Last active
November 21, 2023 17:40
-
-
Save EgorDuplensky/28acd2b5b715470658c0a5d2ebb655b3 to your computer and use it in GitHub Desktop.
Aggregate onnx session counters (enable_profiling=true) by 'args.op_name'
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/usr/bin/env python3 | |
| import json | |
| import pandas as pd | |
| import argparse | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--csv', required=False, help="print as 'csv' data", action='store_true') | |
| parser.add_argument('--group_by', '-g', choices=['name', 'args.op_name'], default=['args.op_name'], required=False, help="print data using format", nargs='+') | |
| parser.add_argument('onnxruntime_profile_file') | |
| return parser.parse_args(); | |
| def get_dataframe(path): | |
| with open(path) as f: | |
| d = json.load(f) | |
| return pd.json_normalize(d) | |
| def aggregate(df, group_by): | |
| df = df[['name', 'dur', 'args.op_name', 'args.provider']] | |
| # args.provider must be present | |
| defined_kernel_time=df[df['args.provider'].notnull()] | |
| # group by all the inferences first | |
| aggregated = defined_kernel_time.groupby(['name', 'args.op_name'])['dur'].mean().reset_index() | |
| # group by requested group | |
| aggregated = aggregated.groupby(group_by, as_index=False)['dur'].agg(['count','sum']) | |
| # sort by duration | |
| result = aggregated.sort_values(by=['sum'], ascending=False) | |
| result = result.round({'sum': 3}) | |
| # microseconds to milliseconds | |
| result.loc[:,'sum'] /= 1000 | |
| # add percentage | |
| result['%'] = (result['sum'] / result['sum'].sum()) * 100 | |
| # add total | |
| result.loc['Total'] = result.sum(numeric_only=True) | |
| result.at['Total', 'args.op_name'] = 'Total' | |
| # round percentage | |
| result = result.round({'%': 2}) | |
| # ensure count as int (no trailing .0) | |
| result['count'] = result['count'].astype('int') | |
| # rename columns | |
| result = result.rename(columns={"args.op_name": "Node type", "count": "Count", "sum":"Sum (ms)"}) | |
| return result | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| df = get_dataframe(args.onnxruntime_profile_file); | |
| df = aggregate(df, args.group_by) | |
| if args.csv: | |
| print(df.to_csv(index=False)) | |
| else: | |
| print(df.to_string(index=False)) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| pip install pandas argparse | |
| sum-perf-counters-onnx.py benchmark_average_counters_report.csv | |
| sum-perf-counters-onnx.py --csv benchmark_average_counters_report.csv |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment