Using Python's built-in defaultdict we can easily define a tree data structure:
def tree(): return defaultdict(tree)That's it!
| #!/usr/bin/python3 | |
| from cnn import cnn | |
| import hyperopt | |
| def objective(args): | |
| params = cnn.ExperimentParameters() |
| import tensorflow as tf | |
| import numpy as np | |
| FC_SIZE = 1024 | |
| DTYPE = tf.float32 | |
| def _weight_variable(name, shape): | |
| return tf.get_variable(name, shape, DTYPE, tf.truncated_normal_initializer(stddev=0.1)) |
| #!/usr/bin/env python | |
| """ | |
| Example of using Keras to implement a 1D convolutional neural network (CNN) for timeseries prediction. | |
| """ | |
| from __future__ import print_function, division | |
| import numpy as np | |
| from keras.layers import Convolution1D, Dense, MaxPooling1D, Flatten | |
| from keras.models import Sequential |
| import pandas as pd | |
| from random import random | |
| flow = (list(range(1,10,1)) + list(range(10,1,-1)))*100 | |
| pdata = pd.DataFrame({"a":flow, "b":flow}) | |
| pdata.b = pdata.b.shift(9) | |
| data = pdata.iloc[10:] * random() # some noise | |
| import numpy as np |
| from sys import argv | |
| from base64 import b64encode | |
| from datetime import datetime | |
| from Crypto.Hash import SHA, HMAC | |
| def create_signature(secret_key, string): | |
| """ Create the signed message from api_key and string_to_sign """ | |
| string_to_sign = string.encode('utf-8') | |
| hmac = HMAC.new(secret_key, string_to_sign, SHA) | |
| return b64encode(hmac.hexdigest()) |
Using Python's built-in defaultdict we can easily define a tree data structure:
def tree(): return defaultdict(tree)That's it!