Skip to content

Instantly share code, notes, and snippets.

@adrianolszewski
Created October 4, 2025 02:55
Show Gist options
  • Select an option

  • Save adrianolszewski/a13499a3e595afe58564fe4d17d852ba to your computer and use it in GitHub Desktop.

Select an option

Save adrianolszewski/a13499a3e595afe58564fe4d17d852ba to your computer and use it in GitHub Desktop.
Examples of Likert diverging (pyramid) plot with ggplot2

Likert plot - version 1, the middle "2+ normal" option is the neutral one, not counted for %

Packages:

library(ggstats)
library(likert)
library(ggplot2)
library(patchwork)

The main plot - uses the ggstats package and the Likert_CFB_formed dataset.

gglikert(Likert_CFB_formed, 
         Arm1:Arm3, 
         facet_rows = vars(Visit),
         labels_hide_below = 0.05,
         cutoff = 2.5,
         labels_size = 3.3,
         totals_include_center = FALSE) +
  scale_fill_manual(values=c("#006699", "#CCECFF", "#92D050", "#F0A89A","#FF1F1F")) +
  
  geom_vline(xintercept = 0) +
  theme_bw() +
  guides(fill=guide_legend(ncol=2, title="", byrow = TRUE)) +
  labs(title = "Likert plot of the Achilles reflex over time", subtitle="Overall value for both sides",
       caption = "* Labels <5% are hidden\nIndividual percentages may not add exactly to side totals due to rounding issue") +
  facet_wrap(~Visit,  strip.position="left",ncol = 1) +
  theme(panel.grid.minor.x = element_blank(),
        panel.grid.major.y  = element_blank(),
        legend.position = "top",
        plot.title = element_text(size=15, margin = margin(0,0,0,0)),
        strip.text = element_text(size=9, margin = margin(1,1,1,1, "mm")),
        axis.text = element_text(size=10),
        axis.title = element_text(size=11),
        legend.text = element_text(size=9, margin = margin(l=1, t=0,b=0,r=0, "mm")),
        legend.title = element_text(size=8),
        legend.key.size = unit(.5, "cm"),
        legend.key.spacing.x = unit(2, 'mm'),
        legend.key.spacing.y = unit(0, 'mm'),
        legend.box.spacing = unit(0, "pt"),
        plot.subtitle = element_text(margin = unit(c(2,0,0,0), "mm"))) +
  xlab("Percentage of patients") -> p1

Plot of the missing data fraction - uses the likert package and the Likert_CFB_formed_miss dataset. You may skip this one. I use it for transparency. You have to prepare the data in a format required by the likert() function.

likert.histogram.plot(likert(Likert_CFB_formed_miss[,2:9], grouping = Likert_CFB_formed_miss[, 1]), 
                      type="bar",  center=2,
                      low.color="#a00000", high.color="#92D050", 
                      plot.percents=FALSE,
                      text.size = 3.2,
                      include.center=TRUE) +   
  theme_bw() +
  ylab("# obs.")+
  scale_x_discrete(limits = rev(levels(Likert_CFB_formed_miss$Arm))) +
  guides(fill=guide_legend(nrow = 2, title="", byrow = TRUE)) +
  
  theme(panel.grid.minor.x = element_blank(),
        panel.grid.major.y  = element_blank(),
        legend.position = "top",
        plot.title = element_text(size=15),
        strip.text = element_text(size=9, margin = margin(0.08,0,0.08,0, "cm")),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.title = element_text(size=11),
        legend.text = element_text(size=9, margin = margin(l=1, t=0,b=0,r=0, "mm")),
        legend.title = element_text(size=8),
        legend.key.size = unit(.5, "cm"),
        legend.key.spacing.y = unit(0, 'mm'),
        legend.key.spacing.x = unit(1, 'mm'),
        legend.box.spacing = unit(0, "pt"),
        strip.background = element_blank(),
        strip.text.x = element_blank(),
        plot.subtitle = element_text(  margin = margin(0,0,-10,0)),
        plot.margin = unit(c(0,2,1,-3), "mm")) -> p2

Both plots combined together:

p1 + p2 + patchwork::plot_layout(ncol=2, widths = c(7, 1.2)) 

You should obtain this result: obraz

The data necessary to recreate the plots:

# for the main plot
Likert_CFB_formed <- structure(list(Visit = structure(c(1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 7L, 
8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 
8L, 5L, 6L, 3L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 5L, 
6L, 3L, 4L, 1L, 2L, 5L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 6L, 3L, 4L, 1L, 2L, 
7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 
7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 
7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 
7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 
7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 
7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 7L, 8L, 5L, 6L, 4L, 1L, 2L, 7L, 
8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 5L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 6L, 4L, 1L, 2L, 7L, 
8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 
8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 
8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 
5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 6L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 8L, 5L, 6L, 3L, 4L, 1L, 
2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 
2L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 4L, 1L, 
2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 
2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 
2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 7L, 8L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 
3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 
1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 5L, 6L, 3L, 4L, 1L, 2L, 
5L, 6L, 3L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 
6L, 3L, 4L, 1L, 2L, 7L, 8L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 
4L, 1L, 2L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 
2L, 7L, 8L, 5L, 6L, 3L, 4L, 1L, 2L, 7L, 8L, 5L, 6L, 3L, 4L), levels = c("Baseline", 
"Discharge", "Week 1", "Week 2", "Month 1", "Month 3", "Month 6", 
"Month 12"), class = c("ordered", "factor")), Arm1 = structure(c(NA, 
3L, 4L, 4L, 3L, 3L, 3L, 4L, NA, 3L, 2L, 3L, 3L, 3L, 3L, NA, 3L, 
NA, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, 3L, 2L, 1L, 3L, 3L, 3L, 2L, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 3L, 
3L, 2L, 2L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, 2L, 3L, NA, 1L, 3L, 3L, 3L, 2L, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, 
NA, 2L, 3L, 3L, 4L, 3L, 2L, 1L, 3L, 4L, 4L, 4L, 3L, 4L, 4L, 3L, 
4L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 4L, 3L, 3L, 4L, 3L, 
3L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 
2L, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 2L, 1L, 3L, 4L, 3L, 4L, 
4L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 2L, 3L, 3L, 
2L, 2L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, NA, 2L, 1L, 2L, 2L, 
2L, 2L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, 3L, 4L, 3L, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, 2L, 2L, 1L, 3L, 3L, NA, 3L, 3L, NA, NA, NA, NA, NA, 
NA, NA, NA, 3L, 3L, 3L, 4L, 4L, 3L, 3L, NA, NA, NA, NA, NA, NA, 
NA, NA, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, 3L, 3L, 3L, 3L, 2L, 
3L, 3L, 2L, 3L, 2L, 3L, 2L, 5L, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 3L, 
1L, NA, 2L, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 2L, 3L, 4L, 3L, 
3L, 3L, 3L, 1L, 2L, 1L, 2L, 1L, 1L, 3L, 3L, 3L, 2L, 3L, 3L, 2L, 
3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 3L, 3L, 4L, 3L, 
4L, 4L, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 2L, 3L, 3L, 1L, 2L, 
2L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
4L, 4L, 2L, 2L, 3L, 1L, 3L, 3L, 3L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 
3L, 1L, 3L, 3L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, NA, NA, NA, NA, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
2L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 2L, 
2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 2L, 3L, 1L, 3L, 
NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 
NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, 
3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, NA, 
NA, NA, NA, NA, NA, NA, NA, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 3L, 3L, 
1L, 1L, 1L, 1L, 3L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, NA, NA, 
NA, NA, NA, NA, NA, NA, 1L, 3L, 2L, 1L, 1L, NA, 1L, 1L, NA, NA, 
NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 4L, 3L, 
3L, 2L, 4L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 2L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 
3L, 3L, 2L, 2L, 2L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, NA, NA, 
NA, NA, NA, NA, 2L, 2L, 2L, 3L, 2L, NA, NA, NA, NA, NA, NA, NA, 
NA, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, 
NA, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, 
NA, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, 
3L, 4L, 4L, 4L, 4L, 3L, 4L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 2L, 4L, 3L, 3L, 3L, 3L, 
3L, 1L, 3L, 2L, 2L, 2L, 2L, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 
1L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 
4L, 3L, 3L, NA, 1L), levels = c("0 Absent", "1+ Diminished (hyporeflexive)", 
"2+ Normal", "3+ Brisker than normal (hyperreflexive)", "4+ Hyperactive (clonus)"
), class = "factor"), Arm2 = structure(c(NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 
NA, 3L, 3L, 3L, 4L, 2L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, 3L, NA, 4L, 3L, 3L, 3L, 3L, 3L, NA, NA, 
NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 
2L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 4L, 3L, NA, 4L, 4L, 3L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 4L, 
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, NA, 2L, 2L, 2L, 3L, 2L, 
NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 2L, 3L, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 2L, 1L, 
2L, 1L, 1L, 1L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, 3L, 3L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, 4L, 
4L, 4L, 4L, 4L, 3L, 3L, 1L, 3L, 3L, NA, 3L, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, 4L, 4L, 3L, 3L, 3L, NA, 3L, 3L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, 3L, 2L, 1L, 1L, 2L, NA, 2L, 3L, 3L, 1L, 
2L, 2L, 3L, 2L, 2L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 2L, 2L, 3L, 
2L, 1L, 3L, 2L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, 
NA, NA, 3L, 4L, 4L, 3L, 3L, 3L, 4L, 3L, NA, NA, NA, NA, NA, 3L, 
4L, 3L, 3L, 3L, 4L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 
1L, 3L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 
1L, 3L, 1L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
1L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 4L, 3L, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, 3L, NA, 2L, NA, 2L, 3L, 1L, 2L, NA, NA, NA, NA, NA, NA, NA, 
NA, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 1L, 3L, 
1L, 1L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 5L, 2L, NA, 1L, 1L, 2L, NA, 5L, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 2L, 2L, 
2L, 1L, 1L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 4L, 3L, 3L, 
3L, 3L, 4L, 4L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 
2L, 2L, 3L, 2L, 4L, 3L, 3L, 4L, NA, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 
3L, 1L, 2L, 3L, 3L, 2L, 3L, 3L, 4L, 2L, 3L, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, 3L, 4L, 3L, 3L, 
3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, 3L, 3L, 2L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 
2L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, 1L, 2L, 2L, 2L, 1L, NA, 
2L, 1L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, 2L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 4L, 4L, 4L, 4L, 
NA, NA, NA, NA, NA, 4L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, 
NA, NA, NA, NA, NA, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, NA, NA, NA, 
NA, NA, NA, NA, NA, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, 
NA, NA, NA, NA, NA, 3L, 3L, 2L, 2L, 3L, 2L, 3L, 4L, 3L, 3L, 3L, 
1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, NA, NA, NA, 
NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 2L, 2L, 1L, 3L, 3L, 3L, NA, NA, NA, NA, NA, 
NA, NA, NA, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 
3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, 3L, 3L, 3L, 2L, 4L, 3L, NA, NA, NA, NA, NA, NA, NA, 
NA, 1L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, 
NA), levels = c("0 Absent", "1+ Diminished (hyporeflexive)", 
"2+ Normal", "3+ Brisker than normal (hyperreflexive)", "4+ Hyperactive (clonus)"
), class = "factor"), Arm3 = structure(c(NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, 3L, NA, 2L, 3L, 2L, 2L, 2L, 3L, 3L, 
NA, 3L, 4L, 2L, 2L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, 1L, 3L, 1L, 1L, 2L, 2L, 2L, 2L, NA, NA, NA, NA, NA, NA, 
2L, 3L, 4L, NA, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 
2L, 2L, 2L, 3L, 3L, 4L, 3L, 3L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 3L, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
3L, 3L, NA, 3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, 2L, 3L, 3L, 3L, 1L, 3L, 4L, 2L, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
1L, 2L, 3L, 3L, 2L, 3L, 2L, 2L, NA, NA, NA, NA, NA, NA, 2L, 2L, 
4L, 1L, 2L, 3L, 2L, 4L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, NA, 
1L, 2L, 3L, 1L, 4L, 4L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 4L, 3L, 
3L, 3L, 4L, 4L, 3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, 3L, 3L, 3L, 
NA, 3L, 3L, NA, NA, NA, 3L, 3L, 2L, 3L, 1L, 1L, 1L, 1L, 3L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, 3L, 2L, 3L, 4L, 4L, 4L, 3L, 3L, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 5L, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 3L, 3L, NA, 
3L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA), levels = c("0 Absent", "1+ Diminished (hyporeflexive)", 
"2+ Normal", "3+ Brisker than normal (hyperreflexive)", "4+ Hyperactive (clonus)"
), class = "factor")), row.names = c(NA, -1062L), class = "data.frame")

# for the missing data part - can be safely skipped. It's just the same data as above, but in a different format, since the missing data plot is drawn by a different package.
 Likert_CFB_formed_miss <-
 structure(list(Arm = structure(c(1L, 1L, 1L, 2L, 3L, 3L, 2L, 
1L, 2L, 2L, 3L, 1L, 3L, 2L, 3L, 3L, 1L, 2L, 2L, 2L, 3L, 2L, 1L, 
3L, 1L, 1L, 2L, 1L, 2L, 1L, 3L, 1L, 2L, 3L, 1L, 3L, 2L, 3L, 3L, 
3L, 1L, 2L, 2L, 3L, 1L, 3L, 3L, 1L, 2L, 1L, 3L, 1L, 2L, 2L, 1L, 
1L, 3L, 2L, 2L, 3L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 
2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 
2L, 1L, 1L, 2L, 1L, 2L, 1L), levels = c("Arm1", "Arm2", "Arm3"
), class = "factor"), Baseline = structure(c(NA, NA, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 2L, 3L, 2L, 2L, 2L, 3L, 3L, 2L, 
3L, 3L, 4L, 2L, 2L, 4L, 3L, 3L, 2L, 3L, 2L, 2L, 4L, 1L, 3L, 2L, 
1L, 3L, 1L, 4L, 3L, 4L, 3L, 3L, 3L, 3L, 2L, 2L, 4L, 3L, 3L, 3L, 
3L, 3L, 4L, 2L, 3L, 3L, 3L, 2L, 3L, 2L, 3L, 2L, 1L, 3L, 1L, 2L, 
3L, 1L, 3L, 3L, 2L, 3L, 4L, 3L, 2L, 3L, 1L, 3L, 2L, 3L, 1L, 4L, 
5L, 3L, 2L, 3L, 3L, 3L, 3L, NA, 3L, 3L, 3L, 4L, 3L, 3L, 4L, 3L, 
3L, 3L, 4L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 4L, 2L, 3L, 3L, 
3L, 3L, 3L, 2L, 4L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor"), Discharge = structure(c(3L, 
3L, NA, NA, NA, NA, NA, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 
3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 2L, 3L, 3L, 2L, 3L, 
2L, 2L, 2L, 1L, NA, 2L, 3L, NA, 4L, 3L, 3L, 4L, 3L, 3L, 2L, 4L, 
3L, 2L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 3L, 3L, 4L, 3L, 4L, 2L, 2L, 
2L, 1L, 3L, 3L, 2L, 3L, 2L, 2L, 3L, 4L, 3L, 2L, NA, 1L, 3L, 2L, 
1L, 2L, 3L, 2L, 3L, 2L, 1L, 3L, 3L, 3L, 1L, 4L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 
3L, 2L, 3L, 3L, 3L, 3L, 2L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor"), `Week 1` = structure(c(3L, 
3L, 3L, 2L, 2L, NA, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 4L, 3L, 2L, 3L, 
2L, 4L, 3L, 3L, 2L, 3L, 4L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 4L, 3L, 
2L, 2L, 2L, 1L, 4L, 2L, 3L, 2L, 4L, 3L, 3L, 3L, NA, NA, 3L, 3L, 
3L, 3L, 3L, 2L, 2L, 3L, 2L, 3L, 3L, 3L, 3L, 4L, NA, 3L, 3L, 3L, 
3L, 3L, 4L, 3L, 2L, 3L, 1L, 3L, 4L, NA, 2L, 3L, 1L, 1L, 3L, 3L, 
NA, 2L, 3L, NA, 1L, 2L, 3L, 1L, 3L, 3L, 1L, 4L, 3L, 3L, 3L, 1L, 
2L, 1L, 3L, 3L, 3L, 3L, NA, 3L, 3L, 2L, 3L, 2L, 1L, 3L, 3L, 3L, 
2L, 3L, 1L, 2L, 3L, 4L, 2L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 4L, 3L, 3L, NA), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor"), `Week 2` = structure(c(4L, 
NA, NA, 3L, 3L, NA, 3L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 
4L, 4L, 2L, 3L, 3L, 3L, 2L, 3L, 4L, 1L, 3L, 3L, 2L, 3L, 4L, NA, 
2L, 2L, 4L, 2L, 4L, 1L, 3L, 2L, 4L, NA, 3L, NA, NA, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 
3L, 3L, 4L, 3L, 1L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 2L, 1L, 3L, 2L, 
1L, 3L, 3L, 5L, 2L, 2L, NA, 1L, 3L, 3L, 2L, 4L, 3L, 2L, 4L, 2L, 
3L, 3L, 3L, 2L, 3L, 3L, 1L, 1L, 3L, 1L, 3L, 1L, 1L, 3L, 3L, 3L, 
3L, 3L, 3L, 1L, 3L, 4L, NA, 3L, 3L, 3L, 3L, 3L, 1L, 4L, 3L, 3L, 
2L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 1L), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor"), `Month 1` = structure(c(3L, 
3L, NA, 3L, 2L, 2L, 3L, 3L, 3L, 1L, 2L, 3L, 3L, NA, 3L, 2L, 3L, 
2L, 4L, 2L, 3L, NA, 3L, 1L, 3L, 4L, 3L, 3L, 1L, 3L, 3L, 4L, NA, 
2L, 3L, 2L, 2L, 3L, 1L, 4L, 2L, 4L, 3L, 3L, NA, NA, 1L, 3L, 3L, 
4L, 4L, 2L, 2L, 3L, 3L, 2L, 3L, 2L, 3L, NA, 3L, 1L, 3L, 3L, 1L, 
2L, 3L, 4L, 3L, 1L, 1L, 1L, 1L, 2L, NA, 2L, 1L, 2L, 1L, NA, 3L, 
3L, 2L, 3L, 1L, 1L, 2L, NA, 2L, 3L, 3L, 2L, 3L, 3L, 2L, NA, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 4L, 2L, 3L, 1L, 1L, 3L, 2L, 4L, 
3L, 3L, 3L, 2L, 3L, 4L, 2L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 2L, 
3L, NA, NA, 1L, 4L, 3L, 3L, 4L, 2L, 3L, 3L, 3L, 3L), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor"), `Month 3` = structure(c(3L, 
3L, NA, 4L, 2L, 2L, 3L, 3L, NA, 3L, 2L, 2L, 3L, 4L, 4L, 2L, 3L, 
3L, 4L, 2L, 3L, 3L, 3L, 3L, 2L, 4L, 3L, 4L, 1L, 1L, 3L, 3L, NA, 
3L, 3L, 3L, 2L, 1L, 1L, 4L, 2L, 4L, NA, NA, NA, NA, 1L, NA, NA, 
4L, 4L, 3L, NA, 2L, 2L, 3L, 3L, 1L, 3L, NA, 3L, NA, 4L, 3L, 1L, 
3L, 3L, 3L, 3L, 2L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 3L, 1L, NA, 3L, 
NA, 2L, 3L, 2L, 2L, 3L, NA, 1L, 3L, 3L, 2L, 3L, 3L, 2L, 3L, 3L, 
4L, 3L, 3L, 3L, 3L, 3L, 2L, 1L, 3L, 3L, 2L, NA, NA, 3L, 3L, 3L, 
2L, 3L, 3L, 2L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 3L, 3L, 
3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 3L), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor"), `Month 6` = structure(c(4L, 
2L, NA, 3L, 2L, 3L, 4L, 1L, NA, 3L, 1L, NA, 4L, 4L, 2L, 1L, NA, 
2L, 3L, NA, NA, NA, 3L, 3L, 3L, 4L, 3L, 4L, 1L, 1L, 3L, 1L, NA, 
3L, NA, 4L, 2L, 1L, 2L, 3L, 2L, NA, 1L, 3L, NA, NA, 1L, 1L, 3L, 
NA, 3L, 3L, 1L, 2L, 3L, NA, 4L, 2L, 4L, 3L, 4L, NA, 3L, 3L, 1L, 
3L, 3L, 3L, 3L, 3L, 1L, 1L, NA, 3L, 2L, 3L, NA, 2L, 1L, NA, 3L, 
NA, 2L, 3L, NA, 2L, 2L, NA, 2L, 3L, 3L, 2L, 3L, 1L, 3L, 3L, NA, 
2L, 3L, 3L, 3L, 3L, 4L, 2L, 1L, 2L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, NA, NA, 3L, 4L, 3L, 3L, 4L, 1L, 2L, 3L, 3L, 
3L, 3L, 3L, 2L, 4L, 3L, 4L, 3L, 1L, NA, 3L, 2L, 3L), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor"), `Month 12` = structure(c(4L, 
3L, NA, 3L, 3L, 4L, 3L, NA, NA, 1L, 1L, NA, NA, 3L, 3L, 1L, 1L, 
2L, 4L, 2L, 3L, NA, 3L, 3L, 4L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, NA, 
3L, NA, 1L, 1L, 2L, 1L, 3L, 1L, NA, 3L, 3L, NA, NA, 1L, 3L, 3L, 
3L, 4L, 3L, 1L, 2L, 3L, NA, 3L, 3L, 3L, NA, 3L, NA, 3L, 4L, 2L, 
3L, 3L, NA, 3L, 3L, 3L, 1L, NA, 2L, 2L, 2L, 3L, NA, 1L, NA, 3L, 
NA, 3L, 3L, 1L, 2L, 3L, NA, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 4L, 3L, 
3L, 3L, 3L, 2L, 3L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 1L, 3L, 3L, 2L, 
3L, 3L, 3L, 3L, 3L, NA, NA, 3L, 3L, 2L, 3L, 3L, 1L, 2L, 1L, 3L, 
3L, 3L, 3L, 2L, 4L, 3L, 3L, 2L, 3L, NA, 1L, 3L, 4L), levels = c("0 Absent", 
"1+ Diminished (hyporeflexive)", "2+ Normal", "3+ Brisker than normal (hyperreflexive)", 
"4+ Hyperactive (clonus)"), class = "factor")), row.names = c(NA, 
-142L), class = "data.frame")

Likert plot - version 2, some options are "bad", some are "good", both counted to %, yet there is no the neutral one.

The main plot

colors <- rev(RColorBrewer::brewer.pal(6, "RdYlGn"))
colors[3] <- "#FFFF99"
colors[4] <- "#FFCA50"
colors[5] <- "red"
colors[6] <- "#600000"

gglikert(Likert_CFB_formed, 
         Arm1:Arm3, 
         facet_rows = vars(Visit),
         labels_hide_below = 0.05,
         labels_size = 3.2,
         totals_include_center = TRUE,
         cutoff = 2) +
  scale_fill_manual(values=colors) +
  geom_vline(xintercept = 0) +
  theme_bw() +
  guides(fill=guide_legend(nrow = 2, title="", byrow = TRUE)) +
  xlab("Percentage of ODI Pain scores (Patients)") +
  labs(title = "Likert plot of observed ODI Pain scores",
       caption = "* Labels <5% are hidden\nIndividual percentages may not add exactly to side totals due to rounding issue") +
  
  facet_wrap(~Visit,  strip.position="left",ncol = 1) +
  theme(panel.grid.minor.x = element_blank(),
        panel.grid.major.y  = element_blank(),
        legend.position = "top",
        plot.title = element_text(size=15, margin = margin(0,0,0,0)),
        strip.text = element_text(size=9, margin = margin(1,1,1,1, "mm")),
        axis.text = element_text(size=10),
        axis.title = element_text(size=11),
        legend.text = element_text(size=8),
        legend.title = element_text(size=8),
        legend.key.size = unit(.5, "cm"),
        legend.key.spacing.y = unit(0, 'mm'),
        legend.box.spacing = unit(0, "pt"),
        plot.margin = unit(c(1,2,1,-3), "mm")) -> p1

Plot of the missing data fraction - uses the likert package and the Likert_CFB_formed_miss dataset. You may skip this one.

likert.histogram.plot(likert(Likert_CFB_formed_miss[,2:8], grouping = Likert_CFB_formed_miss[, 1]), type="bar",  
                      center=2,
                      low.color="#a00000", high.color="#92D050", plot.percents=FALSE,
                      include.center=TRUE) +   
   theme_bw() +
   ylab("# obs.")+
   scale_x_discrete(limits = rev(levels(Likert_CFB_formed_miss$Arm))) +
   guides(fill=guide_legend(nrow = 2, title="", byrow = TRUE)) +
   
   theme(panel.grid.minor.x = element_blank(),
         panel.grid.major.y  = element_blank(),
         legend.position = "top",
         plot.title = element_text(size=15),
         strip.text = element_text(size=9, margin = margin(0.08,0,0.08,0, "cm")),
         axis.text.y = element_blank(),
         axis.ticks.y = element_blank(),
         axis.title = element_text(size=11),
         legend.text = element_text(size=8),
         legend.title = element_text(size=8),
         legend.key.size = unit(.5, "cm"),
         legend.key.spacing.y = unit(0, 'mm'),
         legend.key.spacing.x = unit(1, 'mm'),
         legend.box.spacing = unit(0, "pt"),
         strip.background = element_blank(),
         strip.text.x = element_blank(),
         plot.subtitle = element_text(  margin = margin(0,0,-10,0)),
         plot.margin = unit(c(0,2,1,-3), "mm")) -> p2

Both plots combined together:

p1 + p2 + patchwork::plot_layout(ncol=2, widths = c(7, 1.2)) 

You should obtain this result: obraz

The data necessary to recreate the plots:

# for the main plot
Likert_CFB_formed <- structure(list(Visit = structure(c(2L, 2L, 1L, 2L, 3L, 1L, 2L, 
1L, 2L, 3L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 4L, 4L, 2L, 2L, 2L, 
4L, 1L, 1L, 4L, 2L, 3L, 3L, 3L, 4L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 1L, 5L, 5L, 1L, 
5L, 1L, 2L, 2L, 1L, 1L, 1L, 3L, 2L, 2L, 3L, 1L, 5L, 2L, 2L, 2L, 
1L, 3L, 3L, 1L, 2L, 4L, 3L, 3L, 1L, 2L, 2L, 1L, 1L, 3L, 6L, 4L, 
6L, 2L, 1L, 6L, 6L, 1L, 1L, 4L, 3L, 3L, 4L, 3L, 2L, 4L, 1L, 3L, 
4L, 2L, 2L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 4L, 1L, 3L, 4L, 1L, 4L, 
2L, 3L, 1L, 4L, 1L, 3L, 4L, 6L, 4L, 4L, 1L, 1L, 2L, 4L, 5L, 6L, 
6L, 5L, 2L, 4L, 1L, 1L, 5L, 5L, 2L, 1L, 6L, 5L, 4L, 2L, 5L, 2L, 
3L, 2L, 3L, 1L, 5L, 2L, 1L, 3L, 6L, 2L, 1L, 1L, 4L, 3L, 1L, 5L, 
3L, 4L, 5L, 2L, 5L, 6L, 3L, 5L, 1L, 3L, 2L, 2L, 5L, 1L, 1L, 2L, 
1L, 1L, 4L, 1L, 5L, 4L, 3L, 4L, 1L, 3L, 1L, 5L, 5L, 3L, 3L, 2L, 
2L, 2L, 3L, 2L, 1L, 1L, 2L, 4L, 2L, 4L, 1L, 2L, 5L, 2L, 3L, 3L, 
3L, 2L, 4L, 3L, 3L, 2L, 4L, 4L, 3L, 3L, 3L, 3L, 5L, 3L, 5L, 5L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 2L, 4L, 4L, 4L, 5L, 5L, 4L, 5L, 
5L, 4L, 6L, 4L, 4L, 6L, 4L, 6L, 5L, 5L, 5L, 6L, 5L, 6L, 5L, 7L, 
7L, 6L, 5L, 6L, 6L, 7L, 6L, 5L, 5L, 6L, 6L, 1L, 5L, 6L, 6L, 5L, 
1L, 1L, 1L, 6L, 7L, 5L, 6L, 1L, 5L, 2L, 5L, 6L, 1L, 5L, 5L, 1L, 
1L, 2L, 2L, 6L, 2L, 3L, 5L, 2L, 3L, 2L, 1L, 1L, 6L, 7L, 3L, 3L, 
7L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 6L, 6L, 1L, 1L, 1L, 6L, 4L, 
2L, 6L, 3L, 7L, 4L, 3L, 6L, 1L, 5L, 4L, 2L, 3L, 3L, 1L, 2L, 4L, 
1L, 4L, 2L, 2L, 1L, 1L, 3L, 3L, 7L, 1L, 4L, 2L, 2L, 6L, 3L, 2L, 
3L, 7L, 1L, 1L, 4L, 4L, 1L, 4L, 6L, 2L, 6L, 1L, 1L, 4L, 4L, 6L, 
2L, 3L, 3L, 1L, 1L, 2L, 3L, 3L, 1L, 2L, 6L, 3L, 1L, 5L, 2L, 6L, 
4L, 2L, 7L, 6L, 1L, 6L, 6L, 6L, 4L, 5L, 4L, 3L, 2L, 2L, 2L, 1L, 
2L, 3L, 3L, 4L, 2L, 3L, 1L, 7L, 4L, 5L, 2L, 1L, 3L, 5L, 1L, 3L, 
2L, 1L, 3L, 1L, 4L, 4L, 7L, 6L, 2L, 2L, 3L, 3L, 3L, 7L, 1L, 3L, 
3L, 3L, 7L, 5L, 1L, 1L, 4L, 2L, 3L, 4L, 4L, 2L, 4L, 1L, 7L, 7L, 
5L, 1L, 4L, 2L, 3L, 4L, 7L, 4L, 4L, 6L, 5L, 2L, 2L, 5L, 6L, 5L, 
2L, 2L, 7L, 7L, 3L, 5L, 4L, 1L, 4L, 3L, 1L, 4L, 1L, 4L, 1L, 5L, 
3L, 5L, 7L, 1L, 7L, 1L, 3L, 5L, 1L, 2L, 5L, 3L, 5L, 3L, 1L, 5L, 
5L, 3L, 2L, 2L, 2L, 2L, 1L, 7L, 2L, 2L, 2L, 4L, 1L, 4L, 1L, 4L, 
5L, 3L, 1L, 2L, 1L, 1L, 1L, 3L, 3L, 1L, 2L, 3L, 3L, 5L, 4L, 1L, 
3L, 1L, 3L, 7L, 7L, 1L, 2L, 3L, 4L, 2L, 4L, 1L, 2L, 2L, 2L, 4L, 
7L, 3L, 1L, 6L, 4L, 5L, 5L, 5L, 1L, 4L, 1L, 5L, 7L, 7L, 2L, 2L, 
7L, 2L, 4L, 5L, 1L, 4L, 3L, 5L, 3L, 5L, 2L, 3L, 1L, 5L, 3L, 3L, 
1L, 6L, 7L, 1L, 3L, 5L, 2L, 4L, 4L, 1L, 3L, 7L, 7L, 2L, 4L, 4L, 
4L, 5L, 1L, 2L, 3L, 4L, 5L, 3L, 2L, 6L, 2L, 1L, 4L, 5L, 2L, 1L, 
4L, 2L, 7L, 6L, 7L, 4L, 3L, 2L, 7L, 3L, 2L, 1L, 2L, 1L, 7L, 3L, 
1L, 5L, 4L, 3L, 3L, 3L, 4L, 4L, 2L, 6L, 5L, 7L, 4L, 3L, 5L, 4L, 
3L, 4L, 3L, 5L, 6L, 2L, 2L, 4L, 5L, 5L, 7L, 3L, 2L, 4L, 7L, 7L, 
4L, 6L, 5L, 3L, 4L, 7L, 6L, 7L, 2L, 3L, 5L, 7L, 3L, 4L, 5L, 3L, 
4L, 4L, 5L, 6L, 3L, 4L, 4L, 5L, 4L, 7L, 5L, 4L, 6L, 6L, 5L, 5L, 
4L, 4L, 5L, 4L, 5L, 4L, 5L, 5L, 4L, 6L, 6L, 4L, 5L, 5L, 5L, 6L, 
5L, 5L, 6L, 5L, 5L, 6L, 6L, 5L, 6L, 6L, 5L, 5L, 5L, 6L, 6L, 5L, 
6L, 6L, 6L, 6L, 5L, 6L, 5L, 5L, 5L, 6L, 5L, 5L, 6L, 5L, 6L, 5L, 
6L, 6L, 5L, 6L, 5L, 5L, 5L, 7L, 5L, 5L, 6L, 7L, 6L, 7L, 7L, 6L, 
6L, 7L, 6L, 6L, 7L, 7L, 6L, 6L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 7L, 6L, 6L, 6L, 6L, 6L, 7L, 6L, 7L, 7L, 6L, 
6L, 6L, 6L, 7L, 6L, 7L, 6L, 7L, 6L, 7L, 7L, 6L, 6L, 7L, 6L, 7L, 
7L, 6L, 7L, 7L, 6L, 7L, 7L, 7L, 7L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), levels = c("Screening", 
"Week 1", "Week 2", "Month 1", "Month 3", "Month 6", "Month 12"
), class = "factor"), Arm1 = structure(c(NA, NA, NA, 2L, NA, 
NA, NA, NA, NA, NA, NA, 4L, 2L, NA, NA, NA, 3L, NA, NA, NA, NA, 
NA, 3L, NA, NA, NA, NA, NA, NA, NA, 4L, 3L, NA, NA, NA, NA, NA, 
4L, NA, NA, NA, NA, NA, NA, NA, NA, 2L, NA, NA, 4L, NA, 5L, NA, 
NA, NA, NA, NA, NA, 4L, NA, NA, NA, 2L, NA, NA, NA, 3L, NA, NA, 
NA, NA, NA, NA, NA, 5L, 1L, NA, NA, NA, NA, NA, 4L, 3L, 3L, 2L, 
NA, 3L, NA, NA, NA, NA, 4L, 4L, NA, NA, 5L, NA, NA, NA, 3L, NA, 
2L, NA, NA, 2L, NA, NA, 2L, 2L, 3L, 3L, 2L, NA, 2L, NA, NA, NA, 
NA, NA, NA, 3L, NA, 6L, NA, NA, 3L, NA, 1L, NA, 2L, NA, 1L, NA, 
NA, NA, NA, NA, NA, 1L, NA, 4L, NA, NA, NA, NA, NA, 4L, 4L, NA, 
2L, NA, NA, NA, NA, NA, NA, 4L, NA, NA, NA, NA, NA, 3L, NA, NA, 
NA, NA, 1L, 1L, 2L, NA, NA, NA, NA, 6L, 4L, 2L, 4L, NA, NA, NA, 
3L, NA, NA, 5L, NA, 6L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 4L, 
NA, 3L, NA, 2L, NA, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 2L, NA, 
3L, 1L, NA, NA, NA, 2L, NA, 5L, NA, 5L, NA, NA, NA, NA, 5L, 5L, 
NA, 1L, NA, 2L, NA, NA, 2L, 3L, NA, NA, NA, 3L, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, 5L, NA, NA, NA, NA, NA, NA, NA, 2L, 3L, 4L, 
3L, NA, NA, NA, NA, 2L, 4L, NA, 6L, NA, 3L, NA, NA, NA, NA, NA, 
NA, NA, 5L, NA, 6L, 1L, NA, 5L, NA, 5L, NA, NA, NA, 3L, 3L, NA, 
NA, NA, 4L, NA, 5L, 5L, 2L, 5L, 1L, NA, NA, 4L, 3L, NA, NA, NA, 
NA, 2L, NA, 2L, NA, NA, 4L, 2L, NA, NA, NA, 3L, NA, 5L, 3L, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, NA, 4L, 3L, NA, 3L, NA, 
3L, 4L, 6L, 2L, 3L, NA, NA, NA, NA, 4L, NA, 4L, NA, NA, 1L, NA, 
3L, 3L, 2L, NA, 3L, 2L, NA, 2L, NA, 3L, NA, NA, NA, NA, NA, NA, 
NA, NA, 3L, 2L, NA, 3L, NA, NA, NA, 4L, NA, 2L, NA, NA, NA, NA, 
NA, NA, NA, NA, 4L, 1L, NA, NA, NA, NA, 3L, NA, 3L, 3L, 5L, NA, 
3L, 3L, NA, NA, NA, 1L, NA, 4L, 5L, NA, NA, NA, 3L, 4L, NA, 2L, 
4L, 1L, NA, NA, NA, NA, NA, 4L, NA, NA, NA, 2L, NA, NA, NA, NA, 
3L, NA, 4L, 2L, NA, 2L, 3L, NA, NA, 3L, 3L, NA, NA, 4L, 4L, NA, 
4L, 1L, NA, 5L, NA, NA, 3L, NA, NA, 3L, 1L, NA, NA, NA, 3L, 1L, 
2L, 1L, NA, 4L, NA, 2L, 2L, 3L, NA, 3L, NA, NA, NA, 5L, 3L, NA, 
NA, 1L, 1L, 5L, NA, 4L, 6L, 5L, NA, NA, 5L, NA, 3L, 3L, NA, NA, 
4L, 5L, NA, 2L, NA, NA, 3L, 3L, 4L, 3L, 3L, 4L, 3L, NA, 4L, 3L, 
NA, 3L, NA, NA, NA, 4L, NA, NA, 6L, 3L, 5L, 5L, 3L, NA, NA, NA, 
1L, NA, 4L, 3L, 2L, NA, 1L, NA, 4L, 3L, 1L, 1L, 3L, NA, NA, 3L, 
NA, NA, NA, 4L, NA, NA, 2L, NA, NA, 1L, 2L, NA, NA, 4L, NA, NA, 
NA, NA, 4L, NA, NA, NA, NA, NA, NA, NA, 3L, 3L, NA, NA, 4L, 4L, 
1L, NA, NA, NA, NA, 3L, NA, NA, 3L, 4L, 3L, NA, 3L, NA, 1L, 3L, 
2L, 3L, NA, 5L, NA, NA, NA, NA, NA, 3L, NA, NA, NA, NA, 2L, NA, 
2L, 5L, 3L, NA, NA, 5L, NA, 3L, NA, NA, NA, NA, NA, NA, 3L, 5L, 
NA, NA, 5L, NA, 3L, 2L, NA, NA, NA, NA, 4L, 1L, 1L, NA, 1L, 3L, 
1L, 3L, NA, 2L, 2L, 1L, 5L, 4L, 1L, NA, 2L, 3L, NA, NA, NA, NA, 
NA, 2L, NA, 3L, NA, 4L, 2L, NA, NA, 2L, NA, NA, NA, NA, 3L, 2L, 
NA, NA, NA, NA, 3L, 1L, 3L, NA, 2L, NA, 3L, NA, 3L, NA, NA, NA, 
3L, NA, NA, NA, NA, 1L, 3L, 5L, NA, 3L, 3L, NA, NA, NA, NA, 3L, 
2L, NA, 3L, NA, NA, 3L, 2L, NA, 5L, 2L, NA, 4L, NA, 1L, NA, 4L, 
NA, NA, NA, 3L, 1L, NA, NA, 4L, NA, NA, NA, 6L, NA, 1L, NA, NA, 
1L, NA, NA, 5L, 2L, 1L, 4L, 3L, 4L, NA, 2L, NA, 2L, NA, 3L, NA, 
6L, NA, 2L, 4L, 2L, NA, 4L, NA, 1L, NA, NA, NA, 3L, 4L, NA, 3L, 
NA, 1L, 3L, NA, 5L, NA, NA, 1L, 1L, NA, 2L, NA, 3L, NA, 3L, NA, 
NA, NA, NA, NA, 5L, NA, NA, NA, NA, 4L, 2L, NA, NA, NA, 3L, 5L, 
NA, 2L, 5L, 3L, 4L, NA, 1L, NA, 4L, 2L, NA, NA, 1L, 1L, 3L, 3L, 
6L, NA, 4L, 2L, 3L, 3L, NA, NA, NA, 5L, NA, NA, 1L, NA, 3L, 3L, 
NA, NA, 4L, 1L, 1L, NA, NA, 4L, 4L, 3L, NA, NA, 4L, NA, NA, NA, 
1L, NA, NA, 3L, NA, NA, 1L, 3L, 3L, 3L, NA), levels = c("[0] No pain", 
"[1] Very mild pain", "[2] Moderate pain", "[3] Fairly severe pain", 
"[4] Very severe pain", "[5] Worst imaginable pain"), class = "factor"), 
    Arm2 = structure(c(NA, NA, NA, NA, NA, 4L, 3L, 3L, 2L, 3L, 
    NA, NA, NA, 3L, 3L, NA, NA, NA, 2L, NA, 1L, NA, NA, NA, 4L, 
    NA, 2L, NA, 3L, NA, NA, NA, 3L, NA, NA, 3L, NA, NA, NA, 2L, 
    NA, NA, 3L, 3L, NA, NA, NA, 1L, 3L, NA, NA, NA, NA, NA, 3L, 
    NA, 3L, NA, NA, 5L, NA, 5L, NA, 3L, 3L, NA, NA, 3L, 1L, 5L, 
    NA, NA, 3L, NA, NA, NA, NA, 2L, 5L, 4L, NA, NA, NA, NA, NA, 
    2L, NA, NA, 1L, 3L, NA, NA, NA, NA, 3L, NA, 3L, 3L, NA, NA, 
    NA, NA, 2L, 2L, NA, NA, 2L, NA, NA, NA, NA, NA, 4L, NA, NA, 
    NA, NA, NA, 1L, NA, NA, 3L, NA, NA, NA, NA, 1L, NA, 3L, NA, 
    NA, NA, NA, 2L, 1L, NA, NA, NA, NA, NA, NA, NA, 2L, NA, 5L, 
    NA, NA, NA, NA, NA, NA, 1L, 1L, NA, NA, 3L, NA, 4L, NA, NA, 
    4L, NA, NA, NA, NA, 5L, 5L, NA, NA, NA, NA, NA, 2L, NA, NA, 
    NA, NA, NA, 2L, 2L, NA, NA, 1L, 5L, NA, NA, NA, 4L, NA, NA, 
    2L, NA, 4L, 1L, NA, NA, NA, NA, NA, NA, NA, 3L, NA, 3L, 3L, 
    2L, NA, 3L, NA, NA, NA, NA, 4L, NA, NA, 3L, 4L, NA, NA, NA, 
    NA, 5L, NA, NA, 3L, 1L, 3L, NA, NA, NA, NA, 1L, NA, 3L, NA, 
    NA, NA, NA, NA, NA, NA, 2L, NA, 3L, NA, 3L, NA, NA, 2L, NA, 
    NA, 3L, 1L, NA, NA, NA, 1L, 2L, NA, NA, NA, NA, 2L, 3L, NA, 
    NA, NA, NA, NA, NA, 6L, NA, 3L, 3L, 4L, 3L, 2L, 4L, NA, NA, 
    4L, NA, NA, NA, NA, NA, NA, NA, 2L, NA, NA, NA, 1L, 3L, 6L, 
    NA, 4L, NA, NA, NA, NA, NA, 6L, 1L, NA, NA, 3L, NA, NA, 4L, 
    NA, NA, NA, 4L, 5L, NA, NA, 4L, 4L, 5L, NA, 2L, NA, NA, 5L, 
    NA, 1L, 2L, NA, 2L, NA, 3L, 4L, NA, NA, 2L, NA, NA, 4L, NA, 
    3L, NA, NA, NA, NA, NA, 4L, 2L, 5L, 3L, NA, 1L, NA, 4L, 3L, 
    NA, 3L, NA, NA, NA, NA, NA, NA, 1L, NA, 3L, NA, NA, 4L, NA, 
    5L, 4L, 4L, 3L, 3L, NA, NA, 4L, NA, 2L, 2L, 3L, NA, 4L, NA, 
    NA, 3L, 5L, 3L, 2L, 1L, 6L, 5L, NA, NA, 3L, 1L, NA, 4L, NA, 
    1L, NA, NA, NA, 3L, NA, NA, 2L, 3L, 2L, NA, 3L, NA, NA, NA, 
    3L, 5L, NA, NA, 5L, NA, NA, NA, 2L, 5L, 3L, 3L, 3L, NA, 4L, 
    NA, 2L, NA, 2L, 5L, 2L, NA, NA, 3L, NA, NA, 2L, NA, NA, 3L, 
    4L, NA, NA, 2L, 5L, NA, NA, 4L, NA, NA, 3L, NA, 3L, 3L, NA, 
    2L, 3L, NA, NA, NA, 5L, 2L, NA, NA, NA, NA, 4L, NA, 3L, NA, 
    NA, NA, 3L, NA, 2L, 3L, 3L, NA, NA, 3L, 3L, NA, NA, NA, 3L, 
    NA, NA, NA, 4L, 3L, NA, 2L, NA, NA, 5L, 3L, NA, NA, 3L, NA, 
    2L, 2L, NA, NA, NA, NA, NA, NA, NA, 2L, NA, NA, 5L, NA, 3L, 
    1L, 3L, NA, 3L, 3L, NA, NA, NA, NA, NA, 1L, 1L, 1L, NA, 3L, 
    NA, NA, NA, NA, NA, 3L, NA, NA, NA, NA, NA, 3L, 3L, NA, 3L, 
    3L, NA, NA, 3L, 1L, NA, 1L, 3L, NA, NA, 3L, 4L, NA, 1L, NA, 
    2L, 4L, NA, 1L, 4L, 4L, 2L, 2L, 2L, 4L, NA, NA, 4L, 3L, NA, 
    NA, NA, 2L, 3L, 2L, 2L, NA, 2L, 2L, NA, NA, NA, 5L, NA, NA, 
    NA, NA, NA, NA, 1L, NA, 4L, 3L, 3L, 1L, 5L, NA, 1L, 3L, 3L, 
    3L, NA, 3L, NA, NA, NA, 4L, NA, NA, 2L, NA, 1L, 4L, 1L, 4L, 
    3L, 5L, NA, NA, NA, 4L, NA, 3L, NA, NA, 1L, 3L, 2L, 3L, NA, 
    NA, NA, NA, NA, NA, NA, NA, 3L, NA, NA, NA, NA, NA, NA, 1L, 
    NA, NA, 2L, 3L, 3L, 1L, NA, NA, 2L, NA, 3L, NA, NA, NA, 3L, 
    NA, 4L, 3L, 4L, 1L, NA, NA, 3L, 3L, 2L, 2L, NA, NA, NA, 3L, 
    NA, 3L, NA, 2L, NA, 3L, 5L, 3L, NA, 2L, 3L, 4L, 1L, NA, NA, 
    NA, 3L, NA, NA, 4L, 3L, 4L, 3L, NA, NA, 4L, NA, 2L, 5L, NA, 
    NA, 3L, NA, NA, 2L, NA, 2L, NA, 2L, NA, 2L, 1L, 4L, NA, NA, 
    4L, 1L, NA, 2L, 5L, 2L, NA, 2L, NA, 3L, 3L, NA, 4L, 4L, NA, 
    NA, NA, NA, NA, NA, 4L, NA, 3L, NA, 5L, NA, 2L, NA, 2L, NA, 
    NA, NA, 1L, NA, 3L, NA, 3L, 1L, 3L, NA, NA, 3L, NA, 3L, NA, 
    NA, 3L, NA, 6L, 5L, NA, NA, 1L, NA, 1L, NA, 3L, NA, 3L, 4L, 
    2L, 3L, 5L, NA, 6L, 3L, 3L, 2L, NA, NA, 1L, 5L, 1L, NA, NA, 
    1L, NA, NA, NA, NA, 1L, NA, 3L, NA, NA, 3L, 3L, NA, NA, NA, 
    NA, NA, 3L, NA, NA, NA, NA, NA, 3L, 4L, NA, 2L, 4L, NA, 1L, 
    NA, NA, 3L, 3L, NA, NA, NA, 1L, 3L, NA, NA, NA, 1L, 1L, NA, 
    4L, 2L, 3L, NA, 2L, 2L, NA, 2L, 2L, NA, NA, NA, NA, 1L), levels = c("[0] No pain", 
    "[1] Very mild pain", "[2] Moderate pain", "[3] Fairly severe pain", 
    "[4] Very severe pain", "[5] Worst imaginable pain"), class = "factor"), 
    Arm3 = structure(c(5L, 4L, 4L, NA, 4L, NA, NA, NA, NA, NA, 
    3L, NA, NA, NA, NA, 4L, NA, 4L, NA, 4L, NA, 3L, NA, 1L, NA, 
    4L, NA, 4L, NA, 3L, NA, NA, NA, 2L, 3L, NA, 3L, NA, 3L, NA, 
    3L, 2L, NA, NA, 3L, 1L, NA, NA, NA, NA, 6L, NA, 3L, 2L, NA, 
    5L, NA, 3L, NA, NA, 5L, NA, NA, NA, NA, 3L, NA, NA, NA, NA, 
    5L, 5L, NA, 3L, NA, NA, 2L, NA, NA, NA, 1L, NA, NA, NA, NA, 
    NA, NA, 2L, NA, NA, 3L, NA, NA, 5L, NA, NA, NA, NA, 1L, NA, 
    1L, NA, NA, NA, NA, 2L, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 
    3L, 3L, 3L, NA, 2L, NA, NA, NA, 4L, 4L, NA, NA, NA, NA, NA, 
    5L, NA, 3L, NA, NA, 3L, 2L, 2L, NA, 4L, NA, 1L, NA, 2L, NA, 
    2L, NA, NA, 2L, NA, 1L, NA, NA, 4L, 5L, NA, NA, NA, 1L, 3L, 
    NA, 5L, NA, 4L, 3L, NA, NA, NA, NA, NA, 3L, 3L, NA, 3L, NA, 
    NA, NA, NA, NA, NA, 5L, NA, NA, NA, NA, 3L, NA, NA, 3L, 2L, 
    NA, 3L, NA, NA, 3L, NA, NA, 4L, NA, 1L, NA, NA, NA, NA, NA, 
    NA, 3L, NA, 1L, 4L, 3L, NA, NA, NA, NA, NA, NA, 3L, NA, 4L, 
    NA, NA, NA, 1L, NA, NA, NA, NA, NA, 3L, NA, NA, NA, NA, 3L, 
    NA, NA, 4L, 1L, 2L, NA, NA, 4L, NA, 3L, NA, 1L, 3L, NA, 2L, 
    NA, NA, NA, 1L, 1L, 3L, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 
    4L, NA, NA, 2L, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, NA, 
    NA, NA, NA, 4L, NA, 2L, NA, 4L, NA, 2L, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 4L, NA, 
    NA, 1L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    4L, NA, NA, 1L, NA, 2L, NA, NA, 3L, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, 2L, NA, NA, NA, NA, NA, NA, 3L, NA, 3L, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    5L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    1L, NA, NA, NA, NA, NA, 1L, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, 1L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2L, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, 1L, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, 2L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, 3L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, 3L, NA, NA, NA, NA, NA, NA, 5L, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, 3L, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), levels = c("[0] No pain", 
    "[1] Very mild pain", "[2] Moderate pain", "[3] Fairly severe pain", 
    "[4] Very severe pain", "[5] Worst imaginable pain"), class = "factor")), row.names = c(NA, 
-864L), class = "data.frame")

# for the missing data part - can be safely skipped. It's just the same data as above, but in a different format, since the missing data plot is drawn by a different package.
 Likert_CFB_formed_miss <-
 structure(list(Arm = structure(c(3L, 3L, 1L, 2L, 2L, 2L, 3L, 
1L, 3L, 2L, 3L, 3L, 1L, 2L, 2L, 2L, 3L, 2L, 1L, 3L, 1L, 2L, 1L, 
1L, 2L, 1L, 3L, 1L, 3L, 3L, 2L, 3L, 1L, 3L, 3L, 1L, 2L, 3L, 2L, 
3L, 1L, 2L, 1L, 3L, 1L, 2L, 1L, 1L, 3L, 2L, 2L, 2L, 3L, 2L, 1L, 
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 
1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 
2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L), levels = c("Arm1", 
"Arm2", "Arm3"), class = "factor"), Screening = structure(c(3L, 
4L, 4L, 4L, 3L, 3L, 4L, 3L, 4L, 4L, 4L, 6L, 5L, 3L, 3L, 5L, 5L, 
5L, 3L, 5L, 5L, 4L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 2L, 
5L, 4L, 4L, 5L, 5L, 4L, 5L, 3L, 5L, 4L, 5L, 3L, 5L, 5L, 6L, 3L, 
1L, 3L, 3L, 4L, 4L, 5L, 4L, 6L, 5L, 3L, 6L, 4L, 3L, 3L, 4L, 5L, 
4L, 5L, 3L, 5L, 3L, 3L, 6L, 2L, 5L, 4L, 3L, 3L, 2L, 3L, 5L, 4L, 
3L, 2L, 4L, 5L, 3L, 3L, 5L, 4L, 4L, 5L, 3L, 3L, 3L, 4L, 5L, 3L, 
3L, 3L, 3L, 4L, 5L, 5L, 3L, 4L, 4L, 4L, 5L, 3L, 3L, 6L, 5L, 3L, 
3L, 3L, 3L, 3L, 2L, 4L, 2L, 4L, 3L, 3L, 5L, 4L, 3L, 5L, 5L, 5L, 
5L), levels = c("[0] No pain", "[1] Very mild pain", "[2] Moderate pain", 
"[3] Fairly severe pain", "[4] Very severe pain", "[5] Worst imaginable pain"
), class = "factor"), `Week 1` = structure(c(5L, 4L, 2L, 3L, 
2L, 1L, 3L, 3L, 4L, 3L, 2L, 3L, 4L, 3L, 1L, 3L, 5L, 5L, 1L, 1L, 
4L, 1L, 2L, 3L, 2L, 2L, 2L, 3L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 4L, 
4L, 3L, 2L, NA, 4L, 1L, 3L, 1L, 2L, 2L, 3L, 5L, 3L, 3L, 4L, 4L, 
2L, 2L, NA, 4L, 5L, 2L, 3L, 6L, 4L, 2L, 2L, 4L, 4L, NA, 3L, 3L, 
NA, 1L, 4L, 3L, 4L, 5L, 3L, 3L, 5L, 2L, 2L, 2L, 2L, 3L, 2L, 3L, 
3L, 2L, 3L, 3L, 2L, 4L, 3L, NA, 3L, 2L, 4L, 4L, 3L, 2L, 3L, 2L, 
4L, 3L, 3L, 2L, 4L, 3L, 4L, 4L, 3L, 3L, 1L, 3L, 2L, 3L, 1L, 4L, 
3L, 3L, 3L, 1L, 2L, 4L, 3L, 3L, 4L, 4L, 4L, 3L, 4L, 1L), levels = c("[0] No pain", 
"[1] Very mild pain", "[2] Moderate pain", "[3] Fairly severe pain", 
"[4] Very severe pain", "[5] Worst imaginable pain"), class = "factor"), 
    `Week 2` = structure(c(NA, 4L, 2L, 3L, 3L, 3L, 3L, 4L, 3L, 
    3L, 3L, 3L, 2L, 3L, 2L, 3L, 3L, 5L, 2L, 1L, 5L, 2L, 2L, 3L, 
    4L, 2L, 3L, 3L, 4L, 4L, 1L, 3L, 1L, 1L, 3L, 2L, 4L, 2L, NA, 
    4L, 4L, 3L, 3L, 1L, 1L, 3L, 2L, 5L, 4L, 1L, 3L, 3L, 1L, 1L, 
    5L, 4L, NA, 2L, NA, 5L, 2L, 3L, 2L, 4L, 4L, 4L, 2L, 3L, 3L, 
    2L, 4L, 4L, 3L, 5L, 3L, 3L, 4L, 1L, 2L, 3L, 3L, 4L, 2L, 5L, 
    3L, 2L, 3L, 2L, 3L, 2L, 3L, 1L, 2L, 4L, 3L, 3L, 5L, 1L, 3L, 
    1L, 4L, 2L, 4L, 1L, 3L, 3L, NA, 3L, 2L, 2L, 1L, 3L, 2L, 3L, 
    1L, 3L, 4L, 2L, 4L, 1L, 3L, 3L, 2L, 3L, 3L, 3L, 4L, 3L, 3L, 
    3L), levels = c("[0] No pain", "[1] Very mild pain", "[2] Moderate pain", 
    "[3] Fairly severe pain", "[4] Very severe pain", "[5] Worst imaginable pain"
    ), class = "factor"), `Month 1` = structure(c(1L, 4L, 3L, 
    2L, 2L, 2L, 3L, 4L, 3L, 3L, 2L, 2L, 3L, 3L, 2L, 3L, 1L, NA, 
    2L, 3L, 6L, 1L, 1L, 3L, 3L, 1L, 3L, 4L, 4L, 3L, 2L, 3L, 1L, 
    3L, 1L, 5L, 5L, 3L, 3L, 4L, 3L, 1L, 2L, 3L, 3L, 2L, 2L, 5L, 
    4L, 3L, 3L, 2L, 1L, 1L, NA, 3L, 4L, 2L, 4L, 4L, 2L, 3L, 1L, 
    3L, 4L, NA, 3L, 3L, 6L, 1L, 3L, 4L, 4L, 5L, 3L, 3L, 4L, 1L, 
    2L, 3L, 2L, 5L, 2L, 3L, 3L, 2L, 3L, 2L, 3L, 1L, 3L, 1L, 2L, 
    4L, 3L, 3L, 4L, 1L, 3L, 1L, 3L, 3L, 3L, 2L, 2L, 3L, 2L, 3L, 
    2L, 2L, 2L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, NA, NA, 3L, 3L, 2L, 
    3L, 3L, 4L, 3L, 4L, 5L, 1L), levels = c("[0] No pain", "[1] Very mild pain", 
    "[2] Moderate pain", "[3] Fairly severe pain", "[4] Very severe pain", 
    "[5] Worst imaginable pain"), class = "factor"), `Month 3` = structure(c(1L, 
    3L, 2L, 1L, 3L, 3L, 3L, 4L, 5L, 3L, 2L, 2L, 4L, 2L, 3L, 2L, 
    1L, 5L, 2L, 3L, 6L, 4L, 2L, 3L, 2L, 2L, 3L, 5L, 3L, 3L, 3L, 
    4L, 1L, 3L, 1L, 5L, 6L, 3L, 2L, 4L, NA, 1L, 1L, 2L, 3L, 3L, 
    3L, 3L, 4L, 2L, 3L, 1L, NA, 1L, NA, 3L, NA, 1L, 2L, 5L, 5L, 
    2L, 3L, 5L, 5L, 1L, 3L, 3L, 3L, 1L, 3L, 5L, 4L, 5L, 5L, 3L, 
    4L, 1L, 1L, 3L, 1L, 4L, 3L, 3L, 4L, 2L, 3L, 1L, 3L, 1L, 4L, 
    1L, 2L, 3L, 3L, 3L, 3L, 1L, 3L, 2L, 3L, 2L, 3L, 3L, 2L, 3L, 
    3L, 3L, 2L, 3L, 3L, 3L, 2L, 1L, 1L, 2L, 2L, 2L, 5L, 1L, 1L, 
    3L, 4L, 2L, 4L, 2L, 4L, 3L, 2L, 2L), levels = c("[0] No pain", 
    "[1] Very mild pain", "[2] Moderate pain", "[3] Fairly severe pain", 
    "[4] Very severe pain", "[5] Worst imaginable pain"), class = "factor"), 
    `Month 6` = structure(c(2L, 3L, 4L, 1L, 2L, 1L, 3L, NA, 3L, 
    2L, 2L, 2L, 4L, 3L, 3L, 1L, 1L, NA, 2L, 2L, 6L, 4L, 2L, 5L, 
    2L, 1L, 2L, 4L, 3L, 4L, 2L, 3L, NA, 3L, 1L, 3L, NA, 5L, 3L, 
    3L, 3L, 1L, NA, 1L, 1L, 1L, 2L, NA, 3L, 2L, 3L, 4L, 1L, 1L, 
    NA, 3L, 5L, 1L, 5L, 5L, NA, 3L, 3L, 3L, NA, 4L, 3L, NA, 3L, 
    1L, 3L, 4L, 5L, 4L, 4L, 4L, 5L, 1L, 2L, 4L, 2L, 6L, 3L, 4L, 
    4L, NA, 5L, 1L, 2L, 1L, 6L, 1L, 1L, 3L, 3L, 3L, 4L, 1L, 3L, 
    2L, 3L, 3L, 2L, 3L, 2L, 1L, NA, NA, 1L, 5L, 5L, 3L, 2L, 2L, 
    3L, 1L, 2L, 2L, 5L, 1L, 3L, 3L, 5L, 1L, NA, 3L, 3L, 3L, 1L, 
    3L), levels = c("[0] No pain", "[1] Very mild pain", "[2] Moderate pain", 
    "[3] Fairly severe pain", "[4] Very severe pain", "[5] Worst imaginable pain"
    ), class = "factor"), `Month 12` = structure(c(2L, 4L, NA, 
    3L, 2L, 1L, 1L, NA, 4L, 3L, 2L, 2L, 4L, 2L, 4L, 2L, 1L, NA, 
    1L, 3L, 6L, 3L, 2L, 3L, 3L, 1L, 2L, 4L, 3L, 3L, 1L, 3L, NA, 
    2L, 1L, 2L, NA, 5L, 3L, 2L, 4L, 1L, 4L, 3L, 1L, 1L, 2L, NA, 
    3L, 2L, 2L, 2L, NA, 1L, NA, 4L, 6L, 1L, 4L, 5L, NA, 4L, 2L, 
    3L, NA, 4L, 4L, 1L, 3L, 2L, 3L, 5L, 6L, 3L, 4L, 4L, 5L, 1L, 
    3L, 3L, 1L, 6L, 1L, 3L, 3L, 5L, 3L, 3L, 2L, 2L, 4L, 1L, 1L, 
    2L, 4L, 3L, 4L, 1L, 5L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, NA, NA, 
    1L, 3L, 4L, 3L, 2L, 4L, 1L, 2L, 2L, 1L, 4L, 1L, 1L, 3L, 3L, 
    2L, NA, 2L, 3L, 1L, 3L, 1L), levels = c("[0] No pain", "[1] Very mild pain", 
    "[2] Moderate pain", "[3] Fairly severe pain", "[4] Very severe pain", 
    "[5] Worst imaginable pain"), class = "factor")), row.names = c(NA, 
-130L), class = "data.frame")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment