPhase",
"@type": "owl:Class",
"comment": "Phase in the T=3 triality structure (Tonic, LeadingTone, Overtone).",
"label": "Triality Phase"
},
{
"@id": "cx:Tonic",
"@type": "owl:Class",
"comment": "Phase for n ≡ 0 mod 3; aligned with Jordan spectrum.",
"label": "Tonic Phase"
},
{
"@id": "cx:LeadingTone",
"@type": "owl:Class",
"comment": "Phase for n ≡ 1 mod 3; aligned with zero-divisor spectrum.",
"label": "Leading Tone Phase"
},
{
"@id": "cx:Overtone",
"@type": "owl:Class",
"comment": "Phase for n ≡ 2 mod 3; aligned with alternating spectrum.",
"label": "Overtone Phase"
},
{
"@id": "cx:GaugeExtension",
"@type": "owl:Class",
"comment": "Abstract adjunction E_p ⊣ R_p for gauge extensions.",
"label": "Gauge Extension"
},
{
"@id": "cx:RestrictionFunctor",
"@type": "owl:Class",
"comment": "Gauge restriction R_p: Ω_{P∪{p}} → Ω_P for prime p.",
"label": "Restriction Functor"
},
{
"@id": "cx:AdjunctionUnit",
"@type": "owl:Class",
"comment": "Unit natural transformation η: 1 → R_p ∘ E_p.",
"label": "Adjunction Unit"
},
{
"@id": "cx:AdjunctionCounit",
"@type": "owl:Class",
"comment": "Counit natural transformation ε: E_p ∘ R_p → 1.",
"label": "Adjunction Counit"
},
{
"@id": "cx:TransferEigenvalue",
"@type": "owl:Class",
"comment": "Eigenvalue of the transfer matrix (λ₁=10, λ₂=2, λ₃=7, λ₄=-1).",
"label": "Transfer Eigenvalue"
},
{
"@id": "cx:DominantEigenvalue",
"@type": "owl:Class",
"comment": "Tonic dominant eigenvalue λ₁ = O + 2 = 10.",
"label": "Dominant Eigenvalue"
},
{
"@id": "cx:SubdominantEigenvalue",
"@type": "owl:Class",
"comment": "Subdominant eigenvalue for phase coupling.",
"label": "Subdominant Eigenvalue"
},
{
"@id": "cx:hasPart",
"@type": "owl:ObjectProperty",
"label": "has part",
"owl:inverseOf": {
"@id": "cx:partOf"
},
"rdfs:domain": {
"@id": "cx:SingletonInstance"
},
"rdfs:range": {
"@id": "cx:Thing"
}
},
{
"@id": "cx:partOf",
"@type": "owl:ObjectProperty",
"label": "part of",
"owl:inverseOf": {
"@id": "cx:hasPart"
},
"rdfs:domain": {
"@id": "cx:Thing"
},
"rdfs:range": {
"@id": "cx:SingletonInstance"
}
},
{
"@id": "cx:sourceLevel",
"@type": "owl:ObjectProperty",
"label": "source level",
"rdfs:domain": {
"@id": "cx:TowerTransition"
},
"rdfs:range": {
"@id": "cx:TowerLevel"
}
},
{
"@id": "cx:targetLevel",
"@type": "owl:ObjectProperty",
"label": "target level",
"rdfs:domain": {
"@id": "cx:TowerTransition"
},
"rdfs:range": {
"@id": "cx:TowerLevel"
}
},
{
"@id": "cx:hasDimension",
"@type": "owl:ObjectProperty",
"label": "has dimension",
"rdfs:domain": {
"@id": "cx:TowerLevel"
},
"rdfs:range": {
"@id": "cx:DimensionSpec"
}
},
{
"@id": "cx:hasAutomorphismGroup",
"@type": "owl:ObjectProperty",
"label": "has automorphism group",
"rdfs:domain": {
"@id": "cx:TowerLevel"
},
"rdfs:range": {
"@id": "cx:AutomorphismGroup"
}
},
{
"@id": "cx:hasCocycle",
"@type": "owl:ObjectProperty",
"label": "has cocycle",
"rdfs:domain": {
"@id": "cx:TowerLevel"
},
"rdfs:range": {
"@id": "cx:CocycleClass"
}
},
{
"@id": "cx:losesProperty",
"@type": "owl:ObjectProperty",
"label": "loses property",
"rdfs:domain": {
"@id": "cx:TowerLevel"
},
"rdfs:range": {
"@id": "cx:AlgebraicProperty"
}
},
{
"@id": "cx:targetCategory",
"@type": "owl:ObjectProperty",
"label": "target category",
"rdfs:domain": {
"@id": "cx:Thing"
},
"rdfs:range": {
"@id": "cx:Category"
}
},
{
"@id": "cx:correspondsTo",
"@type": "owl:ObjectProperty",
"label": "corresponds to",
"rdfs:domain": {
"@id": "cx:Correspondence"
},
"rdfs:range": {
"@id": "cx:Projection"
}
},
{
"@id": "cx:phaseAlignment",
"@type": "owl:ObjectProperty",
"label": "phase alignment",
"rdfs:domain": {
"@id": "cx:Correspondence"
},
"rdfs:range": {
"@id": "cx:PhaseAlignment"
}
},
{
"@id": "cx:governsPhase",
"@type": "owl:ObjectProperty",
"label": "governs phase",
"rdfs:domain": {
"@id": "cx:Operator"
},
"rdfs:range": {
"@id": "cx:PhaseModification"
}
},
{
"@id": "cx:activatesAt",
"@type": "owl:ObjectProperty",
"label": "activates at",
"rdfs:domain": {
"@id": "cx:PhaseBehavior"
},
"rdfs:range": {
"@id": "cx:TowerLevel"
}
},
{
"@id": "cx:derivedFrom",
"@type": "owl:ObjectProperty",
"label": "derived from",
"rdfs:domain": {
"@id": "cx:DerivedConstant"
},
"rdfs:range": {
"@id": "cx:Primitive"
}
},
{
"@id": "cx:hasProof",
"@type": "owl:ObjectProperty",
"label": "has proof",
"rdfs:domain": {
"@id": "cx:Theorem"
},
"rdfs:range": {
"@id": "cx:Proof"
}
},
{
"@id": "cx:proves",
"@type": "owl:ObjectProperty",
"label": "proves",
"rdfs:domain": {
"@id": "cx:Proof"
},
"rdfs:range": {
"@id": "cx:Theorem"
}
},
{
"@id": "cx:contains",
"@type": "owl:ObjectProperty",
"label": "contains",
"owl:inverseOf": {
"@id": "cx:containedIn"
},
"rdfs:domain": {
"@id": "cx:Stratum"
},
"rdfs:range": {
"@id": "cx:TowerLevel"
}
},
{
"@id": "cx:containedIn",
"@type": "owl:ObjectProperty",
"label": "contained in",
"owl:inverseOf": {
"@id": "cx:contains"
},
"rdfs:domain": {
"@id": "cx:TowerLevel"
},
"rdfs:range": {
"@id": "cx:Stratum"
}
},
{
"@id": "cx:mapsPhase",
"@type": "owl:ObjectProperty",
"label": "maps phase",
"rdfs:domain": {
"@id": "cx:Projection"
},
"rdfs:range": {
"@id": "cx:PhaseMapEntry"
}
},
{
"@id": "cx:hasInstance",
"@type": "owl:ObjectProperty",
"label": "has instance",
"owl:inverseOf": {
"@id": "cx:instanceOf"
},
"rdfs:domain": {
"@id": "cx:StructuralType"
},
"rdfs:range": {
"@id": "cx:Thing"
}
},
{
"@id": "cx:instanceOf",
"@type": "owl:ObjectProperty",
"label": "instance of",
"owl:inverseOf": {
"@id": "cx:hasInstance"
},
"rdfs:domain": {
"@id": "cx:Thing"
},
"rdfs:range": {
"@id": "cx:StructuralType"
}
},
{
"@id": "cx:generatesType",
"@type": "owl:ObjectProperty",
"label": "generates type",
"rdfs:domain": {
"@id": "cx:TypeConstructor"
},
"rdfs:range": {
"@id": "cx:owl:Class"
}
},
{
"@id": "cx:hasConstructionRule",
"@type": "owl:ObjectProperty",
"label": "has construction rule",
"rdfs:domain": {
"@id": "cx:TypeConstructor"
},
"rdfs:range": {
"@id": "cx:ConstructionRule"
}
},
{
"@id": "cx:hasParameter",
"@type": "owl:ObjectProperty",
"label": "has parameter",
"rdfs:domain": {
"@id": "cx:TypeConstructor"
},
"rdfs:range": {
"@id": "cx:ParameterSpec"
}
},
{
"@id": "cx:hasDerivationSource",
"@type": "owl:ObjectProperty",
"label": "has derivation source",
"rdfs:domain": {
"@id": "cx:Thing"
},
"rdfs:range": {
"@id": "cx:DerivationSource"
}
},
{
"@id": "cx:functorSource",
"@type": "owl:ObjectProperty",
"label": "functor source",
"rdfs:domain": {
"@id": "cx:ConstructorFunctor"
},
"rdfs:range": {
"@id": "cx:TypeConstructor"
}
},
{
"@id": "cx:functorTarget",
"@type": "owl:ObjectProperty",
"label": "functor target",
"rdfs:domain": {
"@id": "cx:ConstructorFunctor"
},
"rdfs:range": {
"@id": "cx:TypeConstructor"
}
},
{
"@id": "cx:tracesToAxiom",
"@type": "owl:ObjectProperty",
"label": "traces to axiom",
"rdfs:domain": {
"@id": "cx:DerivationSource"
},
"rdfs:range": {
"@id": "cx:Axiom"
}
},
{
"@id": "cx:canDeriveFrom",
"@type": "owl:ObjectProperty",
"label": "can derive from",
"rdfs:domain": {
"@id": "cx:DerivationLevel"
},
"rdfs:range": {
"@id": "cx:DerivationLevel"
}
},
{
"@id": "cx:atDerivationLevel",
"@type": "owl:ObjectProperty",
"label": "at derivation level",
"rdfs:domain": {
"@id": "cx:Thing"
},
"rdfs:range": {
"@id": "cx:DerivationLevel"
}
},
{
"@id": "cx:requiresStructure",
"@type": "owl:ObjectProperty",
"label": "requires structure",
"rdfs:domain": {
"@id": "cx:ExtensionPoint"
},
"rdfs:range": {
"@id": "cx:CategoricalStructureKind"
}
},
{
"@id": "cx:extendsConstructor",
"@type": "owl:ObjectProperty",
"label": "extends constructor",
"rdfs:domain": {
"@id": "cx:ExtensionPoint"
},
"rdfs:range": {
"@id": "cx:TypeConstructor"
}
},
{
"@id": "cx:hasCompositionLaw",
"@type": "owl:ObjectProperty",
"label": "has composition law",
"rdfs:domain": {
"@id": "cx:ExtensionPoint"
},
"rdfs:range": {
"@id": "cx:CompositionLaw"
}
},
{
"@id": "cx:hasDerivationConstraints",
"@type": "owl:ObjectProperty",
"label": "has derivation constraints",
"rdfs:domain": {
"@id": "cx:ExtensionPoint"
},
"rdfs:range": {
"@id": "cx:DerivationConstraints"
}
},
{
"@id": "cx:hasUniversalPropertyKind",
"@type": "owl:ObjectProperty",
"label": "has universal property kind",
"rdfs:domain": {
"@id": "cx:UniversalProperty"
},
"rdfs:range": {
"@id": "cx:UniversalPropertyKind"
}
},
{
"@id": "cx:definesObject",
"@type": "owl:ObjectProperty",
"label": "defines object",
"rdfs:domain": {
"@id": "cx:UniversalProperty"
},
"rdfs:range": {
"@id": "cx:owl:Thing"
}
},
{
"@id": "cx:inCategory",
"@type": "owl:ObjectProperty",
"label": "in category",
"rdfs:domain": {
"@id": "cx:UniversalProperty"
},
"rdfs:range": {
"@id": "cx:Thing"
}
},
{
"@id": "cx:hasBaseStructure",
"@type": "owl:ObjectProperty",
"label": "has base structure",
"rdfs:domain": {
"@id": "cx:FreeConstruction"
},
"rdfs:range": {
"@id": "cx:owl:Class"
}
},
{
"@id": "cx:adjointTo",
"@type": "owl:ObjectProperty",
"label": "adjoint to",
"rdfs:domain": {
"@id": "cx:FreeConstruction"
},
"rdfs:range": {
"@id": "cx:ConstructorFunctor"
}
},
{
"@id": "cx:satisfiesUniversalProperty",
"@type": "owl:ObjectProperty",
"label": "satisfies universal property",
"rdfs:domain": {
"@id": "cx:FreeConstruction"
},
"rdfs:range": {
"@id": "cx:UniversalProperty"
}
},
{
"@id": "cx:implementsExtensionPoint",
"@type": "owl:ObjectProperty",
"label": "implements extension point",
"rdfs:domain": {
"@id": "cx:Extension"
},
"rdfs:range": {
"@id": "cx:ExtensionPoint"
}
},
{
"@id": "cx:hasDerivationChain",
"@type": "owl:ObjectProperty",
"label": "has derivation chain",
"rdfs:domain": {
"@id": "cx:Extension"
},
"rdfs:range": {
"@id": "cx:DerivationChain"
}
},
{
"@id": "cx:hasDerivationStep",
"@type": "owl:ObjectProperty",
"label": "has derivation step",
"rdfs:domain": {
"@id": "cx:DerivationChain"
},
"rdfs:range": {
"@id": "cx:DerivationStep"
}
},
{
"@id": "cx:hasCategoricalStructure",
"@type": "owl:ObjectProperty",
"label": "has categorical structure",
"rdfs:domain": {
"@id": "cx:Extension"
},
"rdfs:range": {
"@id": "cx:CategoricalStructure"
}
},
{
"@id": "cx:providesConstructor",
"@type": "owl:ObjectProperty",
"label": "provides constructor",
"rdfs:domain": {
"@id": "cx:Extension"
},
"rdfs:range": {
"@id": "cx:TypeConstructor"
}
},
{
"@id": "cx:hasVerificationStatus",
"@type": "owl:ObjectProperty",
"label": "has verification status",
"rdfs:domain": {
"@id": "cx:Extension"
},
"rdfs:range": {
"@id": "cx:VerificationStatus"
}
},
{
"@id": "cx:terminalAxiom",
"@type": "owl:ObjectProperty",
"label": "terminal axiom",
"rdfs:domain": {
"@id": "cx:DerivationChain"
},
"rdfs:range": {
"@id": "cx:Axiom"
}
},
{
"@id": "cx:stepProduces",
"@type": "owl:ObjectProperty",
"label": "step produces",
"rdfs:domain": {
"@id": "cx:DerivationStep"
},
"rdfs:range": {
"@id": "cx:Thing"
}
},
{
"@id": "cx:stepDependsOn",
"@type": "owl:ObjectProperty",
"label": "step depends on",
"rdfs:domain": {
"@id": "cx:DerivationStep"
},
"rdfs:range": {
"@id": "cx:Thing"
}
},
{
"@id": "cx:stepVia",
"@type": "owl:ObjectProperty",
"label": "step via",
"rdfs:domain": {
"@id": "cx:DerivationStep"
},
"rdfs:range": {
"@id": "cx:DerivationSource"
}
},
{
"@id": "cx:appliesTo",
"@type": "owl:ObjectProperty",
"label": "applies to",
"rdfs:domain": {
"@id": "cx:CompositionLaw"
},
"rdfs:range": {
"@id": "cx:CategoricalStructureKind"
}
},
{
"@id": "cx:inDomain",
"@type": "owl:ObjectProperty",
"label": "in domain",
"rdfs:domain": {
"@id": "cx:Number"
},
"rdfs:range": {
"@id": "cx:NumericDomain"
}
},
{
"@id": "cx:embedsInto",
"@type": "owl:ObjectProperty",
"label": "embeds into",
"rdfs:domain": {
"@id": "cx:NumericDomain"
},
"rdfs:range": {
"@id": "cx:NumericDomain"
}
},
{
"@id": "cx:usesDigitSet",
"@type": "owl:ObjectProperty",
"label": "uses digit set",
"rdfs:domain": {
"@id": "cx:NumeralSystem"
},
"rdfs:range": {
"@id": "cx:DigitSet"
}
},
{
"@id": "cx:denotes",
"@type": "owl:ObjectProperty",
"label": "denotes",
"rdfs:domain": {
"@id": "cx:Numeral"
},
"rdfs:range": {
"@id": "cx:Number"
}
},
{
"@id": "cx:inSystem",
"@type": "owl:ObjectProperty",
"label": "in system",
"rdfs:domain": {
"@id": "cx:Numeral"
},
"rdfs:range": {
"@id": "cx:NumeralSystem"
}
},
{
"@id": "cx:hasConversion",
"@type": "owl:ObjectProperty",
"label": "has conversion",
"rdfs:domain": {
"@id": "cx:NumeralSystem"
},
"rdfs:range": {
"@id": "cx:ConversionMorphism"
}
},
{
"@id": "cx:hasPrecisionContext",
"@type": "owl:ObjectProperty",
"label": "has precision context",
"rdfs:domain": {
"@id": "cx:ApproximateNumber"
},
"rdfs:range": {
"@id": "cx:PrecisionContext"
}
},
{
"@id": "cx:roundingMode",
"@type": "owl:ObjectProperty",
"label": "rounding mode",
"rdfs:domain": {
"@id": "cx:PrecisionContext"
},
"rdfs:range": {
"@id": "cx:RoundingMode"
}
},
{
"@id": "cx:hasInterval",
"@type": "owl:ObjectProperty",
"label": "has interval",
"rdfs:domain": {
"@id": "cx:ApproximateNumber"
},
"rdfs:range": {
"@id": "cx:Interval"
}
},
{
"@id": "cx:assertsValue",
"@type": "owl:ObjectProperty",
"label": "asserts value",
"rdfs:domain": {
"@id": "cx:NumericAssertion"
},
"rdfs:range": {
"@id": "cx:Number"
}
},
{
"@id": "cx:status",
"@type": "owl:ObjectProperty",
"label": "status",
"rdfs:domain": {
"@id": "cx:NumericAssertion"
},
"rdfs:range": {
"@id": "cx:AssertionStatus"
}
},
{
"@id": "cx:supportedBy",
"@type": "owl:ObjectProperty",
"label": "supported by",
"rdfs:domain": {
"@id": "cx:NumericAssertion"
},
"rdfs:range": {
"@id": "cx:ComputationArtifact"
}
},
{
"@id": "cx:hasProofStep",
"@type": "owl:ObjectProperty",
"label": "has proof step",
"rdfs:domain": {
"@id": "cx:NumericAssertion"
},
"rdfs:range": {
"@id": "cx:ProofStep"
}
},
{
"@id": "cx:hasEntry",
"@type": "owl:ObjectProperty",
"label": "has entry",
"rdfs:domain": {
"@id": "cx:CountingSequence"
},
"rdfs:range": {
"@id": "cx:SequenceEntry"
}
},
{
"@id": "cx:hasAssertion",
"@type": "owl:ObjectProperty",
"label": "has assertion",
"rdfs:domain": {
"@id": "cx:SequenceEntry"
},
"rdfs:range": {
"@id": "cx:NumericAssertion"
}
},
{
"@id": "cx:codomain",
"@type": "owl:ObjectProperty",
"label": "codomain",
"rdfs:domain": {
"@id": "cx:CountingSequence"
},
"rdfs:range": {
"@id": "cx:NumericDomain"
}
},
{
"@id": "cx:hasTypeParameter",
"@type": "owl:ObjectProperty",
"label": "has type parameter",
"rdfs:domain": {
"@id": "cx:PrimitiveOperation"
},
"rdfs:range": {
"@id": "cx:TypeVariable"
}
},
{
"@id": "cx:typeParameterDomain",
"@type": "owl:ObjectProperty",
"label": "type parameter domain",
"rdfs:domain": {
"@id": "cx:TypeVariable"
},
"rdfs:range": {
"@id": "cx:owl:Class"
}
},
{
"@id": "cx:extendsVia",
"@type": "owl:ObjectProperty",
"label": "extends via",
"owl:inverseOf": {
"@id": "cx:extendedBy"
},
"rdfs:domain": {
"@id": "cx:GaugeLevel"
},
"rdfs:range": {
"@id": "cx:GaugeLevel"
}
},
{
"@id": "cx:extendedBy",
"@type": "owl:ObjectProperty",
"label": "extended by",
"owl:inverseOf": {
"@id": "cx:extendsVia"
},
"rdfs:domain": {
"@id": "cx:GaugeLevel"
},
"rdfs:range": {
"@id": "cx:GaugeLevel"
}
},
{
"@id": "cx:hasSpectralPrime",
"@type": "owl:ObjectProperty",
"label": "has spectral prime",
"rdfs:domain": {
"@id": "cx:SpectralTriple"
},
"rdfs:range": {
"@id": "cx:SpectralPrime"
}
},
{
"@id": "cx:coherentWith",
"@type": "owl:ObjectProperty",
"label": "coherent with",
"owl:inverseOf": {
"@id": "cx:coherentWith"
},
"rdfs:domain": {
"@id": "cx:GaugeLevel"
},
"rdfs:range": {
"@id": "cx:GaugeLevel"
}
},
{
"@id": "cx:extensionSource",
"@type": "owl:ObjectProperty",
"label": "extension source",
"rdfs:domain": {
"@id": "cx:ExtensionFunctor"
},
"rdfs:range": {
"@id": "cx:GaugeLevel"
}
},
{
"@id": "cx:extensionTarget",
"@type": "owl:ObjectProperty",
"label": "extension target",
"rdfs:domain": {
"@id": "cx:ExtensionFunctor"
},
"rdfs:range": {
"@id": "cx:GaugeLevel"
}
},
{
"@id": "cx:projectionSource",
"@type": "owl:ObjectProperty",
"label": "projection source",
"rdfs:domain": {
"@id": "cx:LimitProjection"
},
"rdfs:range": {
"@id": "cx:UniversalOperator"
}
},
{
"@id": "cx:projectionTarget",
"@type": "owl:ObjectProperty",
"label": "projection target",
"rdfs:domain": {
"@id": "cx:LimitProjection"
},
"rdfs:range": {
"@id": "cx:GaugeLevel"
}
},
{
"@id": "cx:hasValue",
"@type": "owl:DatatypeProperty",
"label": "has value",
"rdfs:domain": {
"@id": "cx:DerivedConstant"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:dimension",
"@type": "owl:DatatypeProperty",
"label": "dimension",
"rdfs:domain": {
"@id": "cx:DimensionSpec"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:symbol",
"@type": "owl:DatatypeProperty",
"label": "symbol",
"rdfs:domain": {
"@id": "cx:Primitive"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:formula",
"@type": "owl:DatatypeProperty",
"label": "formula",
"rdfs:domain": {
"@id": "cx:DerivedConstant"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:index",
"@type": "owl:DatatypeProperty",
"label": "index",
"rdfs:domain": {
"@id": "cx:TowerLevel"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:levelIndex",
"@type": "owl:DatatypeProperty",
"label": "level index",
"rdfs:domain": {
"@id": "cx:TowerLevel"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:activatesAtIndex",
"@type": "owl:DatatypeProperty",
"label": "activates at index",
"rdfs:domain": {
"@id": "cx:PhaseBehavior"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:sourcePhase",
"@type": "owl:DatatypeProperty",
"label": "source phase",
"rdfs:domain": {
"@id": "cx:PhaseTransition"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:targetPhase",
"@type": "owl:DatatypeProperty",
"label": "target phase",
"rdfs:domain": {
"@id": "cx:PhaseTransition"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:transitionLevel",
"@type": "owl:DatatypeProperty",
"label": "transition level",
"rdfs:domain": {
"@id": "cx:PhaseTransition"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:criticalConstant",
"@type": "owl:DatatypeProperty",
"label": "critical constant",
"rdfs:domain": {
"@id": "cx:PhaseTransition"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:targetField",
"@type": "owl:DatatypeProperty",
"label": "target field",
"rdfs:domain": {
"@id": "cx:ConstructionRule"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:constructionFormula",
"@type": "owl:DatatypeProperty",
"label": "construction formula",
"rdfs:domain": {
"@id": "cx:ConstructionRule"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:parameterVariable",
"@type": "owl:DatatypeProperty",
"label": "parameter variable",
"rdfs:domain": {
"@id": "cx:ParameterSpec"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:parameterDomain",
"@type": "owl:DatatypeProperty",
"label": "parameter domain",
"rdfs:domain": {
"@id": "cx:ParameterSpec"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:parameterCondition",
"@type": "owl:DatatypeProperty",
"label": "parameter condition",
"rdfs:domain": {
"@id": "cx:ParameterSpec"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:functorFormula",
"@type": "owl:DatatypeProperty",
"label": "functor formula",
"rdfs:domain": {
"@id": "cx:ConstructorFunctor"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:sourceAxiom",
"@type": "owl:DatatypeProperty",
"label": "source axiom",
"rdfs:domain": {
"@id": "cx:DerivationSource"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:derivationDepth",
"@type": "owl:DatatypeProperty",
"label": "derivation depth",
"rdfs:domain": {
"@id": "cx:DerivationLevel"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:validationRule",
"@type": "owl:DatatypeProperty",
"label": "validation rule",
"rdfs:domain": {
"@id": "cx:DerivationLevel"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:domainCategory",
"@type": "owl:DatatypeProperty",
"label": "domain category",
"rdfs:domain": {
"@id": "cx:ExtensionPoint"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:codomainCategory",
"@type": "owl:DatatypeProperty",
"label": "codomain category",
"rdfs:domain": {
"@id": "cx:ExtensionPoint"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:maxDerivationLevel",
"@type": "owl:DatatypeProperty",
"label": "max derivation level",
"rdfs:domain": {
"@id": "cx:DerivationConstraints"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:diagramShape",
"@type": "owl:DatatypeProperty",
"label": "diagram shape",
"rdfs:domain": {
"@id": "cx:UniversalProperty"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:universalArrow",
"@type": "owl:DatatypeProperty",
"label": "universal arrow",
"rdfs:domain": {
"@id": "cx:UniversalProperty"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:existenceCondition",
"@type": "owl:DatatypeProperty",
"label": "existence condition",
"rdfs:domain": {
"@id": "cx:UniversalProperty"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:uniquenessCondition",
"@type": "owl:DatatypeProperty",
"label": "uniqueness condition",
"rdfs:domain": {
"@id": "cx:UniversalProperty"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:baseStructure",
"@type": "owl:DatatypeProperty",
"label": "base structure",
"rdfs:domain": {
"@id": "cx:FreeConstruction"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:targetCategoryName",
"@type": "owl:DatatypeProperty",
"label": "target category name",
"rdfs:domain": {
"@id": "cx:FreeConstruction"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:forgetfulFunctor",
"@type": "owl:DatatypeProperty",
"label": "forgetful functor",
"rdfs:domain": {
"@id": "cx:FreeConstruction"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:objectMapping",
"@type": "owl:DatatypeProperty",
"label": "object mapping",
"rdfs:domain": {
"@id": "cx:CategoricalStructure"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:morphismMapping",
"@type": "owl:DatatypeProperty",
"label": "morphism mapping",
"rdfs:domain": {
"@id": "cx:CategoricalStructure"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:naturalComponents",
"@type": "owl:DatatypeProperty",
"label": "natural components",
"rdfs:domain": {
"@id": "cx:CategoricalStructure"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:adjunctionUnit",
"@type": "owl:DatatypeProperty",
"label": "adjunction unit",
"rdfs:domain": {
"@id": "cx:CategoricalStructure"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:adjunctionCounit",
"@type": "owl:DatatypeProperty",
"label": "adjunction counit",
"rdfs:domain": {
"@id": "cx:CategoricalStructure"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:lawExpression",
"@type": "owl:DatatypeProperty",
"label": "law expression",
"rdfs:domain": {
"@id": "cx:CompositionLaw"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:lexicalValue",
"@type": "owl:DatatypeProperty",
"label": "lexical value",
"rdfs:domain": {
"@id": "cx:Number"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:hasRadix",
"@type": "owl:DatatypeProperty",
"label": "has radix",
"rdfs:domain": {
"@id": "cx:PositionalSystem"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:hasRadices",
"@type": "owl:DatatypeProperty",
"label": "has radices",
"rdfs:domain": {
"@id": "cx:MixedRadixSystem"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:encoding",
"@type": "owl:DatatypeProperty",
"label": "encoding",
"rdfs:domain": {
"@id": "cx:NumeralSystem"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:precisionBits",
"@type": "owl:DatatypeProperty",
"label": "precision bits",
"rdfs:domain": {
"@id": "cx:PrecisionContext"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:precisionDigits",
"@type": "owl:DatatypeProperty",
"label": "precision digits",
"rdfs:domain": {
"@id": "cx:PrecisionContext"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:exponentMin",
"@type": "owl:DatatypeProperty",
"label": "exponent min",
"rdfs:domain": {
"@id": "cx:FixedPrecisionContext"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:exponentMax",
"@type": "owl:DatatypeProperty",
"label": "exponent max",
"rdfs:domain": {
"@id": "cx:FixedPrecisionContext"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:lowerBound",
"@type": "owl:DatatypeProperty",
"label": "lower bound",
"rdfs:domain": {
"@id": "cx:Interval"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:upperBound",
"@type": "owl:DatatypeProperty",
"label": "upper bound",
"rdfs:domain": {
"@id": "cx:Interval"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:confidence",
"@type": "owl:DatatypeProperty",
"label": "confidence",
"rdfs:domain": {
"@id": "cx:NumericAssertion"
},
"rdfs:range": {
"@id": "xsd:decimal"
}
},
{
"@id": "cx:sequenceIndex",
"@type": "owl:DatatypeProperty",
"label": "sequence index",
"rdfs:domain": {
"@id": "cx:SequenceEntry"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:oeisId",
"@type": "owl:DatatypeProperty",
"label": "OEIS identifier",
"rdfs:domain": {
"@id": "cx:CountingSequence"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:satisfiesQuadraticForm",
"@type": "owl:DatatypeProperty",
"label": "satisfies quadratic form",
"rdfs:domain": {
"@id": "cx:SpectralPrime"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cx:extensionPrime",
"@type": "owl:DatatypeProperty",
"label": "extension prime",
"rdfs:domain": {
"@id": "cx:ExtensionFunctor"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:boundaryScale",
"@type": "owl:DatatypeProperty",
"label": "boundary scale",
"rdfs:domain": {
"@id": "cx:ExtensionFunctor"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:resonanceFactor",
"@type": "owl:DatatypeProperty",
"label": "resonance factor",
"rdfs:domain": {
"@id": "cx:ExtensionFunctor"
},
"rdfs:range": {
"@id": "xsd:integer"
}
},
{
"@id": "cx:indexingScheme",
"@type": "owl:DatatypeProperty",
"label": "indexing scheme",
"rdfs:domain": {
"@id": "cx:IndexCategory"
},
"rdfs:range": {
"@id": "xsd:string"
}
},
{
"@id": "cxs:CategoricalX",
"@type": "SingletonInstance",
"comment": "The unique canonical instance of the Categorical X structure",
"hasPart": [
"cxs:primitives",
"cxs:types",
"cxs:axioms",
"cxs:constants",
"cxs:tower",
"cxs:gauges",
"cxs:hubs",
"cxs:operators",
"cxs:projections",
"cxs:correspondences",
"cxm:meta"
],
"label": "Categorical X"
},
{
"@id": "cxs:primitives",
"@type": "PrimitivesContainer",
"hasPart": [
"cxs:primitives/integers",
"cxs:primitives/operations",
"cxs:primitives/relations"
],
"label": "Primitives",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:primitives/integers",
"@type": "IntegersContainer",
"contains": [
"cxs:primitives/integers/U",
"cxs:primitives/integers/D",
"cxs:primitives/integers/T",
"cxs:primitives/integers/O"
],
"label": "Primitive Integers"
},
{
"@id": "cxs:primitives/integers/U",
"@type": "Axiom",
"comment": "Identity primitive: terminal object cardinality (id₁ = 1)",
"derivationLevel": 0,
"label": "Identity",
"symbol": "U",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 1
}
},
{
"@id": "cxs:primitives/integers/D",
"@type": "Axiom",
"comment": "Duality primitive: morphism structure arity (|{dom,cod}| = 2)",
"derivationLevel": 0,
"label": "Duality",
"symbol": "D",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 2
}
},
{
"@id": "cxs:primitives/integers/T",
"@type": "Axiom",
"comment": "Derived from U + D: minimum cyclic composition structure",
"derivationFormula": "U + D",
"derivationLevel": 1,
"derivedFrom": [
"cxs:primitives/integers/U",
"cxs:primitives/integers/D"
],
"label": "Triality",
"symbol": "T",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 3
}
},
{
"@id": "cxs:primitives/integers/O",
"@type": "Axiom",
"comment": "Derived from D^T: maximum normed division algebra dimension",
"derivationFormula": "D^T",
"derivationLevel": 1,
"derivedFrom": [
"cxs:primitives/integers/D",
"cxs:primitives/integers/T"
],
"label": "Octonion Dimension",
"symbol": "O",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 8
}
},
{
"@id": "cxs:axioms",
"@type": "AxiomsContainer",
"contains": [
"cxs:axioms/U",
"cxs:axioms/D",
"cxs:axioms/T",
"cxs:axioms/O"
],
"label": "Axioms",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:axioms/U",
"@type": "Axiom",
"comment": "Identity primitive: terminal object cardinality",
"derivationLevel": 0,
"label": "Identity Axiom",
"symbol": "U",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 1
}
},
{
"@id": "cxs:axioms/D",
"@type": "Axiom",
"comment": "Duality primitive: morphism structure arity",
"derivationLevel": 0,
"label": "Duality Axiom",
"symbol": "D",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 2
}
},
{
"@id": "cxs:axioms/T",
"@type": "Axiom",
"derivationFormula": "U + D",
"derivationLevel": 1,
"derivedFrom": [
"cxs:axioms/U",
"cxs:axioms/D"
],
"label": "Triality Axiom",
"symbol": "T",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 3
}
},
{
"@id": "cxs:axioms/O",
"@type": "Axiom",
"derivationFormula": "D^T",
"derivationLevel": 1,
"derivedFrom": [
"cxs:axioms/D",
"cxs:axioms/T"
],
"label": "Octonion Axiom",
"symbol": "O",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 8
}
},
{
"@id": "cxs:primitives/operations",
"@type": "OperationsContainer",
"contains": [
"cxs:primitives/operations/add",
"cxs:primitives/operations/mul",
"cxs:primitives/operations/pow",
"cxs:primitives/operations/div",
"cxs:primitives/operations/sub"
],
"label": "Primitive Operations"
},
{
"@id": "cxs:primitives/operations/add",
"@type": "PrimitiveOperation",
"hasSignature": "(Num, Num) → Num",
"label": "Addition",
"symbol": "+"
},
{
"@id": "cxs:primitives/operations/mul",
"@type": "PrimitiveOperation",
"hasSignature": "(Num, Num) → Num",
"label": "Multiplication",
"symbol": "×"
},
{
"@id": "cxs:primitives/operations/pow",
"@type": "PrimitiveOperation",
"hasSignature": "(Num, Num) → Num",
"label": "Exponentiation",
"symbol": "^"
},
{
"@id": "cxs:primitives/operations/div",
"@type": "PrimitiveOperation",
"hasSignature": "(Num, Num) → Num",
"label": "Division",
"symbol": "/"
},
{
"@id": "cxs:primitives/relations",
"@type": "RelationsContainer",
"contains": [
"cxs:primitives/relations/eq",
"cxs:primitives/relations/lt",
"cxs:primitives/relations/divides",
"cxs:primitives/relations/coprime",
"cxs:primitives/relations/leq",
"cxs:primitives/relations/incomparable",
"cxs:primitives/relations/antichain"
],
"label": "Primitive Relations"
},
{
"@id": "cxs:primitives/relations/eq",
"@type": "PrimitiveRelation",
"arity": 2,
"label": "Equality",
"symbol": "="
},
{
"@id": "cxs:primitives/relations/lt",
"@type": "PrimitiveRelation",
"arity": 2,
"label": "Less Than",
"symbol": "<"
},
{
"@id": "cxs:primitives/relations/divides",
"@type": "PrimitiveRelation",
"arity": 2,
"label": "Divides",
"symbol": "|"
},
{
"@id": "cxs:primitives/relations/coprime",
"@type": "PrimitiveRelation",
"arity": 2,
"label": "Coprime",
"symbol": "⊥"
},
{
"@id": "cxs:primitives/relations/leq",
"@type": "PrimitiveRelation",
"arity": 2,
"label": "Less Than or Equal",
"symbol": "≤"
},
{
"@id": "cxs:primitives/relations/incomparable",
"@type": "PrimitiveRelation",
"arity": 2,
"label": "Incomparable",
"symbol": "∥"
},
{
"@id": "cxs:primitives/relations/antichain",
"@type": "PrimitiveRelation",
"arity": 2,
"label": "Antichain",
"symbol": "⟂"
},
{
"@id": "cxs:tower",
"@type": "TowerContainer",
"hasPart": [
"cxs:tower/levels",
"cxs:tower/transitions",
"cxs:tower/strata"
],
"label": "Cayley-Dickson Tower",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:tower/levels",
"@type": "TowerLevelsContainer",
"contains": [
"cxs:tower/levels/0",
"cxs:tower/levels/1",
"cxs:tower/levels/2",
"cxs:tower/levels/3",
"cxs:tower/levels/4",
"cxs:tower/levels/5",
"cxs:tower/levels/6",
"cxs:tower/levels/7",
"cxs:tower/levels/8"
],
"label": "Tower Levels"
},
{
"@id": "cxs:tower/levels/0",
"@type": "TowerLevel",
"algebra": "R",
"hasAutomorphismGroup": "cxs:tower/levels/0/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_0",
"label": "Reals",
"levelIndex": 0
},
{
"@id": "cxs:tower/levels/1",
"@type": "TowerLevel",
"algebra": "C",
"hasAutomorphismGroup": "cxs:tower/levels/1/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_1",
"label": "Complex",
"levelIndex": 1,
"losesProperty": "cxs:properties/totalOrdering"
},
{
"@id": "cxs:tower/levels/2",
"@type": "TowerLevel",
"algebra": "H",
"hasAutomorphismGroup": "cxs:tower/levels/2/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_2",
"label": "Quaternions",
"levelIndex": 2,
"losesProperty": "cxs:properties/commutativity"
},
{
"@id": "cxs:tower/levels/3",
"@type": "TowerLevel",
"algebra": "O",
"hasAutomorphismGroup": "cxs:tower/levels/3/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_3",
"label": "Octonions",
"levelIndex": 3,
"losesProperty": "cxs:properties/associativity"
},
{
"@id": "cxs:tower/levels/4",
"@type": "TowerLevel",
"algebra": "S",
"hasAutomorphismGroup": "cxs:tower/levels/4/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_4",
"label": "Sedenions",
"levelIndex": 4,
"losesProperty": "cxs:properties/division"
},
{
"@id": "cxs:tower/levels/5",
"@type": "TowerLevel",
"algebra": "P",
"hasAutomorphismGroup": "cxs:tower/levels/5/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_5",
"label": "Pathions",
"levelIndex": 5,
"losesProperty": "cxs:properties/moufang"
},
{
"@id": "cxs:tower/levels/6",
"@type": "TowerLevel",
"algebra": "T",
"hasAutomorphismGroup": "cxs:tower/levels/6/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_6",
"label": "Trigintaduonions",
"levelIndex": 6
},
{
"@id": "cxs:tower/levels/7",
"@type": "TowerLevel",
"algebra": "V",
"hasAutomorphismGroup": "cxs:tower/levels/7/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_7",
"label": "Voudons",
"levelIndex": 7
},
{
"@id": "cxs:tower/levels/8",
"@type": "TowerLevel",
"algebra": "R",
"hasAutomorphismGroup": "cxs:tower/levels/8/automorphismGroup",
"hasDimension": "cxs:dimensions/dim_8",
"label": "Extended-Reals-8",
"levelIndex": 8
},
{
"@id": "cxs:tower/transitions",
"@type": "TransitionsContainer",
"contains": [
"cxs:tower/transitions/phi_01",
"cxs:tower/transitions/phi_12",
"cxs:tower/transitions/phi_23",
"cxs:tower/transitions/phi_34",
"cxs:tower/transitions/phi_45",
"cxs:tower/transitions/phi_56",
"cxs:tower/transitions/phi_67",
"cxs:tower/transitions/phi_78"
],
"label": "Tower Transitions"
},
{
"@id": "cxs:tower/transitions/phi_01",
"@type": "TowerTransition",
"formula": "(a, b) ↦ a + bi",
"label": "phi_01",
"sourceLevel": "cxs:tower/levels/0",
"targetLevel": "cxs:tower/levels/1"
},
{
"@id": "cxs:tower/transitions/phi_12",
"@type": "TowerTransition",
"formula": "(z, w) ↦ z + wj",
"label": "phi_12",
"sourceLevel": "cxs:tower/levels/1",
"targetLevel": "cxs:tower/levels/2"
},
{
"@id": "cxs:tower/transitions/phi_23",
"@type": "TowerTransition",
"formula": "(q₁, q₂) ↦ q₁ + q₂e",
"label": "phi_23",
"sourceLevel": "cxs:tower/levels/2",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:tower/transitions/phi_34",
"@type": "TowerTransition",
"formula": "Cayley-Dickson(O)",
"label": "phi_34",
"sourceLevel": "cxs:tower/levels/3",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:tower/transitions/phi_45",
"@type": "TowerTransition",
"formula": "Cayley-Dickson(S)",
"label": "phi_45",
"sourceLevel": "cxs:tower/levels/4",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:tower/transitions/phi_56",
"@type": "TowerTransition",
"formula": "Cayley-Dickson(P)",
"label": "phi_56",
"sourceLevel": "cxs:tower/levels/5",
"targetLevel": "cxs:tower/levels/6"
},
{
"@id": "cxs:tower/transitions/phi_67",
"@type": "TowerTransition",
"formula": "Cayley-Dickson(T)",
"label": "phi_67",
"sourceLevel": "cxs:tower/levels/6",
"targetLevel": "cxs:tower/levels/7"
},
{
"@id": "cxs:tower/transitions/phi_78",
"@type": "TowerTransition",
"formula": "Cayley-Dickson(V)",
"label": "phi_78",
"sourceLevel": "cxs:tower/levels/7",
"targetLevel": "cxs:tower/levels/8"
},
{
"@id": "cxs:tower/strata",
"@type": "StrataContainer",
"contains": [
"cxs:tower/strata/Extension",
"cxs:tower/strata/Intension",
"cxs:tower/strata/Comprehension",
"cxs:tower/strata/Ground"
],
"label": "Strata"
},
{
"@id": "cxs:tower/strata/Extension",
"@type": "Stratum",
"contains": [
"cxs:tower/levels/0",
"cxs:tower/levels/1",
"cxs:tower/levels/2"
],
"label": "Extension",
"role": "Classical algebras with full properties"
},
{
"@id": "cxs:tower/strata/Intension",
"@type": "Stratum",
"contains": [
"cxs:tower/levels/3",
"cxs:tower/levels/4"
],
"label": "Intension",
"role": "Non-associative regime"
},
{
"@id": "cxs:tower/strata/Comprehension",
"@type": "Stratum",
"contains": [
"cxs:tower/levels/5",
"cxs:tower/levels/6",
"cxs:tower/levels/7"
],
"label": "Comprehension",
"role": "Higher obstruction regime"
},
{
"@id": "cxs:tower/strata/Ground",
"@type": "Stratum",
"contains": [
"cxs:tower/levels/8"
],
"label": "Ground",
"role": "Terminal fixed point"
},
{
"@id": "cxs:dimensions/dim_0",
"@type": "DimensionSpec",
"dimension": 1,
"formula": "2^0"
},
{
"@id": "cxs:dimensions/dim_1",
"@type": "DimensionSpec",
"dimension": 2,
"formula": "2^1"
},
{
"@id": "cxs:dimensions/dim_2",
"@type": "DimensionSpec",
"dimension": 4,
"formula": "2^2"
},
{
"@id": "cxs:dimensions/dim_3",
"@type": "DimensionSpec",
"dimension": 8,
"formula": "2^3"
},
{
"@id": "cxs:dimensions/dim_4",
"@type": "DimensionSpec",
"dimension": 16,
"formula": "2^4"
},
{
"@id": "cxs:dimensions/dim_5",
"@type": "DimensionSpec",
"dimension": 32,
"formula": "2^5"
},
{
"@id": "cxs:dimensions/dim_6",
"@type": "DimensionSpec",
"dimension": 64,
"formula": "2^6"
},
{
"@id": "cxs:dimensions/dim_7",
"@type": "DimensionSpec",
"dimension": 128,
"formula": "2^7"
},
{
"@id": "cxs:dimensions/dim_8",
"@type": "DimensionSpec",
"dimension": 256,
"formula": "2^8"
},
{
"@id": "cxs:dimensions/dim_aut_0",
"@type": "DimensionSpec",
"dimension": 0,
"formula": "|Aut(R)|"
},
{
"@id": "cxs:dimensions/dim_aut_1",
"@type": "DimensionSpec",
"dimension": 0,
"formula": "|Aut(C)|"
},
{
"@id": "cxs:dimensions/dim_aut_2",
"@type": "DimensionSpec",
"dimension": 3,
"formula": "dim(SO(3))"
},
{
"@id": "cxs:dimensions/dim_aut_3",
"@type": "DimensionSpec",
"dimension": 14,
"formula": "dim(G₂)"
},
{
"@id": "cxs:dimensions/dim_aut_4",
"@type": "DimensionSpec",
"dimension": 21,
"formula": "dim(Spin(7))"
},
{
"@id": "cxs:dimensions/dim_leech",
"@type": "DimensionSpec",
"dimension": 24,
"formula": "T × O"
},
{
"@id": "cxs:dimensions/dim_e8",
"@type": "DimensionSpec",
"dimension": 248,
"formula": "dim(E₈)"
},
{
"@id": "cxs:tower/levels/0/automorphismGroup",
"@type": [
"AutomorphismGroup",
"Trivial"
],
"dimension": 0,
"groupType": "Trivial",
"label": "{1}",
"order": 1
},
{
"@id": "cxs:tower/levels/1/automorphismGroup",
"@type": [
"AutomorphismGroup",
"FiniteGroup"
],
"dimension": 0,
"groupType": "FiniteGroup",
"label": "Z_2",
"order": 2
},
{
"@id": "cxs:tower/levels/2/automorphismGroup",
"@type": [
"AutomorphismGroup",
"LieGroup"
],
"dimension": 3,
"groupType": "LieGroup",
"label": "SO(3)"
},
{
"@id": "cxs:tower/levels/3/automorphismGroup",
"@type": [
"AutomorphismGroup",
"LieGroup"
],
"dimension": 14,
"groupType": "LieGroup",
"label": "G_2"
},
{
"@id": "cxs:tower/levels/4/automorphismGroup",
"@type": [
"AutomorphismGroup",
"LieGroup"
],
"dimension": 21,
"groupType": "LieGroup",
"label": "Spin(7) ⋊ S₃"
},
{
"@id": "cxs:tower/levels/5/automorphismGroup",
"@type": [
"AutomorphismGroup",
"ExtendedLieGroup"
],
"dimension": 28,
"groupType": "ExtendedLieGroup",
"label": "Extended-Spin(8)-5"
},
{
"@id": "cxs:tower/levels/6/automorphismGroup",
"@type": [
"AutomorphismGroup",
"ExtendedLieGroup"
],
"dimension": 35,
"groupType": "ExtendedLieGroup",
"label": "Extended-Spin(8)-6"
},
{
"@id": "cxs:tower/levels/7/automorphismGroup",
"@type": [
"AutomorphismGroup",
"ExtendedLieGroup"
],
"dimension": 42,
"groupType": "ExtendedLieGroup",
"label": "Extended-Spin(8)-7"
},
{
"@id": "cxs:tower/levels/8/automorphismGroup",
"@type": [
"AutomorphismGroup",
"ExtendedLieGroup"
],
"dimension": 49,
"groupType": "ExtendedLieGroup",
"label": "Octave-Complete-Spin(8)"
},
{
"@id": "cxs:tower/levels/0/cocycle",
"@type": "CocycleClass",
"arity": 0,
"cohomologyClass": "H⁰(1, k)",
"comment": "Trivial cocycle",
"label": "H⁰(1, k)",
"representative": "1"
},
{
"@id": "cxs:tower/levels/1/cocycle",
"@type": "CocycleClass",
"arity": 1,
"cohomologyClass": "H¹(Z₂, k×)",
"comment": "Conjugation cocycle",
"label": "H¹(Z₂, k×)",
"representative": "γ(a) = a*"
},
{
"@id": "cxs:tower/levels/2/cocycle",
"@type": "CocycleClass",
"arity": 2,
"cohomologyClass": "H²(V₄, k×)",
"comment": "Commutator cocycle",
"label": "H²(V₄, k×)",
"representative": "[a,b] = ab - ba"
},
{
"@id": "cxs:tower/levels/3/cocycle",
"@type": "CocycleClass",
"arity": 3,
"cohomologyClass": "H³(Z₂³, k×)",
"comment": "Associator cocycle (Fano plane)",
"label": "H³(Z₂³, k×)",
"representative": "[a,b,c] = (ab)c - a(bc)"
},
{
"@id": "cxs:tower/levels/4/cocycle",
"@type": "CocycleClass",
"arity": 4,
"cohomologyClass": "H⁴(Z₂³, k×)",
"comment": "Zero-divisor cocycle",
"label": "H⁴(Z₂³, k×)",
"representative": "Z(a,b,c,d)"
},
{
"@id": "cxs:tower/levels/5/cocycle",
"@type": "CocycleClass",
"arity": 5,
"cohomologyClass": "H⁵(Z₂⁴, k×)",
"comment": "Moufang failure cocycle",
"label": "H⁵(Z₂⁴, k×)",
"representative": "Obs₅(a,b,c,d,e)"
},
{
"@id": "cxs:tower/levels/6/cocycle",
"@type": "CocycleClass",
"arity": 6,
"cohomologyClass": "H⁶(Z₂⁵, k×)",
"comment": "6-ary obstruction cocycle",
"label": "H⁶(Z₂⁵, k×)",
"representative": "Obs₆"
},
{
"@id": "cxs:tower/levels/7/cocycle",
"@type": "CocycleClass",
"arity": 7,
"cohomologyClass": "H⁷(Z₂⁶, k×)",
"comment": "7-ary obstruction cocycle",
"label": "H⁷(Z₂⁶, k×)",
"representative": "Obs₇"
},
{
"@id": "cxs:tower/levels/8/cocycle",
"@type": "CocycleClass",
"arity": 8,
"cohomologyClass": "H⁸(Z₂⁷, k×)",
"comment": "Octave cocycle (Bott periodicity)",
"label": "H⁸(Z₂⁷, k×)",
"representative": "β_O"
},
{
"@id": "cxs:properties/totalOrdering",
"@type": "AlgebraicProperty",
"comment": "Elements can be totally ordered",
"label": "Total Ordering"
},
{
"@id": "cxs:properties/commutativity",
"@type": "AlgebraicProperty",
"comment": "Multiplication is commutative",
"label": "Commutativity"
},
{
"@id": "cxs:properties/associativity",
"@type": "AlgebraicProperty",
"comment": "Multiplication is associative",
"label": "Associativity"
},
{
"@id": "cxs:properties/alternativity",
"@type": "AlgebraicProperty",
"comment": "Algebra is alternative",
"label": "Alternativity"
},
{
"@id": "cxs:properties/powerAssociativity",
"@type": "AlgebraicProperty",
"comment": "Powers associate",
"label": "Power Associativity"
},
{
"@id": "cxs:properties/flexibility",
"@type": "AlgebraicProperty",
"comment": "Flexible identity holds",
"label": "Flexibility"
},
{
"@id": "cxs:properties/zeroDivisorFreeness",
"@type": "AlgebraicProperty",
"comment": "No zero divisors",
"label": "Zero-Divisor Freeness"
},
{
"@id": "cxs:operators",
"@type": "OperatorsContainer",
"comment": "Categorical operators defining morphisms in Categorical X",
"contains": [
"cxs:operators/tensor",
"cxs:operators/hom",
"cxs:operators/aut",
"cxs:operators/realization",
"cxs:operators/equivariantTensor",
"cxs:operators/derivation",
"cxs:operators/complexity",
"cxs:operators/spectrum",
"cxs:operators/power",
"cxs:operators/compose",
"cxs:operators/limit",
"cxs:operators/colimit",
"cxs:operators/measure"
],
"label": "Operators",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:operators/tensor",
"@type": "Operator",
"hasSignature": "(A, B) → A ⊗ B",
"hasUniversalProperty": "Bilinear maps factor uniquely",
"label": "Tensor Product",
"symbol": "⊗"
},
{
"@id": "cxs:operators/hom",
"@type": "Operator",
"hasSignature": "(A, B) → Hom(A, B)",
"hasUniversalProperty": "Internal hom adjoint to tensor",
"label": "Hom Functor",
"symbol": "Hom"
},
{
"@id": "cxs:operators/aut",
"@type": "Operator",
"hasSignature": "A → Aut(A)",
"hasUniversalProperty": "Symmetry group of structure",
"label": "Automorphism Functor",
"symbol": "Aut"
},
{
"@id": "cxs:operators/realization",
"@type": "Operator",
"hasSignature": "S → |S|",
"hasUniversalProperty": "Topological realization of simplicial object",
"label": "Geometric Realization",
"symbol": "|-|"
},
{
"@id": "cxs:operators/equivariantTensor",
"@type": "Operator",
"hasSignature": "(A, B) →_G A ⊗_G B",
"hasUniversalProperty": "G-equivariant bilinear maps",
"label": "Equivariant Tensor",
"symbol": "⊗_G"
},
{
"@id": "cxs:operators/derivation",
"@type": "Operator",
"hasSignature": "A → Der(A)",
"hasUniversalProperty": "Leibniz rule satisfying maps",
"label": "Derivation Algebra",
"symbol": "Der"
},
{
"@id": "cxs:operators/complexity",
"@type": "Operator",
"hasSignature": "X → K(X)",
"hasUniversalProperty": "Computational complexity measure",
"label": "Complexity Functor",
"symbol": "K"
},
{
"@id": "cxs:operators/spectrum",
"@type": "Operator",
"hasSignature": "R → Spec(R)",
"hasUniversalProperty": "Prime spectrum of ring",
"label": "Spectrum Functor",
"symbol": "Spec"
},
{
"@id": "cxs:operators/power",
"@type": "Operator",
"hasSignature": "X → P(X)",
"hasUniversalProperty": "Subobject classifier exponential",
"label": "Power Object",
"symbol": "P"
},
{
"@id": "cxs:operators/compose",
"@type": "Operator",
"hasSignature": "(f, g) → f ∘ g",
"hasUniversalProperty": "Associative composition of morphisms",
"label": "Composition",
"symbol": "∘"
},
{
"@id": "cxs:operators/limit",
"@type": "Operator",
"hasSignature": "D → lim D",
"hasUniversalProperty": "Universal cone over diagram",
"label": "Limit",
"symbol": "lim"
},
{
"@id": "cxs:operators/colimit",
"@type": "Operator",
"hasSignature": "D → colim D",
"hasUniversalProperty": "Universal cocone under diagram",
"label": "Colimit",
"symbol": "colim"
},
{
"@id": "cxs:operators/measure",
"@type": "Operator",
"hasSignature": "X → μ(X)",
"hasUniversalProperty": "Integration over fibers",
"label": "Measure",
"symbol": "μ"
},
{
"@id": "cxs:projections",
"@type": "ProjectionsContainer",
"comment": "Interpretation functors that compose with gauge projections",
"contains": [
"cxs:projections/arithmetic",
"cxs:projections/combinatorial",
"cxs:projections/spectral",
"cxs:projections/modular"
],
"label": "Domain Projections",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:projections/arithmetic",
"@type": "Projection",
"comment": "Projects to number-theoretic structures (primes, divisibility)",
"compositionLaw": "π_k ∘ arithmetic = gauge-truncated prime distribution",
"functorType": "Forgetful",
"label": "Arithmetic Projection",
"phaseMap": "Level → Prime counting regime",
"resolutionRules": "Apply prime distribution formulas",
"targetCategory": "Number Theory"
},
{
"@id": "cxs:projections/combinatorial",
"@type": "Projection",
"comment": "Projects to combinatorial structures (lattices, antichains)",
"compositionLaw": "π_k ∘ combinatorial = gauge-truncated antichain counting",
"functorType": "Representable",
"label": "Combinatorial Projection",
"phaseMap": "Level → Antichain counting regime",
"resolutionRules": "Apply Dedekind enumeration",
"targetCategory": "Combinatorics"
},
{
"@id": "cxs:projections/spectral",
"@type": "Projection",
"comment": "Projects to spectral/analytic structures (zeta zeros, L-functions)",
"compositionLaw": "π_k ∘ spectral = gauge-truncated eigenvalue sums",
"functorType": "Contravariant",
"label": "Spectral Projection",
"phaseMap": "Level → Spectral density regime",
"resolutionRules": "Apply spectral analysis methods",
"targetCategory": "Spectral Theory"
},
{
"@id": "cxs:projections/modular",
"@type": "Projection",
"comment": "Projects to modular arithmetic structures",
"compositionLaw": "π_k ∘ modular = gauge-truncated modular forms",
"functorType": "Quotient",
"label": "Modular Projection",
"phaseMap": "Level → Modular residue regime",
"resolutionRules": "Apply modular arithmetic rules",
"targetCategory": "Modular Forms"
},
{
"@id": "cxs:correspondences",
"@type": "CorrespondencesContainer",
"comment": "Functorial relationships between projections with explicit formulas",
"contains": [
"cxs:correspondences/dedekindPrime",
"cxs:correspondences/spectralArithmetic",
"cxs:correspondences/modularCombinatorial"
],
"label": "Correspondences",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:correspondences/dedekindPrime",
"@type": "Correspondence",
"comment": "Boolean lattice ↔ Divisibility lattice isomorphism",
"correspondsTo": [
"cxs:projections/combinatorial",
"cxs:projections/arithmetic"
],
"explicitFormula": "D(n) = |{A ⊆ P^n : antichain(A)}| corresponds to prime-indexed lattice counting",
"inputDomain": "Boolean lattice antichains over P^n",
"label": "Dedekind-Prime Correspondence",
"outputCodomain": "Prime-indexed divisibility lattice elements",
"phaseAlignment": "cxs:phases/phase1",
"truncationPolicy": "gauge-bounded: use gauge level k for D(n) where n ≤ coverage(k)"
},
{
"@id": "cxs:correspondences/spectralArithmetic",
"@type": "Correspondence",
"comment": "Zeta zeros ↔ Prime distribution connection",
"correspondsTo": [
"cxs:projections/spectral",
"cxs:projections/arithmetic"
],
"explicitFormula": "ψ(x) = x - Σ_ρ x^ρ/ρ + O(1) (explicit formula for Chebyshev ψ)",
"inputDomain": "Zeta zero ordinates γ_n with |γ_n| ≤ T",
"label": "Spectral-Arithmetic Correspondence",
"outputCodomain": "Prime counting approximation π_spec(x)",
"phaseAlignment": "cxs:phases/phase3",
"truncationPolicy": "cutoff-T: sum over zeros with |γ| ≤ T, error O(x/T log²x)"
},
{
"@id": "cxs:correspondences/modularCombinatorial",
"@type": "Correspondence",
"comment": "Modular forms ↔ Lattice structures",
"correspondsTo": [
"cxs:projections/modular",
"cxs:projections/combinatorial"
],
"explicitFormula": "θ_Λ(q) = Σ_v q^{|v|²/2} encodes lattice theta series as modular form",
"inputDomain": "Modular forms of level N and weight k",
"label": "Modular-Combinatorial Correspondence",
"outputCodomain": "Lattice theta series coefficients",
"phaseAlignment": "cxs:phases/phase4",
"truncationPolicy": "q-expansion: truncate at q^M for precision M"
},
{
"@id": "cxs:phases",
"@type": "PhasesContainer",
"hasPart": [
"cxs:phases/transitions",
"cxs:phases/behaviors",
"cxs:phases/modifications"
],
"label": "Phase System"
},
{
"@id": "cxs:phases/phase1",
"@type": "PhaseBehavior",
"activatesAt": "cxs:tower/levels/0",
"activatesAtIndex": 0,
"formula": "f(n,k) = 2^(n-k) × g(n,k)",
"label": "Phase I",
"range": "n ≤ pentality"
},
{
"@id": "cxs:phases/phase2",
"@type": "PhaseBehavior",
"activatesAt": "cxs:tower/levels/5",
"activatesAtIndex": 5,
"formula": "Polynomial growth with triality corrections",
"label": "Phase II",
"range": "n = pariah"
},
{
"@id": "cxs:phases/phase3",
"@type": "PhaseBehavior",
"activatesAt": "cxs:tower/levels/6",
"activatesAtIndex": 6,
"formula": "f(septality, k) = D(pentality)^T",
"label": "Phase III",
"range": "n = septality"
},
{
"@id": "cxs:phases/phase4",
"@type": "PhaseBehavior",
"activatesAt": "cxs:tower/levels/7",
"activatesAtIndex": 7,
"formula": "Octave periodic with correction C(n,2)",
"label": "Phase IV",
"range": "n ≥ O"
},
{
"@id": "cxs:phases/transitions/transition_I_II",
"@type": "PhaseTransition",
"criticalConstant": "pentality",
"label": "Phase I → Phase II",
"sourcePhase": "Phase I",
"targetPhase": "Phase II",
"transitionLevel": 5
},
{
"@id": "cxs:phases/transitions/transition_II_III",
"@type": "PhaseTransition",
"criticalConstant": "pariah",
"label": "Phase II → Phase III",
"sourcePhase": "Phase II",
"targetPhase": "Phase III",
"transitionLevel": 6
},
{
"@id": "cxs:phases/transitions/transition_III_IV",
"@type": "PhaseTransition",
"criticalConstant": "septality",
"label": "Phase III → Phase IV",
"sourcePhase": "Phase III",
"targetPhase": "Phase IV",
"transitionLevel": 7
},
{
"@id": "cxs:phases/transitions/transition_IV_periodic",
"@type": "PhaseTransition",
"criticalConstant": "O",
"label": "Phase IV → Periodic",
"sourcePhase": "Phase IV",
"targetPhase": "Periodic",
"transitionLevel": 8
},
{
"@id": "cxs:phases/modifications/tensor_level3",
"@type": "PhaseModification",
"formula": "Non-associative tensor product (requires re-bracketing)",
"label": "tensor_level3",
"operator": "cxs:operators/tensor",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/tensor_level4",
"@type": "PhaseModification",
"formula": "Zero-divisor propagation",
"label": "tensor_level4",
"operator": "cxs:operators/tensor",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/tensor_level5",
"@type": "PhaseModification",
"formula": "Loss of alternative law in tensor factors",
"label": "tensor_level5",
"operator": "cxs:operators/tensor",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/hom_level3",
"@type": "PhaseModification",
"formula": "Restricted to G2-invariant maps",
"label": "hom_level3",
"operator": "cxs:operators/hom",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/hom_level4",
"@type": "PhaseModification",
"formula": "Spin(7) equivariance required",
"label": "hom_level4",
"operator": "cxs:operators/hom",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/hom_level5",
"@type": "PhaseModification",
"formula": "Extended Spin(8) equivariance",
"label": "hom_level5",
"operator": "cxs:operators/hom",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/aut_level3",
"@type": "PhaseModification",
"formula": "G2 automorphism group (14-dimensional)",
"label": "aut_level3",
"operator": "cxs:operators/aut",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/aut_level4",
"@type": "PhaseModification",
"formula": "Spin(7) ⋊ S₃ (21-dimensional)",
"label": "aut_level4",
"operator": "cxs:operators/aut",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/aut_level5",
"@type": "PhaseModification",
"formula": "Extended-Spin(8)-5 (28-dimensional)",
"label": "aut_level5",
"operator": "cxs:operators/aut",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/realization_level3",
"@type": "PhaseModification",
"formula": "Non-associative geometric realization",
"label": "realization_level3",
"operator": "cxs:operators/realization",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/realization_level4",
"@type": "PhaseModification",
"formula": "Zero-divisor aware realization",
"label": "realization_level4",
"operator": "cxs:operators/realization",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/realization_level5",
"@type": "PhaseModification",
"formula": "Power-associativity boundary",
"label": "realization_level5",
"operator": "cxs:operators/realization",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/equivariantTensor_level3",
"@type": "PhaseModification",
"formula": "G2-equivariant tensor",
"label": "equivariantTensor_level3",
"operator": "cxs:operators/equivariantTensor",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/equivariantTensor_level4",
"@type": "PhaseModification",
"formula": "Spin(7)-equivariant tensor",
"label": "equivariantTensor_level4",
"operator": "cxs:operators/equivariantTensor",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/equivariantTensor_level5",
"@type": "PhaseModification",
"formula": "Extended-Spin(8)-equivariant",
"label": "equivariantTensor_level5",
"operator": "cxs:operators/equivariantTensor",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/derivation_level3",
"@type": "PhaseModification",
"formula": "Non-associative derivations (g2 Lie algebra)",
"label": "derivation_level3",
"operator": "cxs:operators/derivation",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/derivation_level4",
"@type": "PhaseModification",
"formula": "Extended derivation algebra",
"label": "derivation_level4",
"operator": "cxs:operators/derivation",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/derivation_level5",
"@type": "PhaseModification",
"formula": "Higher obstruction derivations",
"label": "derivation_level5",
"operator": "cxs:operators/derivation",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/complexity_level3",
"@type": "PhaseModification",
"formula": "Polynomial with associator correction",
"label": "complexity_level3",
"operator": "cxs:operators/complexity",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/complexity_level4",
"@type": "PhaseModification",
"formula": "Super-polynomial growth",
"label": "complexity_level4",
"operator": "cxs:operators/complexity",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/complexity_level5",
"@type": "PhaseModification",
"formula": "Exponential-bounded complexity",
"label": "complexity_level5",
"operator": "cxs:operators/complexity",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/spectrum_level3",
"@type": "PhaseModification",
"formula": "Non-commutative spectrum",
"label": "spectrum_level3",
"operator": "cxs:operators/spectrum",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/spectrum_level4",
"@type": "PhaseModification",
"formula": "Zero-divisor spectrum",
"label": "spectrum_level4",
"operator": "cxs:operators/spectrum",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/spectrum_level5",
"@type": "PhaseModification",
"formula": "Power-associativity spectrum",
"label": "spectrum_level5",
"operator": "cxs:operators/spectrum",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/power_level3",
"@type": "PhaseModification",
"formula": "Power object with G2 action",
"label": "power_level3",
"operator": "cxs:operators/power",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/power_level4",
"@type": "PhaseModification",
"formula": "Zero-divisor quotient",
"label": "power_level4",
"operator": "cxs:operators/power",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/power_level5",
"@type": "PhaseModification",
"formula": "Triality-corrected power",
"label": "power_level5",
"operator": "cxs:operators/power",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/compose_level3",
"@type": "PhaseModification",
"formula": "Non-associative composition (re-bracketing)",
"label": "compose_level3",
"operator": "cxs:operators/compose",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/compose_level4",
"@type": "PhaseModification",
"formula": "Zero-divisor careful composition",
"label": "compose_level4",
"operator": "cxs:operators/compose",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/compose_level5",
"@type": "PhaseModification",
"formula": "Power-associative composition",
"label": "compose_level5",
"operator": "cxs:operators/compose",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/limit_level3",
"@type": "PhaseModification",
"formula": "Non-associative cone",
"label": "limit_level3",
"operator": "cxs:operators/limit",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/limit_level4",
"@type": "PhaseModification",
"formula": "Zero-divisor filtered limit",
"label": "limit_level4",
"operator": "cxs:operators/limit",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/limit_level5",
"@type": "PhaseModification",
"formula": "Obstruction-controlled limit",
"label": "limit_level5",
"operator": "cxs:operators/limit",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/colimit_level3",
"@type": "PhaseModification",
"formula": "Non-associative cocone",
"label": "colimit_level3",
"operator": "cxs:operators/colimit",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/colimit_level4",
"@type": "PhaseModification",
"formula": "Zero-divisor filtered colimit",
"label": "colimit_level4",
"operator": "cxs:operators/colimit",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/colimit_level5",
"@type": "PhaseModification",
"formula": "Obstruction-controlled colimit",
"label": "colimit_level5",
"operator": "cxs:operators/colimit",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/modifications/measure_level3",
"@type": "PhaseModification",
"formula": "G2-invariant measure",
"label": "measure_level3",
"operator": "cxs:operators/measure",
"phase": "Octonion",
"targetLevel": "cxs:tower/levels/3"
},
{
"@id": "cxs:phases/modifications/measure_level4",
"@type": "PhaseModification",
"formula": "Spin(7)-invariant measure",
"label": "measure_level4",
"operator": "cxs:operators/measure",
"phase": "Sedenion",
"targetLevel": "cxs:tower/levels/4"
},
{
"@id": "cxs:phases/modifications/measure_level5",
"@type": "PhaseModification",
"formula": "Triality measure",
"label": "measure_level5",
"operator": "cxs:operators/measure",
"phase": "Pathion",
"targetLevel": "cxs:tower/levels/5"
},
{
"@id": "cxs:phases/map/arithmetic_I",
"@type": "PhaseMapEntry",
"sourceLevel": 0,
"targetPhase": "Phase I"
},
{
"@id": "cxs:phases/map/arithmetic_II",
"@type": "PhaseMapEntry",
"sourceLevel": 5,
"targetPhase": "Phase II"
},
{
"@id": "cxs:phases/map/arithmetic_III",
"@type": "PhaseMapEntry",
"sourceLevel": 6,
"targetPhase": "Phase III"
},
{
"@id": "cxs:phases/map/arithmetic_IV",
"@type": "PhaseMapEntry",
"sourceLevel": 7,
"targetPhase": "Phase IV"
},
{
"@id": "cxs:phases/map/combinatorial_I",
"@type": "PhaseMapEntry",
"sourceLevel": 0,
"targetPhase": "Phase I"
},
{
"@id": "cxs:phases/map/combinatorial_II",
"@type": "PhaseMapEntry",
"sourceLevel": 5,
"targetPhase": "Phase II"
},
{
"@id": "cxs:phases/map/combinatorial_III",
"@type": "PhaseMapEntry",
"sourceLevel": 6,
"targetPhase": "Phase III"
},
{
"@id": "cxs:phases/map/combinatorial_IV",
"@type": "PhaseMapEntry",
"sourceLevel": 7,
"targetPhase": "Phase IV"
},
{
"@id": "cxs:phases/map/spectral_I",
"@type": "PhaseMapEntry",
"sourceLevel": 0,
"targetPhase": "Phase I"
},
{
"@id": "cxs:phases/map/spectral_II",
"@type": "PhaseMapEntry",
"sourceLevel": 5,
"targetPhase": "Phase II"
},
{
"@id": "cxs:phases/map/spectral_III",
"@type": "PhaseMapEntry",
"sourceLevel": 6,
"targetPhase": "Phase III"
},
{
"@id": "cxs:phases/map/spectral_IV",
"@type": "PhaseMapEntry",
"sourceLevel": 7,
"targetPhase": "Phase IV"
},
{
"@id": "cxs:phases/map/modular_I",
"@type": "PhaseMapEntry",
"sourceLevel": 0,
"targetPhase": "Phase I"
},
{
"@id": "cxs:phases/map/modular_II",
"@type": "PhaseMapEntry",
"sourceLevel": 5,
"targetPhase": "Phase II"
},
{
"@id": "cxs:phases/map/modular_III",
"@type": "PhaseMapEntry",
"sourceLevel": 6,
"targetPhase": "Phase III"
},
{
"@id": "cxs:phases/map/modular_IV",
"@type": "PhaseMapEntry",
"sourceLevel": 7,
"targetPhase": "Phase IV"
},
{
"@id": "cxs:phases/alignments/alignment_I",
"@type": "PhaseAlignment",
"alignment": "Pre-pentality regime",
"phase": "Phase I"
},
{
"@id": "cxs:phases/alignments/alignment_II",
"@type": "PhaseAlignment",
"alignment": "Pariah boundary",
"phase": "Phase II"
},
{
"@id": "cxs:phases/alignments/alignment_III",
"@type": "PhaseAlignment",
"alignment": "Triality regime",
"phase": "Phase III"
},
{
"@id": "cxs:phases/alignments/alignment_IV",
"@type": "PhaseAlignment",
"alignment": "Octave periodic regime",
"phase": "Phase IV"
},
{
"@id": "cxs:types",
"@type": "TypesContainer",
"label": "Type System",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:types/level0",
"@type": "TypeLevel",
"comment": "T, O - fundamental axioms",
"label": "Primitive/Axiom",
"levelNumber": 0
},
{
"@id": "cxs:types/level1",
"@type": "TypeLevel",
"comment": "c, q, pentality, septality, pariah, happy",
"label": "First-Order Composition",
"levelNumber": 1
},
{
"@id": "cxs:types/level2",
"@type": "TypeLevel",
"comment": "J, B, sporadic, h1 + categorical constructs",
"label": "Second-Order",
"levelNumber": 2
},
{
"@id": "cxs:types/level3",
"@type": "TypeLevel",
"comment": "Lattice, Filter, CountingFunction, Sieve",
"label": "Third-Order Structures",
"levelNumber": 3
},
{
"@id": "cxs:types/level4",
"@type": "TypeLevel",
"comment": "PhaseTransition, PhaseSequence, PhaseBehavior",
"label": "Fourth-Order Phase",
"levelNumber": 4
},
{
"@id": "cxs:types/level5",
"@type": "TypeLevel",
"comment": "Symbolic and abstract types",
"label": "Fifth-Order Abstract",
"levelNumber": 5
},
{
"@id": "cxs:types/first/c",
"@type": "FirstOrderType",
"formula": "T × O",
"inLevel": "cxs:types/level1",
"label": "Leech Dimension",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 24
}
},
{
"@id": "cxs:types/first/q",
"@type": "FirstOrderType",
"formula": "O / 2",
"inLevel": "cxs:types/level1",
"label": "Quaternion Embedding",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 4
}
},
{
"@id": "cxs:types/first/pentality",
"@type": "FirstOrderType",
"formula": "O - T",
"inLevel": "cxs:types/level1",
"label": "Pentality",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 5
}
},
{
"@id": "cxs:types/first/septality",
"@type": "FirstOrderType",
"formula": "T + q",
"inLevel": "cxs:types/level1",
"label": "Septality",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 7
}
},
{
"@id": "cxs:types/first/pariah",
"@type": "FirstOrderType",
"formula": "c / q",
"inLevel": "cxs:types/level1",
"label": "Pariah",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 6
}
},
{
"@id": "cxs:types/first/happy",
"@type": "FirstOrderType",
"formula": "c - q",
"inLevel": "cxs:types/level1",
"label": "Happy Number",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 20
}
},
{
"@id": "cxs:types/second/J",
"@type": "SecondOrderType",
"formula": "T^T",
"inLevel": "cxs:types/level2",
"label": "Jordan Dimension",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 27
}
},
{
"@id": "cxs:types/second/B",
"@type": "SecondOrderType",
"formula": "2^pentality",
"inLevel": "cxs:types/level2",
"label": "Boolean Lattice",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 32
}
},
{
"@id": "cxs:types/second/sporadic",
"@type": "SecondOrderType",
"formula": "happy + pariah",
"inLevel": "cxs:types/level2",
"label": "Sporadic Count",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 26
}
},
{
"@id": "cxs:types/second/h1",
"@type": "SecondOrderType",
"formula": "happy - 1",
"inLevel": "cxs:types/level2",
"label": "H1 Constant",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 19
}
},
{
"@id": "cxs:types/structural/Lattice",
"@type": "StructuralType",
"comment": "Partially ordered set with meets and joins",
"label": "Lattice"
},
{
"@id": "cxs:types/structural/Filter",
"@type": "StructuralType",
"comment": "Upward closed subset",
"label": "Filter"
},
{
"@id": "cxs:types/structural/CountingFunction",
"@type": "StructuralType",
"comment": "Function counting structures",
"label": "Counting Function"
},
{
"@id": "cxs:types/structural/Sieve",
"@type": "StructuralType",
"comment": "Selection mechanism",
"label": "Sieve"
},
{
"@id": "cxs:constants",
"@type": "ConstantsContainer",
"contains": [
"cxs:constants/c",
"cxs:constants/q",
"cxs:constants/pentality",
"cxs:constants/septality",
"cxs:constants/pariah",
"cxs:constants/happy",
"cxs:constants/J",
"cxs:constants/B",
"cxs:constants/sporadic",
"cxs:constants/h1",
"cxs:constants/C_9_2",
"cxs:constants/C_10_2",
"cxs:constants/K",
"cxs:constants/L",
"cxs:constants/M",
"cxs:constants/N"
],
"label": "Constants",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:constants/c",
"@type": "DerivedConstant",
"formula": "T × O",
"label": "Leech Dimension",
"symbol": "c",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 24
}
},
{
"@id": "cxs:constants/q",
"@type": "DerivedConstant",
"formula": "O / 2",
"label": "Quaternion Embedding",
"symbol": "q",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 4
}
},
{
"@id": "cxs:constants/pentality",
"@type": "DerivedConstant",
"formula": "O - T",
"label": "Pentality",
"symbol": "pentality",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 5
}
},
{
"@id": "cxs:constants/septality",
"@type": "DerivedConstant",
"formula": "T + q",
"label": "Septality",
"symbol": "septality",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 7
}
},
{
"@id": "cxs:constants/pariah",
"@type": "DerivedConstant",
"formula": "c / q",
"label": "Pariah",
"symbol": "pariah",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 6
}
},
{
"@id": "cxs:constants/happy",
"@type": "DerivedConstant",
"formula": "c - q",
"label": "Happy Number",
"symbol": "happy",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 20
}
},
{
"@id": "cxs:constants/J",
"@type": "DerivedConstant",
"formula": "T^T",
"label": "Jordan Dimension",
"symbol": "J",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 27
}
},
{
"@id": "cxs:constants/B",
"@type": "DerivedConstant",
"formula": "2^pentality",
"label": "Boolean Lattice",
"symbol": "B",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 32
}
},
{
"@id": "cxs:constants/sporadic",
"@type": "DerivedConstant",
"formula": "happy + pariah",
"label": "Sporadic Count",
"symbol": "sporadic",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 26
}
},
{
"@id": "cxs:constants/h1",
"@type": "DerivedConstant",
"formula": "happy - 1",
"label": "H1 Constant",
"symbol": "h1",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 19
}
},
{
"@id": "cxs:constants/C_9_2",
"@type": "DerivedConstant",
"formula": "T² × (T² - 1) / 2",
"label": "Octave Correction (Triality²)",
"symbol": "C(T²,2)",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 36
}
},
{
"@id": "cxs:constants/C_10_2",
"@type": "DerivedConstant",
"formula": "(O + 2) × (O + 1) / 2",
"label": "Octave Correction (Tonic Dominant)",
"symbol": "C(O+2,2)",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 45
}
},
{
"@id": "cxs:constants/K",
"@type": "DerivedConstant",
"formula": "J + O",
"label": "Extended Jordan",
"symbol": "K",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 35
}
},
{
"@id": "cxs:constants/L",
"@type": "DerivedConstant",
"formula": "K + pentality",
"label": "Extended L",
"symbol": "L",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 40
}
},
{
"@id": "cxs:constants/M",
"@type": "DerivedConstant",
"formula": "L + pariah",
"label": "Extended M",
"symbol": "M",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 46
}
},
{
"@id": "cxs:constants/N",
"@type": "DerivedConstant",
"formula": "M + septality",
"label": "Extended N",
"symbol": "N",
"yieldsValue": {
"@type": "xsd:integer",
"@value": 53
}
},
{
"@id": "cxs:octaves/beta_O",
"@type": "OctaveCocycle",
"baseCocycle": "H³(Z₂³, k×)",
"comment": "Fundamental octave cocycle from Bott periodicity",
"label": "Octave Cocycle",
"period": 8
},
{
"@id": "cxs:octaves/constants/C_8_2",
"@type": "OctaveConstants",
"formula": "8 choose 2",
"hasValue": 28,
"label": "C(8,2)"
},
{
"@id": "cxs:octaves/constants/C_9_2",
"@type": "OctaveConstants",
"formula": "9 choose 2",
"hasValue": 36,
"label": "C(9,2)"
},
{
"@id": "cxs:octaves/constants/C_10_2",
"@type": "OctaveConstants",
"formula": "10 choose 2",
"hasValue": 45,
"label": "C(10,2)"
},
{
"@id": "cxs:octaves/0",
"@type": "NamedOctave",
"index": 0,
"label": "Named",
"range": "0-7",
"twist": "Trivial"
},
{
"@id": "cxs:octaves/1",
"@type": "NamedOctave",
"index": 1,
"label": "Extended",
"range": "8-15",
"twist": "Twisted (β_O)"
},
{
"@id": "cxs:octaves/2",
"@type": "NamedOctave",
"index": 2,
"label": "Channel",
"range": "16-23",
"twist": "Trivial"
},
{
"@id": "cxs:octaves/3",
"@type": "NamedOctave",
"index": 3,
"label": "Boundary",
"range": "24-31",
"twist": "Twisted (β_O)"
},
{
"@id": "cxs:proofs/theorems/triality_theorem",
"@type": "Theorem",
"comment": "The cube of D(5) satisfies the triality identity",
"label": "Triality Theorem",
"statement": "D(5)³ = 435,691,903,941"
},
{
"@id": "cxs:proofs/theorems/leech_dimension_theorem",
"@type": "Theorem",
"comment": "The Leech lattice dimension equals the product of axioms",
"label": "Leech Dimension Theorem",
"statement": "dim(Leech) = T × O = 24"
},
{
"@id": "cxs:proofs/main",
"@type": "Proof",
"label": "Main Categorical X Proof",
"proofStep": [
"cxs:proofs/steps/1",
"cxs:proofs/steps/2",
"cxs:proofs/steps/3",
"cxs:proofs/steps/4",
"cxs:proofs/steps/5",
"cxs:proofs/steps/6",
"cxs:proofs/steps/7"
],
"proves": "cxs:proofs/theorems/triality_theorem"
},
{
"@id": "cxs:proofs/steps/1",
"@type": "ProofStep",
"assertion": "T = 3 and O = 8 are the fundamental axioms",
"justification": "By definition",
"stepNumber": 1
},
{
"@id": "cxs:proofs/steps/2",
"@type": "ProofStep",
"assertion": "c = T × O = 24",
"justification": "Direct computation",
"stepNumber": 2
},
{
"@id": "cxs:proofs/steps/3",
"@type": "ProofStep",
"assertion": "D(4) = 168 = 7 × 24 = septality × c",
"justification": "Antichain counting + factorization",
"stepNumber": 3
},
{
"@id": "cxs:proofs/steps/4",
"@type": "ProofStep",
"assertion": "D(5) = 7581",
"justification": "Antichain enumeration on 2^[5]",
"stepNumber": 4
},
{
"@id": "cxs:proofs/steps/5",
"@type": "ProofStep",
"assertion": "D(5)³ = 435,691,903,941",
"justification": "Direct computation",
"stepNumber": 5
},
{
"@id": "cxs:proofs/steps/6",
"@type": "ProofStep",
"assertion": "dim(Leech) = 24 = c",
"justification": "Lattice theory",
"stepNumber": 6
},
{
"@id": "cxs:proofs/steps/7",
"@type": "ProofStep",
"assertion": "The triality theorem holds",
"justification": "Verified by computation",
"stepNumber": 7
},
{
"@id": "cxs:instances/lattices/booleanLattice",
"@type": "LatticeInstance",
"comment": "Power set lattice 2^[n]",
"label": "Boolean Lattice"
},
{
"@id": "cxs:instances/lattices/divisibilityLattice",
"@type": "LatticeInstance",
"comment": "Lattice of divisors",
"label": "Divisibility Lattice"
},
{
"@id": "cxs:instances/lattices/subgroupLattice",
"@type": "LatticeInstance",
"comment": "Lattice of subgroups",
"label": "Subgroup Lattice"
},
{
"@id": "cxs:instances/filters/antichainFilter",
"@type": "FilterInstance",
"comment": "Filter of antichains in boolean lattice",
"label": "Antichain Filter"
},
{
"@id": "cxs:instances/filters/coprimeFilter",
"@type": "FilterInstance",
"comment": "Filter of coprime pairs",
"label": "Coprime Filter"
},
{
"@id": "cxs:instances/filters/maximalFilter",
"@type": "FilterInstance",
"comment": "Filter of maximal elements",
"label": "Maximal Filter"
},
{
"@id": "cxs:instances/sieves/eratosthenesSieve",
"@type": "SieveInstance",
"comment": "Classical prime sieve",
"label": "Eratosthenes Sieve"
},
{
"@id": "cxs:instances/sieves/antichainSieve",
"@type": "SieveInstance",
"comment": "Sieve for antichain counting",
"label": "Antichain Sieve"
},
{
"@id": "cxs:instances/sieves/modularSieve",
"@type": "SieveInstance",
"comment": "Sieve based on modular conditions",
"label": "Modular Sieve"
},
{
"@id": "cxs:baseCases/value0",
"@type": "BaseCaseValue",
"forLevel": 0,
"hasAssertion": "cxs:sequences/dedekind/entry/0",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value1",
"@type": "BaseCaseValue",
"forLevel": 1,
"hasAssertion": "cxs:sequences/dedekind/entry/1",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value2",
"@type": "BaseCaseValue",
"forLevel": 2,
"hasAssertion": "cxs:sequences/dedekind/entry/2",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value3",
"@type": "BaseCaseValue",
"forLevel": 3,
"hasAssertion": "cxs:sequences/dedekind/entry/3",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value4",
"@type": "BaseCaseValue",
"forLevel": 4,
"hasAssertion": "cxs:sequences/dedekind/entry/4",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value5",
"@type": "BaseCaseValue",
"forLevel": 5,
"hasAssertion": "cxs:sequences/dedekind/entry/5",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value6",
"@type": "BaseCaseValue",
"forLevel": 6,
"hasAssertion": "cxs:sequences/dedekind/entry/6",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value7",
"@type": "BaseCaseValue",
"forLevel": 7,
"hasAssertion": "cxs:sequences/dedekind/entry/7",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value8",
"@type": "BaseCaseValue",
"forLevel": 8,
"hasAssertion": "cxs:sequences/dedekind/entry/8",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value9",
"@type": "BaseCaseValue",
"forLevel": 9,
"hasAssertion": "cxs:sequences/dedekind/entry/9",
"status": "ComputedExact"
},
{
"@id": "cxs:baseCases/value10",
"@type": "BaseCaseValue",
"forLevel": 10,
"hasValue": "derived"
},
{
"@id": "cxs:baseCases/value11",
"@type": "BaseCaseValue",
"forLevel": 11,
"hasValue": "derived"
},
{
"@id": "cxs:baseCases/value12",
"@type": "BaseCaseValue",
"forLevel": 12,
"hasValue": "derived"
},
{
"@id": "cxs:baseCases/value13",
"@type": "BaseCaseValue",
"forLevel": 13,
"hasValue": "derived"
},
{
"@id": "cxs:baseCases/value14",
"@type": "BaseCaseValue",
"forLevel": 14,
"hasValue": "derived"
},
{
"@id": "cxs:derivations/mul_rule",
"@type": "DerivationRule",
"formula": "(a, b) → a × b",
"label": "Multiplication Rule"
},
{
"@id": "cxs:derivations/div_rule",
"@type": "DerivationRule",
"formula": "(a, b) → a / b",
"label": "Division Rule"
},
{
"@id": "cxs:derivations/pow_rule",
"@type": "DerivationRule",
"formula": "(a, b) → a^b",
"label": "Power Rule"
},
{
"@id": "cxs:derivations/add_rule",
"@type": "DerivationRule",
"formula": "(a, b) → a + b",
"label": "Addition Rule"
},
{
"@id": "cxs:derivations/sub_rule",
"@type": "DerivationRule",
"formula": "(a, b) → a - b",
"label": "Subtraction Rule"
},
{
"@id": "cxs:derivations/compose_rule",
"@type": "DerivationRule",
"formula": "(f, g) → f ∘ g",
"label": "Composition Rule"
},
{
"@id": "cxs:derivations/phase_rule",
"@type": "DerivationRule",
"formula": "n → phase(n)",
"label": "Phase Rule"
},
{
"@id": "cxs:derivations/dim_rule",
"@type": "DerivationRule",
"formula": "n → 2^n",
"label": "Dimension Rule"
},
{
"@id": "cxs:derivations/aut_rule",
"@type": "DerivationRule",
"formula": "n → (n-1) × 7",
"label": "Automorphism Rule"
},
{
"@id": "cxs:derivations/cocycle_rule",
"@type": "DerivationRule",
"formula": "n → H^n",
"label": "Cocycle Rule"
},
{
"@id": "cxs:primitives/operations/sub",
"@type": "DerivedOperation",
"basedOn": "cxs:primitives/operations/add",
"label": "Subtraction",
"symbol": "-"
},
{
"@id": "cxm:meta",
"@type": "MetaContainer",
"comment": "Container for TypeConstructors and functors that enable generative derivation from axioms T=3 and O=8.",
"hasPart": [
"cxm:constructors",
"cxm:functors"
],
"label": "Meta (Generative Constructs)"
},
{
"@id": "cxm:constructors",
"@type": "TypeConstructorsContainer",
"comment": "Mechanisms that generate RDF instances dynamically from axiom-derived formulas.",
"contains": [
"cxm:constructors/levelGenerator",
"cxm:constructors/transitionGenerator",
"cxm:constructors/stratumGenerator",
"cxm:constructors/phaseModificationGenerator"
],
"label": "Type Constructors"
},
{
"@id": "cxm:constructors/levelGenerator",
"@type": "TypeConstructor",
"comment": "Generates tower level properties for any n >= 0 from axioms T=3 and O=8. Eliminates the need for static TOWER_LEVELS array.",
"constructionRules": [
{
"@id": "cxm:constructors/levelGenerator/rules/level_id"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_index"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_dimension"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_algebra_symbol"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_algebra_name"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_loses_property"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_automorphism_group"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_automorphism_dimension"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_cocycle"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_octave_twist"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_correction_coefficient"
}
],
"generatesType": {
"@id": "cx:TowerLevel"
},
"hasParameter": {
"@type": "ParameterSpec",
"parameterCondition": "n >= 0",
"parameterDomain": "NonNegativeInteger",
"parameterVariable": "n"
},
"label": "Tower Level Generator"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_id",
"@type": "ConstructionRule",
"comment": "Unique identifier for level n",
"constructionFormula": "cxs:tower/levels/{n}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "IRI template"
},
"targetField": "@id"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_index",
"@type": "ConstructionRule",
"comment": "Level index",
"constructionFormula": "n",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "direct parameter"
},
"targetField": "levelIndex"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_dimension",
"@type": "ConstructionRule",
"comment": "Dimension doubles with each level (Cayley-Dickson construction)",
"constructionFormula": "2^n",
"hasDerivationSource": {
"@type": "DerivationSource",
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "cx:hasDimension"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_algebra_symbol",
"@type": "ConstructionRule",
"comment": "Algebra symbol cycles with period 8 (octave)",
"constructionFormula": "ALGEBRA_SYMBOLS[n % 8]",
"hasDerivationSource": {
"@type": "DerivationSource",
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "algebra"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_algebra_name",
"@type": "ConstructionRule",
"comment": "Algebra name with octave extension",
"constructionFormula": "ALGEBRA_NAMES[n % 8] or 'Extended-' prefix for n >= 8",
"hasDerivationSource": {
"@type": "DerivationSource",
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "label"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_loses_property",
"@type": "ConstructionRule",
"comment": "Property lost at this level in Cayley-Dickson tower",
"constructionFormula": "PROPERTY_LOSS[n] for n in [1,5], None otherwise",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "losesProperty"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_automorphism_group",
"@type": "ConstructionRule",
"comment": "Automorphism group for level n",
"constructionFormula": "automorphism_group_name(n)",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "cx:hasAutomorphismGroup"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_automorphism_dimension",
"@type": "ConstructionRule",
"comment": "Automorphism dimension formula: (n-1) * septality where septality = O-1 = 7",
"constructionFormula": "(n-1) * 7 for n >= 4; special cases for n < 4",
"hasDerivationSource": {
"@type": "DerivationSource",
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "automorphismDimension"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_cocycle",
"@type": "ConstructionRule",
"comment": "Cohomology class for level n",
"constructionFormula": "H^n(Z_2^(n-1), k^x)",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "cx:hasCocycle"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_octave_twist",
"@type": "ConstructionRule",
"comment": "Bott periodicity twist: trivial for even octaves, non-trivial for odd",
"constructionFormula": "beta_O^(floor(n/8) mod 2)",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "cx:hasOctaveTwist"
},
{
"@id": "cxm:constructors/levelGenerator/rules/level_correction_coefficient",
"@type": "ConstructionRule",
"comment": "Octave correction coefficient for extended levels",
"constructionFormula": "C(n,2) via recurrence for n >= 8",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "cx:hasCorrectionCoefficient"
},
{
"@id": "cxm:constructors/transitionGenerator",
"@type": "TypeConstructor",
"comment": "Generates tower transitions (doubling functors) for any n >= 0. Each transition is an instance of the Cayley-Dickson construction.",
"constructionRules": [
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_id"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_label"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_source"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_target"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_formula"
}
],
"generatesType": {
"@id": "cx:TowerTransition"
},
"hasParameter": {
"@type": "ParameterSpec",
"parameterCondition": "n >= 0",
"parameterDomain": "NonNegativeInteger",
"parameterVariable": "n"
},
"label": "Tower Transition Generator"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_id",
"@type": "ConstructionRule",
"comment": "Unique identifier for transition n -> n+1",
"constructionFormula": "cxs:tower/transitions/phi_{n}{n+1}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "IRI template"
},
"targetField": "@id"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_label",
"@type": "ConstructionRule",
"comment": "Transition label",
"constructionFormula": "phi_{n,n+1}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "transition label"
},
"targetField": "label"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_source",
"@type": "ConstructionRule",
"comment": "Source level reference",
"constructionFormula": "cxs:tower/levels/{n}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "source level reference"
},
"targetField": "sourceLevel"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_target",
"@type": "ConstructionRule",
"comment": "Target level reference",
"constructionFormula": "cxs:tower/levels/{n+1}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "target level reference"
},
"targetField": "targetLevel"
},
{
"@id": "cxm:constructors/transitionGenerator/rules/transition_formula",
"@type": "ConstructionRule",
"comment": "Cayley-Dickson doubling formula",
"constructionFormula": "Cayley-Dickson(A_n) for n >= 3; explicit for n < 3",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "formula"
},
{
"@id": "cxm:constructors/stratumGenerator",
"@type": "TypeConstructor",
"comment": "Generates strata groupings based on level index. Strata cycle with period 8 due to octave periodicity.",
"constructionRules": [
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_id"
},
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_name"
},
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_levels"
},
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_role"
}
],
"generatesType": {
"@id": "cx:Stratum"
},
"hasParameter": {
"@type": "ParameterSpec",
"parameterCondition": "n >= 0",
"parameterDomain": "NonNegativeInteger",
"parameterVariable": "n"
},
"label": "Stratum Generator"
},
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_id",
"@type": "ConstructionRule",
"comment": "Unique identifier for stratum containing level n",
"constructionFormula": "cxs:tower/strata/{stratum_name(n)}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "IRI template"
},
"targetField": "@id"
},
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_name",
"@type": "ConstructionRule",
"comment": "Stratum name based on level grouping with period 8",
"constructionFormula": "stratum_name(n): Extension(0-2), Intension(3-4), Comprehension(5-7), Ground(8+k*8)",
"hasDerivationSource": {
"@type": "DerivationSource",
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "label"
},
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_levels",
"@type": "ConstructionRule",
"comment": "Levels contained in this stratum",
"constructionFormula": "levels_in_stratum(stratum_name)",
"hasDerivationSource": {
"@type": "DerivationSource",
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "levels"
},
{
"@id": "cxm:constructors/stratumGenerator/rules/stratum_role",
"@type": "ConstructionRule",
"comment": "Role description for the stratum",
"constructionFormula": "role_description(stratum_name)",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "stratum role"
},
"targetField": "role"
},
{
"@id": "cxm:constructors/phaseModificationGenerator",
"@type": "TypeConstructor",
"comment": "Generates phase modifications for operators at arbitrary levels. Phase behavior is derived from tower structure and octave periodicity.",
"constructionRules": [
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_id"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_operator"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_target_level"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_phase"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_formula"
}
],
"generatesType": {
"@id": "cx:PhaseModification"
},
"hasParameter": {
"@type": "ParameterSpec",
"parameterCondition": "level >= 3",
"parameterDomain": "Operator × NonNegativeInteger",
"parameterVariable": "operator, level"
},
"label": "Phase Modification Generator"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_id",
"@type": "ConstructionRule",
"comment": "Unique identifier for phase modification",
"constructionFormula": "cxs:phases/modifications/{operator}_{level}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "IRI template"
},
"targetField": "@id"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_operator",
"@type": "ConstructionRule",
"comment": "Reference to operator being modified",
"constructionFormula": "cxs:operators/{operator}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "operator reference"
},
"targetField": "operator"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_target_level",
"@type": "ConstructionRule",
"comment": "Reference to target level",
"constructionFormula": "cxs:tower/levels/{level}",
"hasDerivationSource": {
"@type": "DerivationSource",
"constructionFormula": "target level reference"
},
"targetField": "targetLevel"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_phase",
"@type": "ConstructionRule",
"comment": "Phase behavior at this level",
"constructionFormula": "phase_for_level(level)",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "phase"
},
{
"@id": "cxm:constructors/phaseModificationGenerator/rules/phase_mod_formula",
"@type": "ConstructionRule",
"comment": "Operator behavior formula at this phase",
"constructionFormula": "operator_phase_formula(operator, level)",
"hasDerivationSource": {
"@type": "DerivationSource",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"targetField": "formula"
},
{
"@id": "cxm:functors",
"@type": "ConstructorFunctorsContainer",
"comment": "Morphisms between TypeConstructors (endofunctors and transformations).",
"contains": [
"cxm:functors/recursiveDoubling",
"cxm:functors/octavePeriodicity",
"cxm:functors/trialityFunctor"
],
"label": "Constructor Functors"
},
{
"@id": "cxm:functors/recursiveDoubling",
"@type": "ConstructorFunctor",
"comment": "The Cayley-Dickson doubling as an endofunctor on generated levels. This is the fundamental construction that builds all tower levels from the reals.",
"functorFormula": "D_n: Level(n) -> Level(n+1); dim(D_n(L)) = 2 * dim(L)",
"functorSource": {
"@id": "cxm:constructors/levelGenerator"
},
"functorTarget": {
"@id": "cxm:constructors/levelGenerator"
},
"label": "Recursive Doubling Functor"
},
{
"@id": "cxm:functors/octavePeriodicity",
"@type": "ConstructorFunctor",
"comment": "Bott periodicity with period 8. Level n+8 is isomorphic to level n tensored with the octave cocycle β_O.",
"functorFormula": "B_8: Level(n) -> Level(n+8); B_8^2 = id (mod twist)",
"functorSource": {
"@id": "cxm:constructors/levelGenerator"
},
"functorTarget": {
"@id": "cxm:constructors/levelGenerator"
},
"label": "Octave Periodicity Functor"
},
{
"@id": "cxm:functors/trialityFunctor",
"@type": "ConstructorFunctor",
"comment": "Order-3 automorphism from triality (T=3). Active at level 3 (octonions) and above. Permutes the three 8-dimensional representations of Spin(8).",
"functorFormula": "τ: Level(n) -> Level(n) for n >= 3; τ^3 = id",
"functorSource": {
"@id": "cxm:constructors/levelGenerator"
},
"functorTarget": {
"@id": "cxm:constructors/levelGenerator"
},
"label": "Triality Functor"
},
{
"@id": "cxs:sequences/dedekind",
"@type": "CountingSequence",
"codomain": "naturals",
"comment": "Counts antichains in the power set lattice 2^[n]. Computed via categorical composition of Power, Subobject, and Cardinality functors.",
"formula": "|{A ⊆ P^n : antichain(A)}|",
"label": "Dedekind Numbers",
"oeisId": "A000372"
},
{
"@id": "cxs:sequences/catalan",
"@type": "CountingSequence",
"codomain": "naturals",
"comment": "Counts full binary trees with n+1 leaves. Arises from associahedra in monoidal coherence.",
"formula": "(2n)!/((n+1)! × n!)",
"label": "Catalan Numbers",
"oeisId": "A000108"
},
{
"@id": "cxs:sequences/dedekind/entry/0",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(0)",
"sequenceIndex": 0,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/1",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(1)",
"sequenceIndex": 1,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/2",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(2)",
"sequenceIndex": 2,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/3",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(3)",
"sequenceIndex": 3,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/4",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(4)",
"sequenceIndex": 4,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/5",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(5)",
"sequenceIndex": 5,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/6",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(6)",
"sequenceIndex": 6,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/7",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(7)",
"sequenceIndex": 7,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/8",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(8)",
"sequenceIndex": 8,
"status": "ComputedExact"
},
{
"@id": "cxs:sequences/dedekind/entry/9",
"@type": "SequenceEntry",
"hasAssertion": "cxs:sequences/dedekind",
"label": "D(9)",
"sequenceIndex": 9,
"status": "ComputedExact"
},
{
"@id": "cxs:numeric/domains/naturals",
"@type": "NumericDomain",
"comment": "Non-negative integers {0, 1, 2, ...}. The canonical counting domain.",
"embedsInto": {
"@id": "cxs:numeric/domains/integers"
},
"isDiscrete": true,
"isOrdered": true,
"label": "Natural Numbers",
"symbol": "ℕ"
},
{
"@id": "cxs:numeric/domains/integers",
"@type": "NumericDomain",
"comment": "Signed integers {..., -2, -1, 0, 1, 2, ...}.",
"embedsInto": {
"@id": "cxs:numeric/domains/rationals"
},
"isDiscrete": true,
"isOrdered": true,
"label": "Integers",
"symbol": "ℤ"
},
{
"@id": "cxs:numeric/domains/rationals",
"@type": "NumericDomain",
"comment": "Fractions p/q where p, q ∈ ℤ and q ≠ 0.",
"embedsInto": {
"@id": "cxs:numeric/domains/reals"
},
"isDiscrete": false,
"isOrdered": true,
"label": "Rational Numbers",
"symbol": "ℚ"
},
{
"@id": "cxs:numeric/domains/reals",
"@type": "NumericDomain",
"comment": "Complete ordered field. Tower Level 0 algebra.",
"embedsInto": {
"@id": "cxs:numeric/domains/complex"
},
"isDiscrete": false,
"isOrdered": true,
"label": "Real Numbers",
"symbol": "ℝ"
},
{
"@id": "cxs:numeric/domains/complex",
"@type": "NumericDomain",
"comment": "Field extension ℝ[i] where i² = -1. Tower Level 1 algebra.",
"isDiscrete": false,
"isOrdered": false,
"label": "Complex Numbers",
"symbol": "ℂ"
},
{
"@id": "cxs:numerals/systems/decimal",
"@type": [
"NumeralSystem",
"PositionalSystem"
],
"comment": "Standard base-10 positional notation.",
"hasRadix": 10,
"label": "Decimal"
},
{
"@id": "cxs:numerals/systems/binary",
"@type": [
"NumeralSystem",
"PositionalSystem"
],
"comment": "Base-2 positional notation.",
"hasRadix": 2,
"label": "Binary"
},
{
"@id": "cxs:numerals/systems/hexadecimal",
"@type": [
"NumeralSystem",
"PositionalSystem"
],
"comment": "Base-16 positional notation.",
"hasRadix": 16,
"label": "Hexadecimal"
},
{
"@id": "cxs:numerals/systems/mod96crt",
"@type": [
"NumeralSystem",
"MixedRadixSystem"
],
"comment": "Chinese Remainder Theorem representation for mod-96 arithmetic. Uses radices [32, 3] where 32 × 3 = 96.",
"hasRadices": "32,3",
"label": "Mod-96 CRT"
},
{
"@id": "cxs:numerals/systems/continuedFraction",
"@type": [
"NumeralSystem",
"NonPositionalSystem"
],
"comment": "Representation as [a0; a1, a2, ...] where value = a0 + 1/(a1 + 1/(a2 + ...)). Used for transcendental constants.",
"label": "Continued Fraction"
},
{
"@id": "cxs:numerals/digitSets/decimal-digits",
"@type": "DigitSet",
"cardinality": 10,
"label": "Decimal Digits",
"symbols": "0123456789"
},
{
"@id": "cxs:numerals/digitSets/binary-digits",
"@type": "DigitSet",
"cardinality": 2,
"label": "Binary Digits",
"symbols": "01"
},
{
"@id": "cxs:numerals/digitSets/hexadecimal-digits",
"@type": "DigitSet",
"cardinality": 16,
"label": "Hexadecimal Digits",
"symbols": "0123456789ABCDEF"
},
{
"@id": "cxs:numerals/digitSets/mod32-digits",
"@type": "DigitSet",
"cardinality": 32,
"label": "Mod-32 Digits",
"symbols": "0-31 (integer range)"
},
{
"@id": "cxs:numerals/conversions/binary-to-decimal",
"@type": "ConversionMorphism",
"comment": "Standard binary to decimal conversion.",
"label": "binary → decimal",
"source": "cxs:numerals/systems/binary",
"target": "cxs:numerals/systems/decimal"
},
{
"@id": "cxs:numerals/conversions/decimal-to-mod96crt",
"@type": "ConversionMorphism",
"comment": "Convert decimal to CRT representation: (n mod 32, n mod 3).",
"label": "decimal → mod96crt",
"source": "cxs:numerals/systems/decimal",
"target": "cxs:numerals/systems/mod96crt"
},
{
"@id": "cxs:numerals/conversions/mod96crt-to-decimal",
"@type": "ConversionMorphism",
"comment": "Reconstruct decimal from CRT using Chinese Remainder Theorem.",
"label": "mod96crt → decimal",
"source": "cxs:numerals/systems/mod96crt",
"target": "cxs:numerals/systems/decimal"
},
{
"@id": "cxs:precision/contexts/arbitrary",
"@type": [
"PrecisionContext",
"ArbitraryPrecisionContext"
],
"comment": "Unbounded precision for exact computation.",
"label": "Arbitrary Precision"
},
{
"@id": "cxs:precision/contexts/mod96",
"@type": [
"PrecisionContext",
"FixedPrecisionContext"
],
"comment": "Fixed mod-96 arithmetic. Values in [0, 95].",
"label": "Mod-96 Residue",
"precisionBits": 7,
"roundingMode": "TowardZero"
},
{
"@id": "cxs:precision/contexts/ieee754-single",
"@type": [
"PrecisionContext",
"FixedPrecisionContext"
],
"comment": "IEEE 754 single precision (32-bit float).",
"exponentMax": 127,
"exponentMin": -126,
"label": "IEEE 754 Single",
"precisionBits": 24,
"precisionDigits": 7,
"roundingMode": "TiesToEven"
},
{
"@id": "cxs:precision/contexts/ieee754-double",
"@type": [
"PrecisionContext",
"FixedPrecisionContext"
],
"comment": "IEEE 754 double precision (64-bit float).",
"exponentMax": 1023,
"exponentMin": -1022,
"label": "IEEE 754 Double",
"precisionBits": 53,
"precisionDigits": 15,
"roundingMode": "TiesToEven"
},
{
"@id": "cxs:precision/contexts/u128",
"@type": [
"PrecisionContext",
"FixedPrecisionContext"
],
"comment": "Fixed 128-bit unsigned integer.",
"label": "128-bit Unsigned Integer",
"precisionBits": 128,
"precisionDigits": 39,
"roundingMode": "TowardZero"
},
{
"@id": "cxs:precision/roundingModes/TiesToEven",
"@type": "RoundingMode",
"label": "Round to Nearest (Ties to Even)"
},
{
"@id": "cxs:precision/roundingModes/TiesToAway",
"@type": "RoundingMode",
"label": "Round to Nearest (Ties Away)"
},
{
"@id": "cxs:precision/roundingModes/TowardZero",
"@type": "RoundingMode",
"label": "Round Toward Zero"
},
{
"@id": "cxs:precision/roundingModes/TowardPositive",
"@type": "RoundingMode",
"label": "Round Toward Positive Infinity"
},
{
"@id": "cxs:precision/roundingModes/TowardNegative",
"@type": "RoundingMode",
"label": "Round Toward Negative Infinity"
},
{
"@id": "cxm:derivationLevels",
"@type": "DerivationLevelsContainer",
"comment": "Self-describing derivation hierarchy for categorical extensions",
"contains": [
"cxm:derivationLevels/axiom",
"cxm:derivationLevels/derivedConstant",
"cxm:derivationLevels/formula",
"cxm:derivationLevels/construction",
"cxm:derivationLevels/extension"
],
"label": "Derivation Levels"
},
{
"@id": "cxm:derivationLevels/axiom",
"@type": "DerivationLevel",
"canDeriveFrom": [],
"comment": "Foundational axioms T=3 (triality) and O=8 (octave dimension)",
"derivationDepth": 0,
"label": "Axiom",
"validationRule": "value ∈ {T=3, O=8}"
},
{
"@id": "cxm:derivationLevels/derivedConstant",
"@type": "DerivationLevel",
"canDeriveFrom": [
{
"@id": "cxm:derivationLevels/axiom"
}
],
"comment": "Constants derived directly from axioms (c=24, pentality=5, septality=7)",
"derivationDepth": 1,
"label": "Derived Constant",
"validationRule": "∃ formula f: f(T,O) = value"
},
{
"@id": "cxm:derivationLevels/formula",
"@type": "DerivationLevel",
"canDeriveFrom": [
{
"@id": "cxm:derivationLevels/axiom"
},
{
"@id": "cxm:derivationLevels/derivedConstant"
}
],
"comment": "Formulas using axioms and derived constants (2^n, (n-1)*7)",
"derivationDepth": 2,
"label": "Formula",
"validationRule": "∀ free variables v: v traceable to axiom or derivedConstant"
},
{
"@id": "cxm:derivationLevels/construction",
"@type": "DerivationLevel",
"canDeriveFrom": [
{
"@id": "cxm:derivationLevels/axiom"
},
{
"@id": "cxm:derivationLevels/derivedConstant"
},
{
"@id": "cxm:derivationLevels/formula"
}
],
"comment": "TypeConstructor outputs (tower levels, transitions)",
"derivationDepth": 3,
"label": "Construction",
"validationRule": "TypeConstructor output with all rules traced"
},
{
"@id": "cxm:derivationLevels/extension",
"@type": "DerivationLevel",
"canDeriveFrom": [
{
"@id": "cxm:derivationLevels/axiom"
},
{
"@id": "cxm:derivationLevels/derivedConstant"
},
{
"@id": "cxm:derivationLevels/formula"
},
{
"@id": "cxm:derivationLevels/construction"
}
],
"comment": "New projections, operators, correspondences",
"derivationDepth": 4,
"label": "Extension",
"validationRule": "Extension with complete derivation chain"
},
{
"@id": "cxm:extensionPoints",
"@type": "ExtensionPointsContainer",
"comment": "Categorical extension points for self-describing extensibility",
"contains": [
"cxm:extensionPoints/projectionExtensionPoint",
"cxm:extensionPoints/operatorExtensionPoint",
"cxm:extensionPoints/correspondenceExtensionPoint",
"cxm:extensionPoints/numericDomainExtensionPoint"
],
"label": "Extension Points"
},
{
"@id": "cxm:extensionPoints/projectionExtensionPoint",
"@type": "ExtensionPoint",
"codomainCategory": "TargetDomain",
"comment": "Extension point for adding new projections with phase coherence",
"domainCategory": "CategoricalX",
"extendsConstructor": [
{
"@id": "cxm:constructors/projectionGenerator"
}
],
"hasCompositionLaw": [
{
"@id": "cxm:compositionLaws/functoriality"
},
{
"@id": "cxm:compositionLaws/identity"
}
],
"label": "Projection Extension Point",
"maxDerivationLevel": 4,
"requiredAxioms": [
"T",
"O"
],
"structureKind": "Functor"
},
{
"@id": "cxm:extensionPoints/operatorExtensionPoint",
"@type": "ExtensionPoint",
"codomainCategory": "CategoricalX",
"comment": "Extension point for adding new categorical operators",
"domainCategory": "CategoricalX",
"extendsConstructor": [
{
"@id": "cxm:constructors/operatorGenerator"
}
],
"hasCompositionLaw": [
{
"@id": "cxm:compositionLaws/functoriality"
},
{
"@id": "cxm:compositionLaws/identity"
},
{
"@id": "cxm:compositionLaws/associativity"
}
],
"label": "Operator Extension Point",
"maxDerivationLevel": 4,
"requiredAxioms": [
"T",
"O"
],
"structureKind": "Endofunctor"
},
{
"@id": "cxm:extensionPoints/correspondenceExtensionPoint",
"@type": "ExtensionPoint",
"codomainCategory": "Projection",
"comment": "Extension point for adding correspondences between projections",
"domainCategory": "Projection",
"extendsConstructor": [
{
"@id": "cxm:constructors/correspondenceGenerator"
}
],
"hasCompositionLaw": [
{
"@id": "cxm:compositionLaws/naturality"
}
],
"label": "Correspondence Extension Point",
"maxDerivationLevel": 4,
"requiredAxioms": [
"T",
"O"
],
"structureKind": "NaturalTransformation"
},
{
"@id": "cxm:extensionPoints/numericDomainExtensionPoint",
"@type": "ExtensionPoint",
"codomainCategory": "NumericDomain",
"comment": "Extension point for adding numeric domains to the embedding chain",
"domainCategory": "NumericDomain",
"extendsConstructor": [
{
"@id": "cxm:constructors/numericDomainGenerator"
}
],
"hasCompositionLaw": [
{
"@id": "cxm:compositionLaws/functoriality"
}
],
"label": "Numeric Domain Extension Point",
"maxDerivationLevel": 3,
"requiredAxioms": [
"O"
],
"structureKind": "Functor"
},
{
"@id": "cxm:compositionLaws",
"@type": "CompositionLawsContainer",
"comment": "Categorical composition laws that extensions must preserve",
"contains": [
"cxm:compositionLaws/associativity",
"cxm:compositionLaws/identity",
"cxm:compositionLaws/functoriality",
"cxm:compositionLaws/naturality",
"cxm:compositionLaws/triangleIdentity",
"cxm:compositionLaws/monadAssociativity",
"cxm:compositionLaws/monadUnit"
],
"label": "Composition Laws"
},
{
"@id": "cxm:compositionLaws/associativity",
"@type": "CompositionLaw",
"appliesTo": [
"Functor",
"Endofunctor"
],
"comment": "Morphism composition is associative",
"expression": "(f ∘ g) ∘ h = f ∘ (g ∘ h)",
"label": "Associativity"
},
{
"@id": "cxm:compositionLaws/identity",
"@type": "CompositionLaw",
"appliesTo": [
"Functor",
"Endofunctor"
],
"comment": "Functors preserve identity morphisms",
"expression": "F(id_A) = id_F(A)",
"label": "Identity Preservation"
},
{
"@id": "cxm:compositionLaws/functoriality",
"@type": "CompositionLaw",
"appliesTo": [
"Functor",
"Endofunctor"
],
"comment": "Functors preserve composition",
"expression": "F(g ∘ f) = F(g) ∘ F(f)",
"label": "Functoriality"
},
{
"@id": "cxm:compositionLaws/naturality",
"@type": "CompositionLaw",
"appliesTo": [
"NaturalTransformation"
],
"comment": "Natural transformation components commute with morphisms",
"expression": "G(f) ∘ η_A = η_B ∘ F(f)",
"label": "Naturality"
},
{
"@id": "cxm:compositionLaws/triangleIdentity",
"@type": "CompositionLaw",
"appliesTo": [
"Adjunction"
],
"comment": "Adjunction unit and counit satisfy triangle identities",
"expression": "(ε_F) ∘ (F η) = id_F",
"label": "Triangle Identity"
},
{
"@id": "cxm:compositionLaws/monadAssociativity",
"@type": "CompositionLaw",
"appliesTo": [
"Monad"
],
"comment": "Monad multiplication is associative",
"expression": "μ ∘ T(μ) = μ ∘ μ_T",
"label": "Monad Associativity"
},
{
"@id": "cxm:compositionLaws/monadUnit",
"@type": "CompositionLaw",
"appliesTo": [
"Monad"
],
"comment": "Monad unit is identity for multiplication",
"expression": "μ ∘ T(η) = μ ∘ η_T = id",
"label": "Monad Unit Laws"
},
{
"@id": "cxm:universalProperties",
"@type": "UniversalPropertiesContainer",
"comment": "Universal properties defining objects by their mapping properties",
"contains": [
"cxm:universalProperties/towerLevelUP",
"cxm:universalProperties/projectionUP",
"cxm:universalProperties/correspondenceUP"
],
"label": "Universal Properties"
},
{
"@id": "cxm:universalProperties/towerLevelUP",
"@type": "UniversalProperty",
"comment": "Tower levels are free constructions via Cayley-Dickson doubling",
"diagramShape": "Level(n) -> Level(n+1)",
"existenceCondition": "∀ algebra A with dim=2^n, ∃ D_n(A) with dim=2^(n+1)",
"hasDerivationSource": {
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"inCategory": "NormedDivisionAlgebra",
"label": "Tower Level Universal Property",
"uniquenessCondition": "D_n(A) is unique up to isomorphism",
"universalArrow": "Cayley-Dickson doubling: D_n",
"universalPropertyKind": "Free"
},
{
"@id": "cxm:universalProperties/projectionUP",
"@type": "UniversalProperty",
"comment": "Projections are left adjoints to inclusion functors",
"diagramShape": "CategoricalX -> TargetCategory",
"existenceCondition": "∀ target T, ∃ unique factorization through π",
"hasDerivationSource": {
"sourceSecondOrder": "T,O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"inCategory": "CAT",
"label": "Projection Universal Property",
"uniquenessCondition": "π is unique up to natural isomorphism",
"universalArrow": "π: Categorical X -> Target",
"universalPropertyKind": "LeftAdjoint"
},
{
"@id": "cxm:universalProperties/correspondenceUP",
"@type": "UniversalProperty",
"comment": "Correspondences are pullbacks (limits) of projection spans",
"diagramShape": "Span(Projection, Projection)",
"existenceCondition": "∀ projections P₁, P₂, ∃ correspondence C",
"hasDerivationSource": {
"sourceSecondOrder": "T,O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"inCategory": "CAT",
"label": "Correspondence Universal Property",
"uniquenessCondition": "C is universal among spans",
"universalArrow": "pullback square",
"universalPropertyKind": "Limit"
},
{
"@id": "cxm:freeConstructions",
"@type": "FreeConstructionsContainer",
"comment": "Free constructions generating minimal structures via universal property",
"contains": [
"cxm:freeConstructions/freeAlgebra",
"cxm:freeConstructions/freeProjection"
],
"label": "Free Constructions"
},
{
"@id": "cxm:freeConstructions/freeAlgebra",
"@type": "FreeConstruction",
"baseStructure": "Set",
"comment": "Free normed division algebra. Constrained by O=8: only R, C, H, O exist",
"forgetfulFunctor": "underlyingSet",
"hasDerivationSource": {
"sourceFirstOrder": "O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"label": "Free Normed Division Algebra",
"satisfiesUniversalProperty": {
"@id": "cxm:universalProperties/towerLevelUP"
},
"targetCategory": "NormedDivisionAlgebra"
},
{
"@id": "cxm:freeConstructions/freeProjection",
"@type": "FreeConstruction",
"baseStructure": "Category",
"comment": "Free projection functor from Categorical X",
"forgetfulFunctor": "underlyingCategory",
"hasDerivationSource": {
"sourceSecondOrder": "T,O",
"tracesToAxiom": [
{
"@id": "cxs:axioms/U"
},
{
"@id": "cxs:axioms/D"
}
]
},
"label": "Free Projection",
"satisfiesUniversalProperty": {
"@id": "cxm:universalProperties/projectionUP"
},
"targetCategory": "Projection"
},
{
"@id": "cxs:derivation-chains",
"@type": "DerivationChainsContainer",
"comment": "Concrete derivation chains proving values trace back to axioms T=3, O=8",
"contains": [
"cxs:derivation-chains/0",
"cxs:derivation-chains/1",
"cxs:derivation-chains/2",
"cxs:derivation-chains/3",
"cxs:derivation-chains/4",
"cxs:derivation-chains/5"
],
"label": "Derivation Chains"
},
{
"@id": "cxs:derivation-chains/c",
"@type": "DerivationChain",
"isValid": true,
"label": "C Derivation Chain",
"produces": "C",
"steps": [
{
"dependsOn": [
"T",
"O"
],
"produces": "C",
"via": "Formula(\"C = T × O = 3 × 8 = 24\")"
}
],
"terminalAxioms": [
"T",
"O"
]
},
{
"@id": "cxs:derivation-chains/q",
"@type": "DerivationChain",
"isValid": true,
"label": "Q Derivation Chain",
"produces": "Q",
"steps": [
{
"dependsOn": [
"T"
],
"produces": "Q",
"via": "Formula(\"Q = 2^(T-1) = 2^2 = 4\")"
}
],
"terminalAxioms": [
"T"
]
},
{
"@id": "cxs:derivation-chains/d4",
"@type": "DerivationChain",
"isValid": true,
"label": "D4 Derivation Chain",
"produces": "D(4)",
"steps": [
{
"dependsOn": [
"T",
"O"
],
"produces": "C",
"via": "Formula(\"C = T × O = 24\")"
},
{
"dependsOn": [
"O"
],
"produces": "SEPTALITY",
"via": "Formula(\"SEPTALITY = O - 1 = 7\")"
},
{
"dependsOn": [
"C",
"SEPTALITY"
],
"produces": "D(4)",
"via": "Formula(\"D(4) = SEPTALITY × C = 7 × 24 = 168\")"
}
],
"terminalAxioms": [
"T",
"O"
]
},
{
"@id": "cxs:derivation-chains/d7",
"@type": "DerivationChain",
"isValid": true,
"label": "D7 Derivation Chain",
"produces": "D(7)",
"steps": [
{
"dependsOn": [
"T",
"O"
],
"produces": "Ω_{2,3,5,7}",
"via": "Formula(\"Gauge extension via E_5, E_7 functors\")"
},
{
"dependsOn": [
"Ω_{2,3,5,7}"
],
"produces": "cf(7)",
"via": "RuntimeConstruct(\"SpectralCoherence.cofactor(7)\")"
},
{
"dependsOn": [
"cf(7)",
"Ω_{2,3,5,7}"
],
"produces": "D(7)",
"via": "RuntimeConstruct(\"Hub.compute_dedekind(7)\")"
}
],
"terminalAxioms": [
"T",
"O"
]
},
{
"@id": "cxs:derivation-chains/d8",
"@type": "DerivationChain",
"isValid": true,
"label": "D8 Derivation Chain",
"produces": "D(8)",
"steps": [
{
"dependsOn": [
"T",
"O"
],
"produces": "D(7)",
"via": "RuntimeConstruct(\"Hub.compute_dedekind(7)\")"
},
{
"dependsOn": [
"D(7)"
],
"produces": "E_11",
"via": "Formula(\"E_11: Ω_7 → Ω_8 extension functor\")"
},
{
"dependsOn": [
"D(7)",
"E_11"
],
"produces": "D(8)",
"via": "RuntimeConstruct(\"TransferDecomposition.extend(7, 11)\")"
}
],
"terminalAxioms": [
"T",
"O"
]
},
{
"@id": "cxs:derivation-chains/d9",
"@type": "DerivationChain",
"isValid": true,
"label": "D9 Derivation Chain",
"produces": "D(9)",
"steps": [
{
"dependsOn": [
"T",
"O"
],
"produces": "D(8)",
"via": "RuntimeConstruct(\"TransferDecomposition.extend(7, 11)\")"
},
{
"dependsOn": [
"D(8)"
],
"produces": "E_13",
"via": "Formula(\"E_13: Ω_8 → Ω_9 extension functor\")"
},
{
"dependsOn": [
"D(8)",
"E_13"
],
"produces": "D(9)",
"via": "RuntimeConstruct(\"TransferDecomposition.extend(8, 13)\")"
}
],
"terminalAxioms": [
"T",
"O"
]
},
{
"@id": "cxm:extensions",
"@type": "ExtensionsContainer",
"comment": "Container for concrete extensions implementing extension points",
"contains": [
"cxs:extensions/arithmeticProjectionExtension",
"cxs:extensions/tensorOperatorExtension",
"cxs:extensions/spectralArithmeticExtension"
],
"label": "Extensions"
},
{
"@id": "cxs:extensions/arithmeticProjectionExtension",
"@type": "Extension",
"comment": "Projects categorical structure to prime/divisibility structures",
"derivationChain": {
"steps": [
{
"dependsOn": [
"T",
"O"
],
"produces": "ArithmeticProjection",
"via": "RuntimeConstruct(\"ArithmeticProjection.evaluate\")"
}
],
"terminalAxioms": [
"T",
"O"
]
},
"implements": {
"@id": "cxm:extensionPoints/projectionExtensionPoint"
},
"label": "Arithmetic Projection Extension",
"morphismMapping": "Maps morphisms to divisibility-preserving maps",
"objectMapping": "Maps categorical objects to prime distributions",
"providesConstructors": [
"ArithmeticProjectionConstructor"
],
"structureKind": "Functor",
"verificationStatus": "Verified"
},
{
"@id": "cxs:extensions/tensorOperatorExtension",
"@type": "Extension",
"comment": "Provides tensor product as categorical operator",
"derivationChain": {
"steps": [
{
"dependsOn": [
"O"
],
"produces": "TensorOperator",
"via": "Formula(\"Tensor structure from division algebra hierarchy\")"
}
],
"terminalAxioms": [
"O"
]
},
"implements": {
"@id": "cxm:extensionPoints/operatorExtensionPoint"
},
"label": "Tensor Operator Extension",
"morphismMapping": "Maps (f, g) to f ⊗ g",
"objectMapping": "Maps (A, B) to A ⊗ B",
"providesConstructors": [
"TensorConstruct"
],
"structureKind": "Endofunctor",
"verificationStatus": "Verified"
},
{
"@id": "cxs:extensions/spectralArithmeticExtension",
"@type": "Extension",
"comment": "Connects spectral eigenvalues to prime distributions via explicit formula",
"derivationChain": {
"steps": [
{
"dependsOn": [
"T",
"O"
],
"produces": "SpectralProjection",
"via": "RuntimeConstruct(\"SpectralProjection.evaluate\")"
},
{
"dependsOn": [
"T",
"O"
],
"produces": "ArithmeticProjection",
"via": "RuntimeConstruct(\"ArithmeticProjection.evaluate\")"
},
{
"dependsOn": [
"SpectralProjection",
"ArithmeticProjection"
],
"produces": "SpectralArithmeticCorrespondence",
"via": "Formula(\"ψ(x) = x - Σ_ρ x^ρ/ρ (explicit formula)\")"
}
],
"terminalAxioms": [
"T",
"O"
]
},
"implements": {
"@id": "cxm:extensionPoints/correspondenceExtensionPoint"
},
"label": "Spectral-Arithmetic Correspondence Extension",
"morphismMapping": null,
"objectMapping": null,
"providesConstructors": [
"CorrespondenceConstruct"
],
"structureKind": "NaturalTransformation",
"verificationStatus": "Verified"
},
{
"@id": "cxs:universal/operator",
"@type": "UniversalOperator",
"comment": "Categorical limit of gauge extensions with spectral eigenvalue structure",
"eigenvalueSpectrum": {
"leadingDominant": {
"derivation": "SEPTALITY = 7, mult = T - 1 = 2",
"multiplicity": 2,
"value": 7
},
"leadingSubdominant": {
"derivation": "-1, mult = (T-1)(O-1) = 14",
"multiplicity": 14,
"value": -1
},
"tonicDominant": {
"derivation": "O + 2 = 10",
"multiplicity": 1,
"value": 10
},
"tonicSubdominant": {
"derivation": "2, mult = O - 1 = 7",
"multiplicity": 7,
"value": 2
}
},
"label": "Universal Operator M_∞",
"spectralData": {
"eigenvalues": [
{
"multiplicity": 1,
"role": "TonicDominant",
"value": 10
},
{
"multiplicity": 7,
"role": "TonicSubdominant",
"value": 2
},
{
"multiplicity": 2,
"role": "LeadingDominant",
"value": 7
},
{
"multiplicity": 14,
"role": "LeadingSubdominant",
"value": -1
}
],
"gammaValues": [
{
"formula": "ln(λ₁/λ₃)",
"id": "γ₁",
"numeric": 0.3567,
"symbolic": "ln(10/7)"
},
{
"formula": "ln(λ₁/λ₂)",
"id": "γ₂",
"numeric": 1.6094,
"symbolic": "ln(5)"
},
{
"formula": "ln(λ₃/λ₂)",
"id": "γ₃",
"numeric": 1.2528,
"symbolic": "ln(7/2)"
},
{
"formula": "ln(C)",
"id": "γ₄",
"numeric": 3.1781,
"symbolic": "ln(24)"
}
],
"spectralRadius": 10
},
"spectralDimension": 24,
"trace": 24,
"traceDerivation": "1×10 + 7×2 + 2×7 + 14×(-1) = 10 + 14 + 14 - 14 = 24 = C"
},
{
"@id": "cxs:universal/gauge-tower",
"@type": "GaugeTower",
"comment": "Directed system of gauge extensions {2,3}→{2,3,5}→...",
"label": "Gauge Tower",
"maxLevel": 5
},
{
"@id": "cxs:universal/gauge-tower/level-0",
"@type": "GaugeLevel",
"boundary": 12288,
"index": 0,
"label": "Gauge Level 0",
"modulus": 96,
"partOf": "cxs:universal/gauge-tower",
"primes": [
2,
3
]
},
{
"@id": "cxs:universal/gauge-tower/level-1",
"@type": "GaugeLevel",
"boundary": 61440,
"index": 1,
"label": "Gauge Level 1",
"modulus": 480,
"partOf": "cxs:universal/gauge-tower",
"primes": [
2,
3,
5
]
},
{
"@id": "cxs:universal/gauge-tower/level-2",
"@type": "GaugeLevel",
"boundary": 430080,
"index": 2,
"label": "Gauge Level 2",
"modulus": 3360,
"partOf": "cxs:universal/gauge-tower",
"primes": [
2,
3,
5,
7
]
},
{
"@id": "cxs:universal/gauge-tower/level-3",
"@type": "GaugeLevel",
"boundary": 4730880,
"index": 3,
"label": "Gauge Level 3",
"modulus": 36960,
"partOf": "cxs:universal/gauge-tower",
"primes": [
2,
3,
5,
7,
11
]
},
{
"@id": "cxs:universal/gauge-tower/level-4",
"@type": "GaugeLevel",
"boundary": 61501440,
"index": 4,
"label": "Gauge Level 4",
"modulus": 480480,
"partOf": "cxs:universal/gauge-tower",
"primes": [
2,
3,
5,
7,
11,
13
]
},
{
"@id": "cxs:universal/gauge-tower/level-5",
"@type": "GaugeLevel",
"boundary": 1045524480,
"index": 5,
"label": "Gauge Level 5",
"modulus": 8168160,
"partOf": "cxs:universal/gauge-tower",
"primes": [
2,
3,
5,
7,
11,
13,
17
]
},
{
"@id": "cxs:universal/spectral-triple",
"@type": "SpectralTriple",
"altSpecDim": 480,
"comment": "AltSpec × ZDSpec × JordSpec composition structure",
"jordSpecDim": 27,
"label": "Spectral Triple",
"totalDim": 522,
"zdSpecDim": 15
},
{
"@id": "cxs:universal/spectral-primes/2549",
"@type": "SpectralPrime",
"appearsIn": {
"level": 8,
"position": 6
},
"derivation": "(2 × PENTALITY²)² + SEPTALITY² = (2×25)² + 7² = 50² + 49",
"derivationStatus": "axiom",
"label": "Spectral Prime 2549",
"mod96": 53,
"quadraticForm": "50² + 49",
"value": 2549
},
{
"@id": "cxs:universal/spectral-primes/431",
"@type": "SpectralPrime",
"appearsIn": {
"level": 9,
"position": 6
},
"derivation": "(T × SEPTALITY)² - TONIC_DOMINANT = (3×7)² - 10 = 21² - 10",
"derivationStatus": "axiom",
"label": "Spectral Prime 431",
"mod96": 47,
"quadraticForm": "21² - 10",
"value": 431
},
{
"@id": "cxs:universal/spectral-primes/467",
"@type": "SpectralPrime",
"appearsIn": {
"level": 9,
"position": 7
},
"derivation": "(2(O + T))² - (TD + SEPTALITY) = (2×11)² - 17 = 22² - 17",
"derivationStatus": "axiom",
"label": "Spectral Prime 467",
"mod96": 83,
"quadraticForm": "22² - 17",
"value": 467
},
{
"@id": "cxs:universal/spectral-primes/641579",
"@type": "SpectralPrime",
"appearsIn": {
"level": 9,
"position": 7
},
"derivation": "(T²(T⁴ + O))² - 2(O + T) = (9×89)² - 22 = 801² - 22",
"derivationStatus": "axiom",
"label": "Spectral Prime 641579",
"mod96": 11,
"quadraticForm": "801² - 22",
"value": 641579
},
{
"@id": "cxs:universal/spectral-primes/1171",
"@type": "SpectralPrime",
"appearsIn": {
"level": 9,
"position": 0
},
"derivation": "(J + SEPTALITY)² + ZD_SPEC_DIM = (27 + 7)² + 15 = 34² + 15",
"derivationStatus": "axiom",
"label": "Spectral Prime 1171",
"mod96": 19,
"quadraticForm": "34² + 15",
"value": 1171
},
{
"@id": "cxs:universal/spectral-primes/12401",
"@type": "SpectralPrime",
"appearsIn": {
"level": 9,
"position": 0
},
"derivation": "(R + ZD_SPEC_DIM)² + Q × HAPPY = (96 + 15)² + 4 × 20 = 111² + 80",
"derivationStatus": "axiom",
"label": "Spectral Prime 12401",
"mod96": 17,
"quadraticForm": "111² + 80",
"value": 12401
},
{
"@id": "cxs:universal/phase-bridges/401",
"@type": "PhaseBridge",
"derivation": "(2×TD)² + 1 = 20² + 1",
"label": "Phase Bridge 401",
"linksPhases": [
"Overtone",
"Tonic"
],
"value": 401
},
{
"@id": "cxs:universal/phase-bridges/433",
"@type": "PhaseBridge",
"derivation": "Q²×J + 1 = 16×27 + 1",
"label": "Phase Bridge 433",
"linksPhases": [
"Tonic",
"Jordan"
],
"value": 433
},
{
"@id": "cxs:diagrams/limit",
"@type": "Limit",
"comment": "Categorical limit representing the universal property of M_∞",
"label": "Universal Limit",
"overDiagram": "cxs:universal/gauge-tower"
},
{
"@id": "cxs:diagrams/cocone",
"@type": "Cone",
"apex": "cxs:universal/operator",
"base": "cxs:universal/gauge-tower",
"comment": "Cocone over the gauge tower directed system",
"label": "Gauge Cocone"
},
{
"@id": "cxs:universal/functors",
"@type": "FunctorsContainer",
"comment": "Gauge extension functors E_p forming morphisms in the gauge tower",
"contains": [
"cxs:universal/functors/E5",
"cxs:universal/functors/E7",
"cxs:universal/functors/E11",
"cxs:universal/functors/E13",
"cxs:universal/functors/E17"
],
"label": "Extension Functors"
},
{
"@id": "cxs:universal/functors/E5",
"@type": "ExtensionFunctor",
"boundaryScale": 5,
"comment": "Extension functor adding prime 5 to the gauge",
"extensionPrime": 5,
"extensionSource": "cxs:universal/gauge-tower/level-0",
"extensionTarget": "cxs:universal/gauge-tower/level-1",
"label": "E_5: Ω_{2,3} → Ω_{2,3,5}",
"resonanceFactor": 5
},
{
"@id": "cxs:universal/functors/E7",
"@type": "ExtensionFunctor",
"boundaryScale": 7,
"comment": "Extension functor adding prime 7 to the gauge",
"extensionPrime": 7,
"extensionSource": "cxs:universal/gauge-tower/level-1",
"extensionTarget": "cxs:universal/gauge-tower/level-2",
"label": "E_7: Ω_{2,3,5} → Ω_{2,3,5,7}",
"resonanceFactor": 7
},
{
"@id": "cxs:universal/functors/E11",
"@type": "ExtensionFunctor",
"boundaryScale": 11,
"comment": "Extension functor adding prime 11 to the gauge",
"extensionPrime": 11,
"extensionSource": "cxs:universal/gauge-tower/level-2",
"extensionTarget": "cxs:universal/gauge-tower/level-3",
"label": "E_11: Ω_{2,3,5,7} → Ω_{2,3,5,7,11}",
"resonanceFactor": 11
},
{
"@id": "cxs:universal/functors/E13",
"@type": "ExtensionFunctor",
"boundaryScale": 13,
"comment": "Extension functor adding prime 13 to the gauge",
"extensionPrime": 13,
"extensionSource": "cxs:universal/gauge-tower/level-3",
"extensionTarget": "cxs:universal/gauge-tower/level-4",
"label": "E_13: Ω_{2,3,5,7,11} → Ω_{2,3,5,7,11,13}",
"resonanceFactor": 13
},
{
"@id": "cxs:universal/functors/E17",
"@type": "ExtensionFunctor",
"boundaryScale": 17,
"comment": "Extension functor adding prime 17 to the gauge",
"extensionPrime": 17,
"extensionSource": "cxs:universal/gauge-tower/level-4",
"extensionTarget": "cxs:universal/gauge-tower/level-5",
"label": "E_17: Ω_{2,3,5,7,11,13} → Ω_{2,3,5,7,11,13,17}",
"resonanceFactor": 17
},
{
"@id": "cxs:universal/index-categories",
"@type": "IndexCategoriesContainer",
"comment": "Shape categories for categorical diagrams",
"contains": [
"cxs:universal/index-categories/nat-indexed",
"cxs:universal/index-categories/triality-indexed",
"cxs:universal/index-categories/finite-linear"
],
"label": "Index Categories"
},
{
"@id": "cxs:universal/index-categories/nat-indexed",
"@type": "IndexCategory",
"comment": "Natural number indexing for gauge tower levels",
"indexingScheme": "ω (first infinite ordinal)",
"label": "ℕ-indexed"
},
{
"@id": "cxs:universal/index-categories/triality-indexed",
"@type": "IndexCategory",
"comment": "ℤ/3ℤ-indexed for triality phases (Tonic, LeadingTone, Overtone)",
"indexingScheme": "ℤ/3ℤ (cyclic group of order 3)",
"label": "Triality-indexed"
},
{
"@id": "cxs:universal/index-categories/finite-linear",
"@type": "IndexCategory",
"comment": "Finite ordinal indexing for bounded computations",
"indexingScheme": "[n] (finite ordinal)",
"label": "Finite Linear"
},
{
"@id": "cxs:universal/projections",
"@type": "LimitProjectionsContainer",
"comment": "Canonical projections from universal limit to gauge levels",
"contains": [
"cxs:universal/projections/pi0",
"cxs:universal/projections/pi1",
"cxs:universal/projections/pi2",
"cxs:universal/projections/pi3",
"cxs:universal/projections/pi4",
"cxs:universal/projections/pi5"
],
"label": "Limit Projections"
},
{
"@id": "cxs:universal/projections/pi0",
"@type": "LimitProjection",
"comment": "Projection to base gauge level",
"label": "π₀: M_∞ → Ω_{2,3}",
"projectionSource": "cxs:universal/operator",
"projectionTarget": "cxs:universal/gauge-tower/level-0"
},
{
"@id": "cxs:universal/projections/pi1",
"@type": "LimitProjection",
"comment": "Projection to first extended gauge level",
"label": "π₁: M_∞ → Ω_{2,3,5}",
"projectionSource": "cxs:universal/operator",
"projectionTarget": "cxs:universal/gauge-tower/level-1"
},
{
"@id": "cxs:universal/projections/pi2",
"@type": "LimitProjection",
"comment": "Projection to second extended gauge level",
"label": "π₂: M_∞ → Ω_{2,3,5,7}",
"projectionSource": "cxs:universal/operator",
"projectionTarget": "cxs:universal/gauge-tower/level-2"
},
{
"@id": "cxs:universal/projections/pi3",
"@type": "LimitProjection",
"comment": "Projection to third extended gauge level",
"label": "π₃: M_∞ → Ω_{2,3,5,7,11}",
"projectionSource": "cxs:universal/operator",
"projectionTarget": "cxs:universal/gauge-tower/level-3"
},
{
"@id": "cxs:universal/projections/pi4",
"@type": "LimitProjection",
"comment": "Projection to fourth extended gauge level",
"label": "π₄: M_∞ → Ω_{2,3,5,7,11,13}",
"projectionSource": "cxs:universal/operator",
"projectionTarget": "cxs:universal/gauge-tower/level-4"
},
{
"@id": "cxs:universal/projections/pi5",
"@type": "LimitProjection",
"comment": "Projection to fifth extended gauge level",
"label": "π₅: M_∞ → Ω_{2,3,5,7,11,13,17}",
"projectionSource": "cxs:universal/operator",
"projectionTarget": "cxs:universal/gauge-tower/level-5"
},
{
"@id": "cxs:gauges",
"@type": "GaugesContainer",
"comment": "Finite gauge structures for Dedekind hierarchy computation",
"contains": [
"cxs:gauges/omega_2_3",
"cxs:gauges/omega_2_3_5",
"cxs:gauges/omega_2_3_5_7"
],
"label": "Gauges",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:gauges/omega_2_3",
"@type": "Gauge",
"comment": "Base gauge for D(0)-D(9)",
"coversRange": [
0,
9
],
"label": "Ω_{2,3}",
"primes": [
2,
3
],
"rank": 2
},
{
"@id": "cxs:gauges/omega_2_3_5",
"@type": "Gauge",
"comment": "Extended gauge for D(10)-D(14)",
"coversRange": [
10,
14
],
"extendsGauge": "cxs:gauges/omega_2_3",
"label": "Ω_{2,3,5}",
"primes": [
2,
3,
5
],
"rank": 3
},
{
"@id": "cxs:gauges/omega_2_3_5_7",
"@type": "Gauge",
"comment": "Further extended gauge for D(15)-D(19)",
"coversRange": [
15,
19
],
"extendsGauge": "cxs:gauges/omega_2_3_5",
"label": "Ω_{2,3,5,7}",
"primes": [
2,
3,
5,
7
],
"rank": 4
},
{
"@id": "cxs:hubs",
"@type": "HubsContainer",
"comment": "Hub boundaries for categorical state management",
"contains": [
"cxs:hubs/base",
"cxs:hubs/extended"
],
"label": "Hubs",
"partOf": "cxs:CategoricalX"
},
{
"@id": "cxs:hubs/base",
"@type": "Hub",
"capacity": 10,
"comment": "Hub for D(0)-D(9) computation within Ω_{2,3}",
"gauge": "cxs:gauges/omega_2_3",
"label": "Base Hub"
},
{
"@id": "cxs:hubs/extended",
"@type": "Hub",
"capacity": 5,
"comment": "Hub for D(10)+ computation via gauge extension",
"extendsHub": "cxs:hubs/base",
"gauge": "cxs:gauges/omega_2_3_5",
"label": "Extended Hub"
},
{
"@id": "cxs:rules/projection-rules",
"@type": "RulesContainer",
"comment": "Numeric rules for computing gauge projections",
"contains": [
"cxs:rules/spectral-projection",
"cxs:rules/spectral-sum"
],
"label": "Projection Rules"
},
{
"@id": "cxs:rules/spectral-projection",
"@type": "NumericProjectionRule",
"eigenvalues": [
10,
2,
7,
-1
],
"formula": "πₖ(M_∞)(x) = S(n) / (n × ln(|Ω_k|))",
"gaugeBoundaries": [
{
"boundary": "12288",
"level": "level0"
},
{
"boundary": "61440",
"level": "level1"
},
{
"boundary": "430080",
"level": "level2"
},
{
"boundary": "4730880",
"level": "level3"
},
{
"boundary": "61501440",
"level": "level4"
},
{
"boundary": "1045524480",
"level": "level5"
}
],
"label": "Spectral Projection Formula",
"multiplicities": [
1,
7,
2,
14
],
"variables": {
"S(n)": "Spectral sum Σᵢ mᵢ λᵢⁿ",
"n": "log₁₀(x)",
"|Ω_k|": "Gauge boundary cardinality at level k"
}
},
{
"@id": "cxs:rules/spectral-sum",
"@type": "NumericRule",
"comment": "Sum over eigenvalues with multiplicities",
"formula": "S(n) = Σᵢ mᵢ × λᵢⁿ = 1×10ⁿ + 7×2ⁿ + 2×7ⁿ + 14×(-1)ⁿ",
"label": "Spectral Sum Formula",
"traceConnection": "S(1) = Trace = 24 = C"
},
{
"@id": "cxs:sequences/ground-truth",
"@type": "SequenceContainer",
"comment": "Reference sequences for spectral validation",
"contains": [
"cxs:sequences/prime-pi",
"cxs:sequences/chebyshev-psi",
"cxs:sequences/chebyshev-theta"
],
"label": "Ground Truth Sequences"
},
{
"@id": "cxs:sequences/prime-pi",
"@type": "GroundTruthSequence",
"formula": "π(x) = |{p ≤ x : p prime}|",
"label": "Prime Counting Function π(x)",
"oeis": "A000720",
"sampleValues": [
{
"value": 25,
"x": 100
},
{
"value": 168,
"x": 1000
},
{
"value": 1229,
"x": 10000
},
{
"value": 1472,
"x": 12288
},
{
"value": 6170,
"x": 61440
},
{
"value": 9592,
"x": 100000
}
]
},
{
"@id": "cxs:sequences/chebyshev-psi",
"@type": "GroundTruthSequence",
"comment": "Sum of log(p) over prime powers up to x",
"formula": "ψ(x) = Σ_{p^k ≤ x} ln(p)",
"label": "Chebyshev ψ Function",
"sampleValues": [
{
"value": 90.02,
"x": 100
},
{
"value": 998.49,
"x": 1000
},
{
"value": 10015.16,
"x": 10000
},
{
"value": 99986.93,
"x": 100000
}
]
},
{
"@id": "cxs:sequences/chebyshev-theta",
"@type": "GroundTruthSequence",
"comment": "Sum of log(p) over primes up to x",
"formula": "θ(x) = Σ_{p ≤ x} ln(p)",
"label": "Chebyshev θ Function",
"sampleValues": [
{
"value": 80.45,
"x": 100
},
{
"value": 976.72,
"x": 1000
},
{
"value": 9950.23,
"x": 10000
}
]
},
{
"@id": "cxs:assertions/falsifiable",
"@type": "AssertionsContainer",
"comment": "Testable claims about spectral model behavior",
"contains": [
"cxs:assertions/error-bound",
"cxs:assertions/trace-invariant",
"cxs:assertions/convergence"
],
"label": "Falsifiable Assertions"
},
{
"@id": "cxs:assertions/error-bound",
"@type": "FalsifiableAssertion",
"bound": 0.6,
"claim": "Error scaling exponent α < 0.6 for π(x) predictions",
"formula": "|π(x) - π_spec(x)| = O(x^α)",
"label": "Error Exponent Bound",
"rhConsistency": "α < 0.5 would imply RH-consistent error bounds",
"testMethod": "Linear regression on log-log plot of |error| vs x"
},
{
"@id": "cxs:assertions/trace-invariant",
"@type": "FalsifiableAssertion",
"claim": "Eigenvalue trace equals fundamental constant C",
"derivation": "C = T × O = 3 × 8 = 24",
"formula": "Σᵢ mᵢλᵢ = 1×10 + 7×2 + 2×7 + 14×(-1) = 24 = C",
"label": "Trace Invariant",
"value": 24,
"verifiable": true
},
{
"@id": "cxs:assertions/convergence",
"@type": "FalsifiableAssertion",
"claim": "Spectral predictions improve at higher gauge levels",
"formula": "error(k+1) / error(k) < 1 as gauge level k increases",
"label": "Gauge Convergence",
"testMethod": "Compare prediction errors across gauge boundaries"
},
{
"@id": "cxs:categories",
"@type": "CategoriesContainer",
"comment": "First-class category objects for type-checkable functorial semantics",
"contains": [
"cxs:categories/CAT",
"cxs:categories/Set",
"cxs:categories/Lat",
"cxs:categories/Spec",
"cxs:categories/Arith",
"cxs:categories/Mod"
],
"label": "Core Categories"
},
{
"@id": "cxs:categories/CAT",
"@type": "Category",
"comment": "The ambient 2-category containing all other categories as objects",
"composition": "Functor composition: (G ∘ F)(X) = G(F(X))",
"identity": "Identity functor: Id_C(X) = X, Id_C(f) = f",
"label": "Category of Small Categories",
"morphisms": "Functors between categories",
"objects": "Small categories (set-indexed objects and morphisms)"
},
{
"@id": "cxs:categories/Set",
"@type": "Category",
"comment": "Base category for most concrete constructions",
"composition": "Function composition: (g ∘ f)(x) = g(f(x))",
"identity": "Identity function: id_X(x) = x",
"label": "Category of Sets",
"morphisms": "Functions between sets",
"objects": "Sets (well-defined collections)"
},
{
"@id": "cxs:categories/Lat",
"@type": "Category",
"comment": "Target category for combinatorial projection",
"composition": "Standard function composition",
"identity": "Identity lattice homomorphism",
"label": "Category of Lattices",
"morphisms": "Lattice homomorphisms (preserving ∧ and ∨)",
"objects": "Lattices (partially ordered sets with meets and joins)"
},
{
"@id": "cxs:categories/Spec",
"@type": "Category",
"comment": "Target category for spectral projection; connected to zeta zeros",
"composition": "Spectral composition: eigenvalue-preserving",
"identity": "Identity spectral map",
"label": "Spectral Category",
"morphisms": "Spectral maps (preserving eigenvalue structure)",
"objects": "Spectral objects (eigenvalue data, spectral triples)"
},
{
"@id": "cxs:categories/Arith",
"@type": "Category",
"comment": "Target category for arithmetic projection; prime distributions",
"composition": "Standard composition respecting divisibility",
"identity": "Identity arithmetic morphism",
"label": "Arithmetic Category",
"morphisms": "Arithmetic morphisms (preserving prime structure)",
"objects": "Arithmetic objects (number-theoretic structures)"
},
{
"@id": "cxs:categories/Mod",
"@type": "Category",
"comment": "Target category for modular projection",
"composition": "Composition of modular operations",
"identity": "Identity modular morphism",
"label": "Category of Modular Forms",
"morphisms": "Modular form morphisms (Hecke operators, level-raising)",
"objects": "Modular forms of various levels and weights"
},
{
"@id": "cxs:functors/forget_lat",
"@type": "Functor",
"comment": "Canonical forgetful functor",
"functorType": "Forgetful",
"label": "Forgetful Functor (Lat → Set)",
"morphismMap": "Forgets preservation of ∧/∨, retains function",
"objectMap": "Forgets lattice structure, retains underlying set",
"sourceCategory": {
"@id": "cxs:categories/Lat"
},
"targetCategory": {
"@id": "cxs:categories/Set"
}
},
{
"@id": "cxs:functors/arith_embed",
"@type": "Functor",
"comment": "Enriches sets with number-theoretic data",
"functorType": "Covariant",
"label": "Arithmetic Embedding",
"morphismMap": "Functions that respect prime structure",
"objectMap": "Embeds set with arithmetic structure (prime labeling)",
"sourceCategory": {
"@id": "cxs:categories/Set"
},
"targetCategory": {
"@id": "cxs:categories/Arith"
}
},
{
"@id": "cxs:functors/spectral_functor",
"@type": "Functor",
"comment": "Key functor for spectral-arithmetic correspondence",
"functorType": "Contravariant",
"label": "Spectral Functor",
"morphismMap": "Dualizes to spectral morphisms",
"objectMap": "Extracts spectral data (zeta zeros, L-function data)",
"sourceCategory": {
"@id": "cxs:categories/Arith"
},
"targetCategory": {
"@id": "cxs:categories/Spec"
}
},
{
"@id": "cxs:functors/modular_functor",
"@type": "Functor",
"comment": "Connects lattice theory to modular forms",
"functorType": "Covariant",
"label": "Modular Functor",
"morphismMap": "Induced maps on theta series",
"objectMap": "Theta series: lattice → modular form",
"sourceCategory": {
"@id": "cxs:categories/Lat"
},
"targetCategory": {
"@id": "cxs:categories/Mod"
}
},
{
"@id": "cxs:functors/power_functor",
"@type": "Functor",
"comment": "Free lattice construction",
"functorType": "Covariant",
"label": "Power Set Functor",
"morphismMap": "f ↦ P(f) (direct/inverse image)",
"objectMap": "X ↦ P(X) (power set is a lattice)",
"sourceCategory": {
"@id": "cxs:categories/Set"
},
"targetCategory": {
"@id": "cxs:categories/Lat"
}
},
{
"@id": "cxs:gauge-projections",
"@type": "GaugeProjectionsContainer",
"comment": "Projections π_k: M_∞ → Ω_k for precision/resolution control",
"contains": [
"cxs:gauge-projections/pi_0",
"cxs:gauge-projections/pi_1",
"cxs:gauge-projections/pi_2",
"cxs:gauge-projections/pi_3",
"cxs:gauge-projections/pi_4",
"cxs:gauge-projections/pi_5"
],
"label": "Universal Gauge Projections"
},
{
"@id": "cxs:gauge-projections/pi_0",
"@type": "GaugeProjection",
"boundaryCardinality": 12288,
"comment": "Base gauge - sufficient for D(0)...D(9)",
"eigenvalueSelection": "phase_dependent: Tonic→λ₁=10, LeadingTone/Overtone→λ₂=7",
"label": "π_0",
"level": 0,
"precisionProfile": "mod-96 residue (7 bits effective)",
"projectionRule": "Modular reduction (mod 96) preserving T=3, O=8 structure",
"source": "M_∞",
"targetGauge": "Ω_{2,3}"
},
{
"@id": "cxs:gauge-projections/pi_1",
"@type": "GaugeProjection",
"boundaryCardinality": 61440,
"comment": "Extended gauge for D(10)...D(14)",
"eigenvalueSelection": "phase_dependent with PENTALITY=5 correction",
"label": "π_1",
"level": 1,
"precisionProfile": "mod-480 residue (9 bits effective)",
"projectionRule": "Modular reduction (mod 480) with prime 5 extension",
"source": "M_∞",
"targetGauge": "Ω_{2,3,5}"
},
{
"@id": "cxs:gauge-projections/pi_2",
"@type": "GaugeProjection",
"boundaryCardinality": 430080,
"comment": "Third tier gauge for D(15)...D(19)",
"eigenvalueSelection": "phase_dependent with SEPTALITY=7 resonance",
"label": "π_2",
"level": 2,
"precisionProfile": "mod-3360 residue (12 bits effective)",
"projectionRule": "Modular reduction (mod 3360) with SEPTALITY=7 extension",
"source": "M_∞",
"targetGauge": "Ω_{2,3,5,7}"
},
{
"@id": "cxs:gauge-projections/pi_3",
"@type": "GaugeProjection",
"boundaryCardinality": 4730880,
"comment": "Fourth tier gauge for D(20)...D(24)",
"eigenvalueSelection": "phase_dependent with prime 11 coverage",
"label": "π_3",
"level": 3,
"precisionProfile": "mod-36960 residue (16 bits effective)",
"projectionRule": "Modular reduction (mod 36960) with prime 11 extension",
"source": "M_∞",
"targetGauge": "Ω_{2,3,5,7,11}"
},
{
"@id": "cxs:gauge-projections/pi_4",
"@type": "GaugeProjection",
"boundaryCardinality": 61501440,
"comment": "Fifth tier gauge for D(25)...D(29)",
"eigenvalueSelection": "phase_dependent with primes {11,13} coverage",
"label": "π_4",
"level": 4,
"precisionProfile": "mod-480480 residue (19 bits effective)",
"projectionRule": "Modular reduction (mod 480480) with prime 13 extension",
"source": "M_∞",
"targetGauge": "Ω_{2,3,5,7,11,13}"
},
{
"@id": "cxs:gauge-projections/pi_5",
"@type": "GaugeProjection",
"boundaryCardinality": 1045524480,
"comment": "Sixth tier gauge for D(30)...D(34)",
"eigenvalueSelection": "phase_dependent with full spectral coverage",
"label": "π_5",
"level": 5,
"precisionProfile": "mod-8168160 residue (23 bits effective)",
"projectionRule": "Modular reduction (mod 8168160) with prime 17 extension",
"source": "M_∞",
"targetGauge": "Ω_{2,3,5,7,11,13,17}"
},
{
"@id": "cxs:gauge-bridges/omega_2_3",
"@type": "GaugeBridge",
"comment": "Base Atlas gauge is quotient by π₀",
"embeddingMap": "identity: Ω_{2,3} = M_∞/π₀",
"finiteGaugeId": "omega_2_3",
"isIsomorphism": true,
"label": "Bridge: omega_2_3 ↔ Level 0",
"universalLevel": 0
},
{
"@id": "cxs:gauge-bridges/omega_2_3_5",
"@type": "GaugeBridge",
"comment": "Extended gauge via pentality prime",
"embeddingMap": "extension: Ω_{2,3,5} = Ω_{2,3} ⊗ Z/5Z",
"finiteGaugeId": "omega_2_3_5",
"isIsomorphism": true,
"label": "Bridge: omega_2_3_5 ↔ Level 1",
"universalLevel": 1
},
{
"@id": "cxs:gauge-bridges/omega_2_3_5_7",
"@type": "GaugeBridge",
"comment": "Third tier via septality prime",
"embeddingMap": "extension: Ω_{2,3,5,7} = Ω_{2,3,5} ⊗ Z/7Z",
"finiteGaugeId": "omega_2_3_5_7",
"isIsomorphism": true,
"label": "Bridge: omega_2_3_5_7 ↔ Level 2",
"universalLevel": 2
},
{
"@id": "cxs:gauge-bridges/omega_2_3_5_7_11",
"@type": "GaugeBridge",
"comment": "Fourth tier via prime 11",
"embeddingMap": "extension: Ω_{2,3,5,7,11} = Ω_{2,3,5,7} ⊗ Z/11Z",
"finiteGaugeId": "omega_2_3_5_7_11",
"isIsomorphism": true,
"label": "Bridge: omega_2_3_5_7_11 ↔ Level 3",
"universalLevel": 3
},
{
"@id": "cxs:gauge-bridges/omega_2_3_5_7_11_13",
"@type": "GaugeBridge",
"comment": "Fifth tier via prime 13",
"embeddingMap": "extension: Ω_{2,3,5,7,11,13} = Ω_{2,3,5,7,11} ⊗ Z/13Z",
"finiteGaugeId": "omega_2_3_5_7_11_13",
"isIsomorphism": true,
"label": "Bridge: omega_2_3_5_7_11_13 ↔ Level 4",
"universalLevel": 4
},
{
"@id": "cxs:gauge-bridges/omega_2_3_5_7_11_13_17",
"@type": "GaugeBridge",
"comment": "Sixth tier via prime 17",
"embeddingMap": "extension: Ω_{2,3,5,7,11,13,17} = Ω_{2,3,5,7,11,13} ⊗ Z/17Z",
"finiteGaugeId": "omega_2_3_5_7_11_13_17",
"isIsomorphism": true,
"label": "Bridge: omega_2_3_5_7_11_13_17 ↔ Level 5",
"universalLevel": 5
},
{
"@id": "cxs:compositions/pi_0_arithmetic",
"@type": "ProjectionComposition",
"comment": "π₀ ∘ arithmetic: Prime counting with 12,288 boundary",
"compositionResult": "Gauge-truncated prime distribution at mod-96",
"domainProjection": "arithmetic",
"gaugeLevel": 0,
"label": "π_0 ∘ arithmetic"
},
{
"@id": "cxs:compositions/pi_0_spectral",
"@type": "ProjectionComposition",
"comment": "π₀ ∘ spectral: Eigenvalue sums with base eigenstructure",
"compositionResult": "Gauge-truncated spectral density at mod-96",
"domainProjection": "spectral",
"gaugeLevel": 0,
"label": "π_0 ∘ spectral"
},
{
"@id": "cxs:compositions/pi_1_arithmetic",
"@type": "ProjectionComposition",
"comment": "π₁ ∘ arithmetic: Prime counting with 61,440 boundary",
"compositionResult": "Gauge-truncated prime distribution at mod-480",
"domainProjection": "arithmetic",
"gaugeLevel": 1,
"label": "π_1 ∘ arithmetic"
},
{
"@id": "cxs:compositions/pi_1_spectral",
"@type": "ProjectionComposition",
"comment": "π₁ ∘ spectral: Eigenvalue sums with pentality extension",
"compositionResult": "Gauge-truncated spectral density at mod-480",
"domainProjection": "spectral",
"gaugeLevel": 1,
"label": "π_1 ∘ spectral"
},
{
"@id": "cxs:compositions/pi_2_arithmetic",
"@type": "ProjectionComposition",
"comment": "π₂ ∘ arithmetic: Prime counting with 430,080 boundary",
"compositionResult": "Gauge-truncated prime distribution at mod-3360",
"domainProjection": "arithmetic",
"gaugeLevel": 2,
"label": "π_2 ∘ arithmetic"
},
{
"@id": "cxs:compositions/pi_2_spectral",
"@type": "ProjectionComposition",
"comment": "π₂ ∘ spectral: Eigenvalue sums with septality resonance",
"compositionResult": "Gauge-truncated spectral density at mod-3360",
"domainProjection": "spectral",
"gaugeLevel": 2,
"label": "π_2 ∘ spectral"
},
{
"@id": "cxs:compositions/pi_2_combinatorial",
"@type": "ProjectionComposition",
"comment": "π₂ ∘ combinatorial: Dedekind enumeration D(15)...D(19)",
"compositionResult": "Gauge-truncated antichain counting at mod-3360",
"domainProjection": "combinatorial",
"gaugeLevel": 2,
"label": "π_2 ∘ combinatorial"
},
{
"@id": "cxs:compositions/pi_2_modular",
"@type": "ProjectionComposition",
"comment": "π₂ ∘ modular: Modular arithmetic with septality",
"compositionResult": "Gauge-truncated modular forms at mod-3360",
"domainProjection": "modular",
"gaugeLevel": 2,
"label": "π_2 ∘ modular"
},
{
"@id": "cxs:error-signatures",
"@type": "ErrorSignaturesContainer",
"comment": "Falsifiability contracts for computational validation",
"contains": [
"cxs:error-signatures/prime_counting_error",
"cxs:error-signatures/chebyshev_psi_error",
"cxs:error-signatures/dedekind_error",
"cxs:error-signatures/gauge_truncation_error"
],
"label": "Error Signatures"
},
{
"@id": "cxs:error-signatures/prime_counting_error",
"@type": "ErrorSignature",
"acceptCondition": "Normalized error bounded as x → ∞",
"comment": "Consistent with RH implies exponent α < 0.5; we accept α < 0.6",
"errorFormula": "E_π(x) = |π_spec(x) - π(x)|",
"failCondition": "Normalized error diverges or exceeds O(x^0.6)",
"label": "Prime Counting Error",
"normalization": "E_π(x) / (√x × log²x)",
"validatesCorrespondence": "spectralArithmetic"
},
{
"@id": "cxs:error-signatures/chebyshev_psi_error",
"@type": "ErrorSignature",
"acceptCondition": "E_ψ(x) = O(√x × log²x)",
"comment": "Direct measure of explicit formula accuracy",
"errorFormula": "E_ψ(x) = |ψ_spec(x) - ψ(x)|",
"failCondition": "E_ψ(x) grows faster than O(x^(1/2+ε)) for any ε > 0",
"label": "Chebyshev ψ Error",
"normalization": "E_ψ(x) / √x",
"validatesCorrespondence": "spectralArithmetic"
},
{
"@id": "cxs:error-signatures/dedekind_error",
"@type": "ErrorSignature",
"acceptCondition": "E_D(n) = 0 for computed values (exact)",
"comment": "Dedekind numbers must be exact integers; predictions are either correct or wrong",
"errorFormula": "E_D(n) = |D_pred(n) - D(n)|",
"failCondition": "Any nonzero error for verified D(n) values",
"label": "Dedekind Computation Error",
"normalization": "E_D(n) / D(n)",
"validatesCorrespondence": "dedekindPrime"
},
{
"@id": "cxs:error-signatures/gauge_truncation_error",
"@type": "ErrorSignature",
"acceptCondition": "E_k decreases monotonically as k increases",
"comment": "Gauge refinement should always improve precision",
"errorFormula": "E_k(n) = |π_k(M_∞)(n) - f(n)|",
"failCondition": "E_k fails to decrease or increases with k",
"label": "Gauge Truncation Error",
"normalization": "E_k(n) / |Ω_k|",
"validatesCorrespondence": "dedekindPrime"
},
{
"@id": "cxs:ground-truth/pi_x",
"@type": "GroundTruthSequence",
"comment": "Primary ground truth for spectral-arithmetic correspondence",
"formula": "π(x) = |{p ≤ x : p prime}|",
"label": "Prime Counting Function",
"source": "Computed exactly for x ≤ 10^27"
},
{
"@id": "cxs:ground-truth/psi_x",
"@type": "GroundTruthSequence",
"comment": "Sum of von Mangoldt function",
"formula": "ψ(x) = Σ_{p^k ≤ x} log(p)",
"label": "Chebyshev ψ Function",
"source": "Computed from prime powers"
},
{
"@id": "cxs:ground-truth/dedekind_n",
"@type": "GroundTruthSequence",
"comment": "Ground truth for combinatorial correspondence",
"formula": "D(n) = |{A ⊆ P^n : antichain(A)}|",
"label": "Dedekind Numbers",
"source": "OEIS A000372, computed for n ≤ 9"
},
{
"@id": "cxs:spectra",
"@type": "SpectraContainer",
"comment": "Eigenvalue structure per gauge level, connecting categorical structure to spectral predictions",
"contains": [
"cxs:spectra/level-0",
"cxs:spectra/level-1",
"cxs:spectra/level-2",
"cxs:spectra/level-3",
"cxs:spectra/level-4",
"cxs:spectra/level-5"
],
"label": "Spectra"
},
{
"@id": "cxs:spectra/level-0",
"@type": "Spectrum",
"altSpecDim": 480,
"boundaryCardinality": 12288,
"dominantEigenvalue": 10,
"jordSpecDim": 27,
"label": "Level 0 Spectrum",
"level": 0,
"phase": "variable",
"subdominantEigenvalue": 2,
"totalDimension": 24,
"zdSpecDim": 15
},
{
"@id": "cxs:spectra/level-1",
"@type": "Spectrum",
"altSpecDim": 480,
"boundaryCardinality": 61440,
"dominantEigenvalue": 10,
"jordSpecDim": 27,
"label": "Level 1 Spectrum",
"level": 1,
"phase": "variable",
"subdominantEigenvalue": 2,
"totalDimension": 24,
"zdSpecDim": 15
},
{
"@id": "cxs:spectra/level-2",
"@type": "Spectrum",
"altSpecDim": 480,
"boundaryCardinality": 430080,
"dominantEigenvalue": 10,
"jordSpecDim": 27,
"label": "Level 2 Spectrum",
"level": 2,
"phase": "variable",
"subdominantEigenvalue": 7,
"totalDimension": 24,
"zdSpecDim": 15
},
{
"@id": "cxs:spectra/level-3",
"@type": "Spectrum",
"altSpecDim": 480,
"boundaryCardinality": 4730880,
"dominantEigenvalue": 10,
"jordSpecDim": 27,
"label": "Level 3 Spectrum",
"level": 3,
"phase": "variable",
"subdominantEigenvalue": 7,
"totalDimension": 24,
"zdSpecDim": 15
},
{
"@id": "cxs:spectra/level-4",
"@type": "Spectrum",
"altSpecDim": 480,
"boundaryCardinality": 61501440,
"dominantEigenvalue": 10,
"jordSpecDim": 27,
"label": "Level 4 Spectrum",
"level": 4,
"phase": "variable",
"subdominantEigenvalue": 7,
"totalDimension": 24,
"zdSpecDim": 15
},
{
"@id": "cxs:spectra/level-5",
"@type": "Spectrum",
"altSpecDim": 480,
"boundaryCardinality": 1045524480,
"dominantEigenvalue": 10,
"jordSpecDim": 27,
"label": "Level 5 Spectrum",
"level": 5,
"phase": "variable",
"subdominantEigenvalue": 7,
"totalDimension": 24,
"zdSpecDim": 15
},
{
"@id": "cxs:explicit-formulas",
"@type": "ExplicitFormulasContainer",
"comment": "Formulas connecting spectral eigenvalues to arithmetic functions",
"contains": [
"cxs:explicit-formulas/chebyshev_psi_explicit",
"cxs:explicit-formulas/prime_counting_explicit"
],
"label": "Explicit Formulas"
},
{
"@id": "cxs:explicit-formulas/chebyshev_psi_explicit",
"@type": "ExplicitFormula",
"errorBound": "O(√x × log²x) assuming RH",
"errorSignature": {
"@id": "cxs:error-signatures/chebyshev_psi_error"
},
"formula": "ψ(x) = x - Σ_ρ x^ρ/ρ - log(2π) - ½log(1 - 1/x²)",
"gammaValues": [
0.357,
1.609,
1.253,
3.178
],
"inputSpectrum": {
"@id": "cxs:spectra/level-0"
},
"label": "Chebyshev ψ Explicit Formula",
"outputFunction": "ψ(x)"
},
{
"@id": "cxs:explicit-formulas/prime_counting_explicit",
"@type": "ExplicitFormula",
"errorBound": "O(√x × log(x)) assuming RH",
"errorSignature": {
"@id": "cxs:error-signatures/prime_counting_error"
},
"formula": "π(x) = li(x) - Σ_ρ li(x^ρ) + O(1)",
"gammaValues": [
0.357,
1.609,
1.253,
3.178
],
"inputSpectrum": {
"@id": "cxs:spectra/level-0"
},
"label": "Prime Counting Explicit Formula",
"outputFunction": "π(x)"
},
{
"@id": "cxs:irreducibility",
"@type": "IrreducibilityContainer",
"comment": "Classification of categorical structures as irreducible (prime) or reducible (composite)",
"contains": [
"cxs:classified/axioms",
"cxs:classified/correspondences",
"cxs:classified/derivation_levels",
"cxs:classified/primitive_relations",
"cxs:classified/categorical_operators",
"cxs:classified/projections",
"cxs:classified/tower_levels",
"cxs:classified/type_levels"
],
"label": "Prime-Operator Correspondence"
},
{
"@id": "cxs:classified/axioms",
"@type": "ClassifiedStructure",
"justification": "2 is prime; T and O are the unique foundational axioms",
"label": "Foundational Axioms",
"reducibility": "Irreducible",
"structureCardinality": 2
},
{
"@id": "cxs:classified/correspondences",
"@type": "ClassifiedStructure",
"justification": "3 = T is prime; correspondences form triality algebra",
"label": "Categorical Correspondences",
"reducibility": "Irreducible",
"structureCardinality": 3
},
{
"@id": "cxs:classified/derivation_levels",
"@type": "ClassifiedStructure",
"justification": "5 = PENTALITY = O - T is prime; simple derivation chain",
"label": "Derivation Levels",
"reducibility": "Irreducible",
"structureCardinality": 5
},
{
"@id": "cxs:classified/primitive_relations",
"@type": "ClassifiedStructure",
"justification": "7 = SEPTALITY = O - 1 is prime; Fano plane structure",
"label": "Primitive Relations",
"reducibility": "Irreducible",
"structureCardinality": 7
},
{
"@id": "cxs:classified/categorical_operators",
"@type": "ClassifiedStructure",
"justification": "13 = 2O - T is prime; minimal self-closed operator algebra",
"label": "Categorical Operators",
"reducibility": "Irreducible",
"structureCardinality": 13
},
{
"@id": "cxs:classified/projections",
"@type": "ClassifiedStructure",
"factorization": [
2,
2
],
"justification": "4 = Q = 2×2; decomposes as Arithmetic×Combinatorial × Spectral×Modular",
"label": "Categorical Projections",
"reducibility": "Reducible",
"structureCardinality": 4
},
{
"@id": "cxs:classified/tower_levels",
"@type": "ClassifiedStructure",
"factorization": [
3,
3
],
"justification": "9 = T² = 3×3; triality × triality structure",
"label": "Tower Levels",
"reducibility": "Reducible",
"structureCardinality": 9
},
{
"@id": "cxs:classified/type_levels",
"@type": "ClassifiedStructure",
"factorization": [
2,
3
],
"justification": "6 = PARIAH = 2×3; axiom count × triality",
"label": "Type Levels",
"reducibility": "Reducible",
"structureCardinality": 6
},
{
"@id": "cxs:eigenvalue-duality",
"@type": "EigenvalueDuality",
"comment": "The involution swapping (λ=2, mult=7) ↔ (λ=7, mult=2)",
"derivation": "\nThe 2↔7 duality arises from the Kronecker structure of the transfer matrix:\n\n M = I₃ ⊗ J₈ + (J₃ - I₃) ⊗ I₈\n\nwhere I_n is the n×n identity and J_n is the n×n all-ones matrix.\n\n**Tonic block (k=0): J₈ + 2I₈**\n- J₈ has eigenvalue 8 with mult 1, eigenvalue 0 with mult 7\n- Adding 2I₈ shifts: eigenvalue 10 with mult 1, eigenvalue 2 with mult 7\n- Thus λ=2 appears with mult O-1=7\n\n**Leading/Overtone blocks (k=1,2): J₈ - I₈**\n- J₈ - I₈ has eigenvalue 7 with mult 1, eigenvalue -1 with mult 7\n- Each non-tonic phase contributes one λ=7 eigenspace\n- T-1=2 non-tonic phases give mult 2\n\n**The Duality:**\n (λ=2, mult=7) ↔ (λ=7, mult=2)\n\nBoth multiplicities are axiom-derived: 7 = O-1, 2 = T-1\nBoth products equal 14 = 2×7 = 7×2\n",
"dominantEigenvalue": 7,
"dominantMultiplicity": 2,
"dualityType": "Involution",
"label": "2↔7 Eigenvalue-Multiplicity Duality",
"productInvariant": 14,
"subdominantEigenvalue": 2,
"subdominantMultiplicity": 7
},
{
"@id": "cxs:eigenvalue-duality/subdominant",
"@type": "EigenvalueMult",
"dualOf": {
"@id": "cxs:eigenvalue-duality/dominant"
},
"eigenvalue": 2,
"label": "Subdominant Pair (λ=2, mult=7)",
"multiplicity": 7,
"product": 14
},
{
"@id": "cxs:eigenvalue-duality/dominant",
"@type": "EigenvalueMult",
"dualOf": {
"@id": "cxs:eigenvalue-duality/subdominant"
},
"eigenvalue": 7,
"label": "Dominant Pair (λ=7, mult=2)",
"multiplicity": 2,
"product": 14
},
{
"@id": "cxs:extended-primes",
"@type": "ExtendedPrimesContainer",
"comment": "Predicted instantiations for primes 17, 19, 23, 29, 31",
"contains": [
"cxs:extended-primes/17",
"cxs:extended-primes/19",
"cxs:extended-primes/23",
"cxs:extended-primes/29",
"cxs:extended-primes/31"
],
"coverageCycle": [
8,
5,
6,
7
],
"label": "Extended Prime Structures"
},
{
"@id": "cxs:extended-primes/17",
"@type": "ExtendedPrimeStructure",
"coverage": 8,
"cumulativeCoverage": 35,
"description": "Octonion-dimension extension of Jordan algebra",
"family": "FamilyB",
"hierarchyConstant": "K",
"instantiationName": "OctonionExtension",
"label": "Prime 17 Extension",
"prime": 17
},
{
"@id": "cxs:extended-primes/19",
"@type": "ExtendedPrimeStructure",
"coverage": 5,
"cumulativeCoverage": 40,
"description": "Pentality-dimension extension",
"family": "FamilyB",
"hierarchyConstant": "L",
"instantiationName": "PentalityExtension",
"label": "Prime 19 Extension",
"prime": 19
},
{
"@id": "cxs:extended-primes/23",
"@type": "ExtendedPrimeStructure",
"coverage": 6,
"cumulativeCoverage": 46,
"description": "Pariah-dimension extension",
"family": "FamilyA",
"hierarchyConstant": "M",
"instantiationName": "PariahExtension",
"label": "Prime 23 Extension",
"prime": 23
},
{
"@id": "cxs:extended-primes/29",
"@type": "ExtendedPrimeStructure",
"coverage": 7,
"cumulativeCoverage": 53,
"description": "Septality-dimension extension completing first cycle",
"family": "FamilyA",
"hierarchyConstant": "N",
"instantiationName": "SeptalityExtension",
"label": "Prime 29 Extension",
"prime": 29
},
{
"@id": "cxs:extended-primes/31",
"@type": "ExtendedPrimeStructure",
"coverage": 5,
"cumulativeCoverage": 58,
"description": "Second cycle pentality extension",
"family": "FamilyB",
"hierarchyConstant": "N+PENTALITY",
"instantiationName": "SecondCyclePentality",
"label": "Prime 31 Extension",
"prime": 31
},
{
"@id": "cxs:addressing",
"@type": "Container",
"comment": "Hierarchical addressing codec (AX0-AX15)",
"contains": [
"cxs:addressing/axioms",
"cxs:addressing/levels"
],
"label": "Addressing"
},
{
"@id": "cxs:addressing/axioms",
"@type": "Container",
"comment": "Axioms AX0-AX15 defining the hierarchical codec",
"label": "Addressing Axioms",
"partOf": "cxs:addressing"
},
{
"@id": "cxs:addressing/levels",
"@type": "Container",
"comment": "Level parameters for each gauge level k",
"label": "Address Levels",
"partOf": "cxs:addressing"
},
{
"@id": "cxs:addressing/axioms/AX0",
"@type": "AddressingAxiom",
"axiomId": "AX0",
"formula": "m_0 = 96, m_ℓ | m_k for ℓ < k, 96 | m_k",
"label": "Tower Arithmetic",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX1",
"@type": "AddressingAxiom",
"axiomId": "AX1",
"formula": "B_k = 128 × m_k",
"label": "Boundary Cardinality",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX2",
"@type": "AddressingAxiom",
"axiomId": "AX2",
"formula": "Ω: J → Set with restriction maps",
"label": "Gauge Boundary Diagram",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX3",
"@type": "AddressingAxiom",
"axiomId": "AX3",
"formula": "M_∞ = lim Ω exists",
"label": "Universal Object",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX4",
"@type": "AddressingAxiom",
"axiomId": "AX4",
"formula": "A_k = (ℤ/m_kℤ) × (ℤ/128ℤ)",
"label": "Address Sets",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX5",
"@type": "AddressingAxiom",
"axiomId": "AX5",
"formula": "r ∈ {0,...,m_k-1}, κ ∈ {0,...,127}",
"label": "Canonical Representatives",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX6",
"@type": "AddressingAxiom",
"axiomId": "AX6",
"formula": "Dec_k(ρ,κ) = ρ + κ × m_k",
"label": "Decode Map",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX7",
"@type": "AddressingAxiom",
"axiomId": "AX7",
"formula": "Enc_k(n) = (n mod m_k, ⌊n/m_k⌋)",
"label": "Encode Map",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX8",
"@type": "AddressingAxiom",
"axiomId": "AX8",
"formula": "Enc_k ∘ Dec_k = id, Dec_k ∘ Enc_k = id",
"label": "Bijectivity",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX9",
"@type": "AddressingAxiom",
"axiomId": "AX9",
"formula": "A(k→ℓ) = Enc̄_ℓ ∘ Dec_k",
"label": "Restriction Maps",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX10",
"@type": "AddressingAxiom",
"axiomId": "AX10",
"formula": "A(k→j) = A(ℓ→j) ∘ A(k→ℓ)",
"label": "Functoriality",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX11",
"@type": "AddressingAxiom",
"axiomId": "AX11",
"formula": "α_k: Ω_k ↔ A_k natural isomorphism",
"label": "Address Charts",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX12",
"@type": "AddressingAxiom",
"axiomId": "AX12",
"formula": "ρ_k, κ_k, φ_k extractors",
"label": "Coordinate Invariants",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX13",
"@type": "AddressingAxiom",
"axiomId": "AX13",
"formula": "ρ_k(Enc_k(n)) = n mod m_k",
"label": "Invariant Correctness",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX14",
"@type": "AddressingAxiom",
"axiomId": "AX14",
"formula": "ℤ/96ℤ ≅ (ℤ/32ℤ) × (ℤ/3ℤ)",
"label": "CRT Digitization",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/AX15",
"@type": "AddressingAxiom",
"axiomId": "AX15",
"formula": "ζ: ℤ ↔ ℕ zigzag with level selector σ",
"label": "Global Bijection",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/axioms/constants",
"@type": "AddressingConstants",
"B0": 12288,
"M0": 96,
"P": 128,
"comment": "M0=96 (base modulus), P=128 (phase count), B0=12288 (base boundary)",
"label": "Addressing Constants",
"partOf": "cxs:addressing/axioms"
},
{
"@id": "cxs:addressing/levels/0",
"@type": "AddressLevel",
"boundary": 12288,
"extensionPrime": null,
"label": "Address Level 0",
"level": 0,
"modulus": 96,
"partOf": "cxs:addressing/levels",
"satisfies": [
"cxs:addressing/axioms/AX0",
"cxs:addressing/axioms/AX1",
"cxs:addressing/axioms/AX4"
]
},
{
"@id": "cxs:addressing/levels/1",
"@type": "AddressLevel",
"boundary": 61440,
"extensionPrime": 5,
"label": "Address Level 1",
"level": 1,
"modulus": 480,
"partOf": "cxs:addressing/levels",
"satisfies": [
"cxs:addressing/axioms/AX0",
"cxs:addressing/axioms/AX1",
"cxs:addressing/axioms/AX4"
]
},
{
"@id": "cxs:addressing/levels/2",
"@type": "AddressLevel",
"boundary": 430080,
"extensionPrime": 7,
"label": "Address Level 2",
"level": 2,
"modulus": 3360,
"partOf": "cxs:addressing/levels",
"satisfies": [
"cxs:addressing/axioms/AX0",
"cxs:addressing/axioms/AX1",
"cxs:addressing/axioms/AX4"
]
},
{
"@id": "cxs:addressing/levels/3",
"@type": "AddressLevel",
"boundary": 4730880,
"extensionPrime": 11,
"label": "Address Level 3",
"level": 3,
"modulus": 36960,
"partOf": "cxs:addressing/levels",
"satisfies": [
"cxs:addressing/axioms/AX0",
"cxs:addressing/axioms/AX1",
"cxs:addressing/axioms/AX4"
]
},
{
"@id": "cxs:addressing/levels/4",
"@type": "AddressLevel",
"boundary": 61501440,
"extensionPrime": 13,
"label": "Address Level 4",
"level": 4,
"modulus": 480480,
"partOf": "cxs:addressing/levels",
"satisfies": [
"cxs:addressing/axioms/AX0",
"cxs:addressing/axioms/AX1",
"cxs:addressing/axioms/AX4"
]
},
{
"@id": "cxs:addressing/levels/5",
"@type": "AddressLevel",
"boundary": 1045524480,
"extensionPrime": 17,
"label": "Address Level 5",
"level": 5,
"modulus": 8168160,
"partOf": "cxs:addressing/levels",
"satisfies": [
"cxs:addressing/axioms/AX0",
"cxs:addressing/axioms/AX1",
"cxs:addressing/axioms/AX4"
]
},
{
"@id": "cxs:boundaries/triality",
"@type": "CriticalBoundary",
"atLevel": 3,
"axiomFormula": "T = U + D",
"boundaryType": "division",
"constrains": [
"cxs:tower/levels/3",
"cxs:constants/t"
],
"label": "Triality Boundary (T=3)",
"meaning": "Minimum cyclic structure; last normed division algebra boundary"
},
{
"@id": "cxs:boundaries/octonality",
"@type": "CriticalBoundary",
"atLevel": 8,
"axiomFormula": "O = D^T",
"boundaryType": "tower",
"constrains": [
"cxs:tower/levels/8",
"cxs:constants/o"
],
"label": "Octonality Boundary (O=8)",
"meaning": "Maximum division algebra dimension; octave periodicity"
},
{
"@id": "cxs:certificates/completeness",
"@type": "CompletenessCertificate",
"addressingGuarantees": {
"coverage": "∀n ∈ ℕ: ∃! address such that decode(address) = n",
"domain": "ℕ",
"noOverlap": "Address space is partitioned",
"unbounded": true,
"uniqueness": "∀n,m ∈ ℕ: encode(n) = encode(m) ⟹ n = m"
},
"asserts": [
"All 16 derived constants generated from U,D",
"All derivation chains documented",
"Property loss complete at PENTALITY=5",
"Terminal region at PARIAH=6",
"Octave periodicity at O=8"
],
"derivedConstantCount": 16,
"encodingStructure": {
"arbitraryExtension": "For any n ∈ ℕ, finite gauge {2,3,p₁,...,p_k} suffices",
"baseBoundary": 12288,
"baseModulus": 96,
"extensionMechanism": "Each gauge prime p extends coverage by prime_coverage(p)",
"hierarchical": "B_k = P × m_k where m_k = m_{k-1} × p_k",
"phaseFactor": 128
},
"guarantees": "lossless-codec",
"label": "Ontology Completeness Certificate",
"mathematicalBasis": {
"CRT": "Chinese Remainder Theorem guarantees unique representation mod M",
"finiteApproximation": "Any n ∈ ℕ requires only finite gauge prefix",
"gaugeLimit": "Universal limit M_∞ = lim_{P→∞} Ω_P covers all of ℕ"
},
"propertyLossCount": 5,
"terminalThreshold": 6
},
{
"@id": "cxs:derivation-steps/k",
"@type": "DerivationStep",
"derives": "K",
"formula": "K = J + O = 27 + 8 = 35",
"from": [
"J",
"O"
],
"label": "K Derivation",
"operation": "coproduct",
"value": 35
},
{
"@id": "cxs:derivation-steps/l",
"@type": "DerivationStep",
"derives": "L",
"formula": "L = K + PENTALITY = 35 + 5 = 40",
"from": [
"K",
"PENTALITY"
],
"label": "L Derivation",
"operation": "coproduct",
"value": 40
},
{
"@id": "cxs:derivation-steps/m",
"@type": "DerivationStep",
"derives": "M",
"formula": "M = L + PARIAH = 40 + 6 = 46",
"from": [
"L",
"PARIAH"
],
"label": "M Derivation",
"operation": "coproduct",
"value": 46
},
{
"@id": "cxs:derivation-steps/n",
"@type": "DerivationStep",
"derives": "N",
"formula": "N = M + SEPTALITY = 46 + 7 = 53",
"from": [
"M",
"SEPTALITY"
],
"label": "N Derivation",
"operation": "coproduct",
"value": 53
}
],
"@id": "https://uor.foundation/categorical-x/v1/graph",
"@type": "owl:Ontology",
"comment": "JSON-LD overlay providing generative relationships for the Categorical X schema. This is the unique singleton instance satisfying the schema constraints.",
"conformsTo": "https://uor.foundation/categorical-x/v1",
"creator": "Categorical X Framework",
"generatedAt": "2026-01-19T23:54:14Z",
"isDefinedBy": "https://uor.foundation/categorical-x/v1",
"label": "Categorical X Relational Graph",
"license": "https://creativecommons.org/licenses/by/4.0/",
"owl:imports": {
"@id": "https://uor.foundation/categorical-x/v1"
},
"owl:versionIRI": {
"@id": "https://uor.foundation/categorical-x/v1.0.0/graph"
},
"publisher": "UOR Foundation",
"version": "1.0.0"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment