Last active
July 20, 2018 06:42
-
-
Save Jwata/0a264309824d2cd6b8fb97b202858604 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| # model1 | |
| def model1_fn(inputs, labels, learning_rate=0.001): | |
| preds = tf.layers.dense(inputs, 1) | |
| cost = tf.losses.mean_squared_error(labels, preds) | |
| optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
| return optimizer, cost, preds | |
| # model2 | |
| def model2_fn(inputs, labels, learning_rate=0.001): | |
| preds = tf.layers.dense(inputs, 1) | |
| cost = tf.losses.mean_squared_error(labels, preds) | |
| optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
| return optimizer, cost, preds | |
| inputs1 = tf.placeholder(shape=(None, 1), dtype=tf.float32) | |
| labels1 = tf.placeholder(shape=(None, 1), dtype=tf.float32) | |
| op1, cost1, preds1 = model1_fn(inputs1, labels1) | |
| saver = tf.train.Saver() | |
| inputs2 = tf.placeholder(shape=(None, 1), dtype=tf.float32) | |
| labels2 = tf.placeholder(shape=(None, 1), dtype=tf.float32) | |
| op2, cost2, preds2 = model2_fn(inputs2, labels2) | |
| # train model1 | |
| x1 = [[1], [2]] | |
| y1 = [[3], [5]] | |
| with tf.Session() as sess: | |
| sess.run(tf.global_variables_initializer()) | |
| for i in range(1000): | |
| _, cost_, preds_ = sess.run( | |
| [op1, cost1, preds1], feed_dict={ | |
| inputs1: x1, | |
| labels1: y1 | |
| }) | |
| print('Cost:', cost_) | |
| print('Preds:', preds_) | |
| saver.save(sess, 'models/test_model1') | |
| class Predictor: | |
| def __init__(self): | |
| self.sess = tf.Session() | |
| saver.restore(self.sess, 'models/test_model1') | |
| def predict(self, inputs): | |
| return self.sess.run(preds1, feed_dict={inputs1: inputs}) | |
| predictor = Predictor() | |
| preds = predictor.predict([[3], [7]]) | |
| print(preds) # [[ 7.3167486], [16.239666 ]] | |
| x2 = preds # [[7], [15]] | |
| y2 = [[7*2.+1.], [15*2.+1.]] | |
| # train model2 | |
| with tf.Session() as sess: | |
| sess.run(tf.global_variables_initializer()) | |
| for i in range(100): | |
| _, cost2_, preds2_ = sess.run( | |
| [op2, cost2, preds2], feed_dict={ | |
| inputs2: x2, | |
| labels2: y2 | |
| }) | |
| print('Cost:', cost2_) | |
| print('Preds:', preds2_) | |
| preds = predictor.predict([[3], [7]]) | |
| print(preds) # [[ 7.3167486], [16.239666 ]] |
Author
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The predictor's parameters don't get initialized by the
sess.run(tf.global_variables_initializer())in another session.