Created
September 16, 2024 20:11
-
-
Save DocShotgun/c67c1220a82506133e7b1f4886260ab6 to your computer and use it in GitHub Desktop.
Bash script to setup axolotl+FA2+BnB+liger-kernel on Runpod MI300X
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #!/bin/bash | |
| # Setup Axolotl with FA2 and BnB ROCm - doctorshotgun Sept 16, 2024 | |
| # Runpod image: RunPod Pytorch 2.1.2 ROCm 6.1 runpod/pytorch:2.1.2-py3.10-rocm6.1-ubuntu22.04 | |
| # Install torch and flash-attn | |
| pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/rocm6.1 | |
| #pip install https://download.pytorch.org/whl/nightly/pytorch_triton_rocm-3.0.0%2Bdafe145982-cp310-cp310-linux_x86_64.whl | |
| pip install https://github.com/DocShotgun/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+rocm6.1+torch2.4.0-cp310-cp310-linux_x86_64.whl | |
| # For some reason we need to manually install amdsmi for torch 2.4.0 with ROCm 6.1 | |
| cd /opt/rocm/share/amd_smi && pip install . | |
| # Install Axolotl | |
| cd /workspace/ | |
| git clone https://github.com/DocShotgun/axolotl && cd axolotl | |
| pip install -e '.[deepspeed]' | |
| # Install Bitsandbytes (multi-backend-refactor branch) | |
| cd /workspace/ | |
| git clone https://github.com/bitsandbytes-foundation/bitsandbytes && cd bitsandbytes/ | |
| git checkout 2bfa3472ecde8f3e4a0306b017826314c288b7c8 | |
| pip install -r requirements-dev.txt | |
| cmake -DCOMPUTE_BACKEND=hip -S . | |
| make | |
| pip install -e . | |
| # Install Liger-Kernel and compatible Triton | |
| pip uninstall liger-kernel -y | |
| pip install liger-kernel@git+https://github.com/DocShotgun/Liger-Kernel | |
| # To begin training, run: | |
| # accelerate launch -m axolotl.cli.train <your_config.yml> | |
| # If you encounter an error related to xformers, you can try editing /src/axolotl/monkeypatch/llama_attn_hijack_flash.py (for llama-type models) to comment out the xformers import and force is_xformers_swiglu_available to return False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment