Last active
January 5, 2026 17:20
-
-
Save ObjectBoxPC/f83a072f0de0db61b1be42b7db3e1a96 to your computer and use it in GitHub Desktop.
Rebalance a J.P. Morgan (Chase) investment portfolio from a CSV export of positions
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python3 | |
| import csv | |
| import decimal | |
| import itertools | |
| import sys | |
| def parse_desired_weights(weights_file): | |
| weights = { e["Category"]: decimal.Decimal(e["Desired Weight"]) for e in csv.DictReader(weights_file) } | |
| if sum(weights.values()) != 1: | |
| raise Exception("Desired weights do not sum to 100%") | |
| return weights | |
| def parse_holding_categories(holding_categories_file): | |
| return { e["Ticker"]: e["Category"] for e in csv.DictReader(holding_categories_file) } | |
| def aggregate_positions(positions_file, holding_categories): | |
| category_values = {} | |
| # Read until blank line separating data from footnotes | |
| position_lines = itertools.takewhile(lambda r: r.strip() != "", positions_file) | |
| for entry in csv.DictReader(position_lines): | |
| value = decimal.Decimal(entry["Value"].replace(",", "")) | |
| holding = entry["Ticker"] or entry["CUSIP"] | |
| if holding: | |
| category = holding_categories.get(holding) | |
| if not category: | |
| print("Uncategorized holding {}".format(entry["Ticker"])) | |
| else: | |
| print("Unidentified holding valued at {}".format(value)) | |
| if not (holding and category): | |
| category = "Uncategorized" | |
| if category not in category_values: | |
| category_values[category] = decimal.Decimal("0.00") | |
| category_values[category] += value | |
| return category_values | |
| def calculate_rebalancings(category_values, desired_weights): | |
| rebalancings = [] | |
| total_value = sum(category_values.values()) | |
| # Ensure that categories specifically named in desired weights are listed first | |
| # followed by "extra" categories in the current values | |
| categories = list(desired_weights.keys()) + list(set(category_values.keys()).difference(desired_weights.keys())) | |
| for category in categories: | |
| desired_value = total_value * desired_weights.get(category, 0) | |
| actual_value = category_values.get(category, 0) | |
| difference = desired_value - actual_value | |
| if abs(difference) >= 0.01: | |
| rebalancings.append((category, difference)) | |
| return rebalancings | |
| if len(sys.argv) < 4: | |
| print("Usage: {} [desired weights] [holding categories] [portfolio export]".format(sys.argv[0])) | |
| sys.exit(1) | |
| with open(sys.argv[1]) as weights_file: | |
| desired_weights = parse_desired_weights(weights_file) | |
| with open(sys.argv[2]) as holding_categories_file: | |
| holding_categories = parse_holding_categories(holding_categories_file) | |
| with open(sys.argv[3]) as positions_file: | |
| category_values = aggregate_positions(positions_file, holding_categories) | |
| rebalancings = calculate_rebalancings(category_values, desired_weights) | |
| for rebalancing in rebalancings: | |
| print("{:20}: {:+0.2f}".format(*rebalancing)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment