Created
October 26, 2025 12:09
-
-
Save EelcoHoogendoorn/684a3d324a2d4d28a0d9dc9391688060 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| from numga.backend.numpy.context import NumpyContext | |
| from numga.examples.conformal_elliptical import setup_rays, image_downsample, render | |
| def test_rigid(): | |
| cga = NumpyContext('x+y+z+') | |
| x,y,z = cga.multivector.basis() | |
| rays, mask = setup_rays(512) | |
| rays = cga.multivector.vector(rays) | |
| planes = np.array(np.meshgrid(*[[1, 0, -1]]*3)).reshape(3, -1).T[:13] | |
| planes = cga.multivector.vector(planes) | |
| planes = planes.normalized() #+ n | |
| render2 = lambda planes: image_downsample((render(rays, planes) + 1) * (1 - mask)) | |
| b = -(x^z)+(y^z) | |
| # b = ((x + y).normalized()).dual() & ((- x - y).normalized()).dual() | |
| motors = [(b.normalized()*a).exp() for a in np.linspace(0, np.pi, 100)] | |
| from numga.examples.physics.render import write_animation_simulation | |
| write_animation_simulation( | |
| [m >> planes for m in motors], | |
| render2, | |
| 'sphere_rigid.gif' | |
| ) | |
| def test_conformal(): | |
| cga = NumpyContext('x+y+z+n-') | |
| x,y,z,n = cga.multivector.basis() | |
| sphere = cga.subspace.vector().difference(cga.subspace.n) | |
| def make_scalar(s): | |
| return cga.multivector.scalar(np.array(s)[:, None]) | |
| def make_vector(v): | |
| return cga.multivector.multivector(values=v, subspace=sphere) | |
| def make_plane(s, d=0): | |
| return (s.normalized() + d*n) | |
| def make_point(s): | |
| """norm-0 antivector""" | |
| return make_plane(s, 1).dual() | |
| # set up rays | |
| rays, mask = setup_rays(512) | |
| rays = make_vector(rays) + n | |
| # set up scene | |
| planes = np.array(np.meshgrid(*[[1, 0, -1]]*3)).reshape(3, -1).T[:13] # all planes of the octahedral symmetry group | |
| # planes = planes[(planes!=0).sum(axis=1)==3] | |
| planes = make_vector(planes).normalized() | |
| render2 = lambda planes: image_downsample((render(rays, planes.normalized()) + 1) * (1 - mask)) | |
| l, r = make_point(z + x + y), make_point(z - x - y) | |
| if True: | |
| filename = 'rotation' | |
| # l, r = make_point( + x + y), make_point( - x - y) | |
| b = l & r # join of antivector points; rotation transform | |
| b = b.normalized() | |
| if False: | |
| filename = 'dipole' | |
| # bireflection in two infinitimal circles; dipole transform | |
| # note intersecting line lies outside the unit sphere | |
| b = (l.dual() ^ r.dual()) | |
| if False: | |
| # note intersecting line lies outside the unit sphere, at infinity | |
| filename = 'zoom' | |
| l, r = make_plane(y, -0.5), make_plane(y, -0.6) # concentric bireflection; zoom | |
| b = l ^ r | |
| print(b.norm()) | |
| print(b.symmetric_reverse_product()) | |
| print(b.dual().symmetric_reverse_product()) | |
| print(b.squared()) | |
| # return | |
| a = make_scalar(np.linspace(-np.pi/2, np.pi/2, 100, endpoint=False)) | |
| motors = (b*a).exp() | |
| # print(motors.norm()) | |
| if False: | |
| filename = 'mirror' | |
| v = make_vector([1, 1, 1]) | |
| d = make_scalar(np.linspace(.999 , -.999, 100, endpoint=True)) | |
| motors = make_plane(v, d) | |
| from numga.examples.physics.render import write_animation_simulation | |
| write_animation_simulation( | |
| # [m >> planes for m in motors], | |
| motors[:, None] >> planes, | |
| render2, | |
| # 'sphere_conformal_zoom_y_slow_q20.gif', | |
| f'sphere_conformal_{filename}.gif', | |
| fps=20, | |
| q=33, | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment