Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save BrianMartell/e6f7723113ff0f6264ae28380039f322 to your computer and use it in GitHub Desktop.

Select an option

Save BrianMartell/e6f7723113ff0f6264ae28380039f322 to your computer and use it in GitHub Desktop.
PUH-BrianMartell puh_lattice_shift_experiment_error_calibration_simulation.py-Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
# PUH v25: Lattice-Shift Experiment Error Calibration Sim — Signal vs Noise Budget (Anomaly Detectable)
time = np.linspace(0, 3600*10, 500) # Time s 10 hours arb.
noise_floor = 1e-15 * np.random.randn(len(time)) # Total error ~10^{-15} rad toy
gr_signal = 1e-15 * np.sin(2 * np.pi * time / 3600) # Weak GR linear toy
puh_anomaly = 1e-12 * np.sin(2 * np.pi * time / 3600) # PUH excess ~10^{-12} toy
detected = noise_floor + gr_signal + puh_anomaly # Measured signal
plt.figure(figsize=(10,6))
plt.plot(time/3600, noise_floor, label='Noise Floor ~10^{-15} rad', color='gold', alpha=0.5)
plt.plot(time/3600, gr_signal, '--', label='GR Weak Signal', color='purple')
plt.plot(time/3600, detected, label='Detected PUH Anomaly + Noise >10\sigma', color='cyan')
plt.xlabel('Time (hours)'); plt.ylabel('Torsional Displacement (rad arb.)')
plt.title('PUH v25: Lattice-Shift Experiment Error Calibration Sim')
plt.legend(); plt.grid(alpha=0.3)
plt.tight_layout()
plt.savefig('puh_lattice_shift_experiment_error_calibration_simulation.png', dpi=300)
plt.show()
print("Noise floor, weak GR, strong PUH anomaly detectable — error budget calibration.")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment