Created
September 28, 2013 19:33
-
-
Save LaurentMazare/6745649 to your computer and use it in GitHub Desktop.
A simple implementation of the Tonelli-Shanks algorithm to compute a square root in Z/pZ where p is prime. It could probably be made quite faster by using a faster pow_mod function instead of the recursive one and also by trying to avoid some of the modulus calculations.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| long pow_mod(long x, long n, long p) { | |
| if (n == 0) return 1; | |
| if (n & 1) | |
| return (pow_mod(x, n-1, p) * x) % p; | |
| x = pow_mod(x, n/2, p); | |
| return (x * x) % p; | |
| } | |
| /* Takes as input an odd prime p and n < p and returns r | |
| * such that r * r = n [mod p]. */ | |
| long tonelli_shanks(long n, long p) { | |
| long s = 0; | |
| long q = p - 1; | |
| while ((q & 1) == 0) { q /= 2; ++s; } | |
| if (s == 1) { | |
| long r = pow_mod(n, (p+1)/4, p); | |
| if ((r * r) % p == n) return r; | |
| return 0; | |
| } | |
| // Find the first quadratic non-residue z by brute-force search | |
| long z = 1; | |
| while (pow_mod(++z, (p-1)/2, p) != p - 1); | |
| long c = pow_mod(z, q, p); | |
| long r = pow_mod(n, (q+1)/2, p); | |
| long t = pow_mod(n, q, p); | |
| long m = s; | |
| while (t != 1) { | |
| long tt = t; | |
| long i = 0; | |
| while (tt != 1) { | |
| tt = (tt * tt) % p; | |
| ++i; | |
| if (i == m) return 0; | |
| } | |
| long b = pow_mod(c, pow_mod(2, m-i-1, p-1), p); | |
| long b2 = (b * b) % p; | |
| r = (r * b) % p; | |
| t = (t * b2) % p; | |
| c = b2; | |
| m = i; | |
| } | |
| if ((r * r) % p == n) return r; | |
| return 0; | |
| } |
But why inner pow_mod in this line ?
long b = pow_mod(c, pow_mod(2, m-i-1, p-1), p);
2 ** (m - i - 1) is a bit shift, where m is initially amount of trailing zero bits in p (except the lowest bit), so 2 ** (m - something) can never exceed p - 1 (m stays same or decreases on each iteration).
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thanks!
I rewrited this to js BigInt -> https://github.com/gkucmierz/utils/blob/main/src/tonelli-shanks.mjs#L8