Skip to content

Instantly share code, notes, and snippets.

@PedroArSp
Last active February 3, 2022 00:11
Show Gist options
  • Select an option

  • Save PedroArSp/ab3339335e04144c6248536221d16a17 to your computer and use it in GitHub Desktop.

Select an option

Save PedroArSp/ab3339335e04144c6248536221d16a17 to your computer and use it in GitHub Desktop.
python sklearn para calculo de metricas lineais
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
def show_metricas(y_test,y_pred,rounding:int = 3):
m = {
"MAE":("Erro Absoluto Médio [MAE]" , mean_absolute_error),
"MSE":("Erro Quadratico Médio [MSE]",mean_squared_error),
"RMSE":("variancia", lambda x,y :(mean_squared_error(x,y,squared=False))),
"R2":("R^2", r2_score),
"MAPE":("MAPE", lambda x,y: ((abs(x-y)/x).mean()))
}
#preenche a matriz de resultados chamando os metodos
ret = {tag: round(m[tag][1](y_test,y_pred),rounding) for tag in m}
print('Métricas para a Previsão:')
for tag in m:
print(f'{m[tag][0]}: {ret[tag]}')
return ret
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment