Created
December 26, 2024 20:06
-
-
Save James-Rocker/984c8cda674ea9c68c94d96e12ba545f to your computer and use it in GitHub Desktop.
Comparing Pandera vs Pydantic
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import time | |
| from pydantic import BaseModel, ValidationError, Field | |
| import pandera as pa | |
| from pandera import Column, DataFrameSchema | |
| # Generate a synthetic DataFrame | |
| def generate_data(n: int) -> pd.DataFrame: | |
| data = { | |
| "id": list(range(1, n + 1)), | |
| "name": [f"name_{i}" for i in range(1, n + 1)], | |
| "age": [i % 100 for i in range(1, n + 1)], | |
| "salary": [i * 1000.0 for i in range(1, n + 1)] | |
| } | |
| return pd.DataFrame(data) | |
| # Pydantic model for validating a row | |
| class RowModel(BaseModel): | |
| id: int = Field(..., ge=1) | |
| name: str | |
| age: int = Field(..., ge=0, le=100) | |
| salary: float = Field(..., ge=0.0) | |
| # Pandera schema for validating the entire DataFrame | |
| schema = DataFrameSchema({ | |
| "id": Column(int, checks=pa.Check.ge(1)), | |
| "name": Column(str), | |
| "age": Column(int, checks=[pa.Check.ge(0), pa.Check.le(100)]), | |
| "salary": Column(float, checks=pa.Check.ge(0.0)) | |
| }) | |
| # Validate rows using Pydantic | |
| def validate_with_pydantic(df: pd.DataFrame) -> bool: | |
| valid = True | |
| for row in df.to_dict(orient="records"): | |
| try: | |
| RowModel(**row) | |
| except ValidationError as e: | |
| valid = False | |
| print(f"Pydantic Validation Error: {e}") | |
| return valid | |
| # Validate entire DataFrame using Pandera | |
| def validate_with_pandera(df: pd.DataFrame) -> bool: | |
| try: | |
| schema.validate(df) | |
| return True | |
| except pa.errors.SchemaError as e: | |
| print(f"Pandera Validation Error: {e}") | |
| return False | |
| # Benchmark function | |
| def benchmark(n: int) -> None: | |
| df = generate_data(n) | |
| # Benchmark Pydantic validation | |
| start_time = time.time() | |
| pydantic_valid = validate_with_pydantic(df) | |
| pydantic_time = time.time() - start_time | |
| # Benchmark Pandera validation | |
| start_time = time.time() | |
| pandera_valid = validate_with_pandera(df) | |
| pandera_time = time.time() - start_time | |
| # Results | |
| print(f"Pydantic validation passed: {pydantic_valid}, Time taken: {pydantic_time:.6f} seconds") | |
| print(f"Pandera validation passed: {pandera_valid}, Time taken: {pandera_time:.6f} seconds") | |
| # Run the benchmark with 10000 rows | |
| if __name__ == "__main__": | |
| benchmark(10000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment