Created
December 7, 2025 11:58
-
-
Save SkySkimmer/ad116e04b6c61ba3657eda3ce31d1eaf to your computer and use it in GitHub Desktop.
prefixlt alt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Require Import Wellfounded Relations List. | |
| Import ListNotations. | |
| Inductive PrefixLt (x: nat): relation (list nat) := | |
| | p_head (m m': list nat) (n n': nat): | |
| length (n :: m) <= x -> | |
| length (n' :: m') <= x -> | |
| n < n' -> | |
| PrefixLt x (n :: m) (n' :: m') | |
| | p_tail (m m': list nat) (n n': nat): | |
| length (n :: m) <= x -> | |
| length (n' :: m') <= x -> | |
| n = n' -> | |
| PrefixLt x m m' -> | |
| PrefixLt x (n :: m) (n' :: m'). | |
| Definition PrefixLt0 l1 l2 := | |
| exists prefix n n' tl1 tl2, n < n' /\ l1 = prefix ++ [n] ++ tl1 /\ l2 = prefix ++ [n'] ++ tl2. | |
| Definition PrefixLt' x l1 l2 := | |
| PrefixLt0 l1 l2 /\ length l1 <= x /\ length l2 <= x. | |
| Lemma PrefixLt_len x l1 l2 : PrefixLt x l1 l2 -> length l1 <= x /\ length l2 <= x. | |
| Proof. | |
| destruct 1;auto. | |
| Qed. | |
| Lemma PrefixLt_to0 x l1 l2 : PrefixLt x l1 l2 -> PrefixLt0 l1 l2. | |
| Proof. | |
| induction 1 as [|??? k ???? IH]. | |
| - exists []. repeat eexists;eauto. | |
| - subst. destruct IH as (prefix & n & n' & tl1 & tl2 & IH1 & IH2 & IH3). | |
| exists (k::prefix), n, n', tl1, tl2;subst;simpl. eauto. | |
| Qed. | |
| Lemma PrefixLt_to' x l1 l2 : PrefixLt x l1 l2 -> PrefixLt' x l1 l2. | |
| Proof. | |
| intros H;split. | |
| - eapply PrefixLt_to0;eassumption. | |
| - apply PrefixLt_len;assumption. | |
| Qed. | |
| Lemma PrefixLt_from' x l1 l2 : PrefixLt' x l1 l2 -> PrefixLt x l1 l2. | |
| Proof. | |
| intros H. destruct H as [(prefix & n & n' & tl1 & tl2 & IH1 & IH2 & IH3) [Hlen1 Hlen2]]. | |
| subst. | |
| induction prefix in x, Hlen1, Hlen2 |- *;simpl in *. | |
| - constructor 1;simpl;assumption. | |
| - constructor 2;auto. | |
| apply IHprefix;etransitivity;try apply PeanoNat.Nat.le_succ_diag_r;assumption. | |
| Qed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment