Created
July 19, 2022 02:14
-
-
Save Shamrock-Frost/2326562bfbead0edace30c361bda2f47 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| R: Type | |
| X: Top | |
| j: ℕ | |
| _inst_2: comm_ring R | |
| i_fst: (singular_chain_complex_basis R (j + 1)).indices | |
| σ: (singular_chain_complex_basis R (j + 1)).models i_fst ⟶ X | |
| ⊢ ⇑(((singular_chain_complex R).obj X).d (j + 1) j) | |
| (⇑((singular_chain_complex R ⋙ homological_complex.eval (Module R) (complex_shape.down ℕ) (j + 1)).map σ) | |
| (⇑(cone_construction_hom R | |
| (barycenter | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j + | |
| 1)) | |
| (_.contraction | |
| (barycenter | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j + | |
| 1))) | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j)) | |
| (⇑(⟨nat.rec | |
| ⟨(λ (n : ℕ) | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n), | |
| (λ (n : ℕ) | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n), | |
| n.cases_on | |
| (λ | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| 0), | |
| id_rhs | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) 0 ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) 0) | |
| ((singular_chain_complex_basis R 0).map_out | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) 0) | |
| (λ (_x : (singular_chain_complex_basis R 0).indices), | |
| simplex_to_chain (continuous_map.id ↥(topological_simplex 0)) R))) | |
| (λ (n : ℕ) | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n.succ), | |
| id_rhs | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) (n + 1) ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) (n + 1)) | |
| ((singular_chain_complex_basis R (n + 1)).map_out | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) (n + 1)) | |
| (λ (_x : (singular_chain_complex_basis R (n + 1)).indices), | |
| ⇑(cone_construction_hom R (barycenter (n + 1)) | |
| (_.contraction (barycenter (n + 1))) | |
| n) | |
| (⇑(_F.fst.fst.app (Top.of ↥(topological_simplex (n + 1)))) | |
| (⇑(((singular_chain_complex R).obj | |
| (Top.of ↥(topological_simplex (n + 1)))).d | |
| (n + 1) | |
| n) | |
| (simplex_to_chain (continuous_map.id ↥(topological_simplex (n + 1))) | |
| R)))))) | |
| _F) | |
| n | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : | |
| pprod | |
| ((λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n) | |
| (nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n)), | |
| ⟨(λ (n : ℕ) | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n), | |
| (λ (n : ℕ) | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n), | |
| n.cases_on | |
| (λ | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| 0), | |
| id_rhs | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) 0 ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) 0) | |
| ((singular_chain_complex_basis R 0).map_out | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) 0) | |
| (λ (_x : (singular_chain_complex_basis R 0).indices), | |
| simplex_to_chain (continuous_map.id ↥(topological_simplex 0)) R))) | |
| (λ (n : ℕ) | |
| (_F : | |
| nat.below | |
| (λ (n : ℕ), | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) n) | |
| n.succ), | |
| id_rhs | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) (n + 1) ⟶ | |
| singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) (n + 1)) | |
| ((singular_chain_complex_basis R (n + 1)).map_out | |
| (singular_chain_complex R ⋙ | |
| homological_complex.eval (Module R) (complex_shape.down ℕ) (n + 1)) | |
| (λ (_x : (singular_chain_complex_basis R (n + 1)).indices), | |
| ⇑(cone_construction_hom R (barycenter (n + 1)) | |
| (_.contraction (barycenter (n + 1))) | |
| n) | |
| (⇑(_F.fst.fst.app (Top.of ↥(topological_simplex (n + 1)))) | |
| (⇑(((singular_chain_complex R).obj | |
| (Top.of ↥(topological_simplex (n + 1)))).d | |
| (n + 1) | |
| n) | |
| (simplex_to_chain (continuous_map.id ↥(topological_simplex (n + 1))) | |
| R)))))) | |
| _F) | |
| n | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j), | |
| punit.star⟩.fst.fst.app | |
| (Top.of | |
| ↥(topological_simplex | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on | |
| (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : | |
| pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on | |
| (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j + | |
| 1)))) | |
| (⇑(((singular_chain_complex R).obj | |
| (Top.of | |
| ↥(topological_simplex | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on | |
| (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : | |
| pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) | |
| (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) | |
| (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on | |
| (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) | |
| (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j + | |
| 1)))).d | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j + | |
| 1) | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j)) | |
| (simplex_to_chain | |
| (continuous_map.id | |
| ↥(topological_simplex | |
| (⟨nat.rec | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on | |
| (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| 0 | |
| punit.star, | |
| punit.star⟩ | |
| (λ (n : ℕ) | |
| (ih : | |
| pprod ((λ (ᾰ : ℕ), ℕ → ℕ) n) | |
| (nat.below (λ (ᾰ : ℕ), ℕ → ℕ) n)), | |
| ⟨(λ (ᾰ : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ) (ᾰ_1 : ℕ), | |
| (λ (ᾰ ᾰ_1 : ℕ) (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1), | |
| ᾰ_1.cases_on | |
| (λ (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) 0), id_rhs ℕ ᾰ) | |
| (λ (ᾰ_1 : ℕ) | |
| (_F : nat.below (λ (ᾰ : ℕ), ℕ → ℕ) ᾰ_1.succ), | |
| id_rhs ℕ (_F.fst.fst ᾰ).succ) | |
| _F) | |
| ᾰ_1 | |
| ᾰ | |
| _F) | |
| n.succ | |
| ⟨ih, punit.star⟩, | |
| ⟨ih, punit.star⟩⟩) | |
| 0, | |
| punit.star⟩.fst.fst | |
| j + | |
| 1))) | |
| R))))) = | |
| ⇑(((singular_chain_complex R).obj X).d (j + 1) j ≫ (barycentric_subdivision_in_deg R j).app X) | |
| (⇑((singular_chain_complex_basis R (j + 1)).get_basis X) ⟨i_fst, σ⟩) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment