Skip to content

Instantly share code, notes, and snippets.

@Bornlex
Created February 24, 2020 16:32
Show Gist options
  • Select an option

  • Save Bornlex/5797bb11582a94b5ed4edc6927b8aa9e to your computer and use it in GitHub Desktop.

Select an option

Save Bornlex/5797bb11582a94b5ed4edc6927b8aa9e to your computer and use it in GitHub Desktop.
LATENT_SIZE = 16
adam = keras.optimizers.Adam(lr=0.0002, beta_1=0.5)
with tf.device("/gpu:0"):
input_x_img = keras.layers.Input((784,))
x = keras.layers.Dense(1024, activation="relu")(input_x_img)
x = keras.layers.Dense(256, activation="relu")(x)
x = keras.layers.Dense(1, activation="sigmoid")(x)
discriminator = keras.models.Model(inputs=input_x_img, outputs=x)
discriminator.compile(optimizer=adam, loss="binary_crossentropy")
input_x_latent = keras.layers.Input((LATENT_SIZE,))
x = keras.layers.Dense(256, activation="relu")(input_x_latent)
x = keras.layers.Dense(1024, activation="relu")(x)
x = keras.layers.Dense(784, activation="tanh")(x)
generator = keras.models.Model(inputs=input_x_latent, outputs=x)
generator.compile(optimizer=adam, loss="binary_crossentropy")
discriminator.trainable = False
gan_input = keras.layers.Input((LATENT_SIZE,))
x = generator(gan_input)
gan_output = discriminator(x)
gan = keras.models.Model(inputs=gan_input, outputs=gan_output)
gan.compile(optimizer=adam, loss="binary_crossentropy")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment