- To convert to tflite, clone the TensorflowASR repository and build its dependencies
git clone https://github.com/TensorSpeech/TensorFlowASR.git
cd TensorFlowASR
pip3 install -e ".[tf2.8]"
- Download the model weights and config file from here (https://drive.google.com/drive/folders/1rYpiYF0F9JIsAKN2DCFFtEdfNzVbBLHe?usp=sharing)
- Add the downloaded config file to the same directory as the conversion file. ie to
./TensorFlowASR/examples/rnn_transducer/inference/
- Change the code in
gen_tflite_model.py to the code below
# Copyright 2020 Huy Le Nguyen (@usimarit)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import fire
from tensorflow_asr.utils import env_util
logger = env_util.setup_environment()
import tensorflow as tf
from tensorflow_asr.configs.config import Config
from tensorflow_asr.models.transducer.rnn_transducer import RnnTransducer
from tensorflow_asr.helpers import exec_helpers, featurizer_helpers
DEFAULT_YAML = os.path.join(os.path.abspath(os.path.dirname(__file__)), "config.yml")
tf.compat.v1.enable_control_flow_v2()
def main(
config: str = DEFAULT_YAML,
subwords: bool = True,
sentence_piece: bool = False,
output: str = "./rnnt-tflite.tflite",
):
tf.keras.backend.clear_session()
tf.compat.v1.enable_control_flow_v2()
config = Config(config)
speech_featurizer, text_featurizer = featurizer_helpers.prepare_featurizers(
config=config,
subwords=subwords,
sentence_piece=sentence_piece,
)
rnn_transducer = RnnTransducer(**config.model_config, vocabulary_size=text_featurizer.num_classes)
rnn_transducer.make(speech_featurizer.shape)
rnn_transducer.load_weights("<path-to-downloaded-weights (.h5) file>", by_name=True)
rnn_transducer.summary(line_length=100)
rnn_transducer.add_featurizers(speech_featurizer, text_featurizer)
exec_helpers.convert_tflite(model=rnn_transducer, output=output)
if __name__ == "__main__":
fire.Fire(main)
- To run the above code, run
python3 gen_tflite_model.py in the terminal.
- Error that i'm getting
tensorflow.lite.python.convert_phase.ConverterError: input resource[0] expected type resource != float, the type of rnn_transducer_greedy_while_rnn_transducer_decoder_rnn_transducer_prediction_embedding_embedding_lookup_13010_0[0]
In {{node rnn_transducer_greedy/while/rnn_transducer_decoder/rnn_transducer_prediction_embedding/embedding_lookup}}
Failed to functionalize Control Flow V1 ops. Consider using Control Flow V2 ops instead. See https://www.tensorflow.org/api_docs/python/tf/compat/v1/enable_control_flow_v2.