Created
March 24, 2022 17:51
-
-
Save AsselKashkenbayeva/8e5ac329c9cf7d425470b4489ef47f61 to your computer and use it in GitHub Desktop.
simple demonstrating of interactive bar plot with duel axis using plotly dash.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #app required libraries | |
| from dash import Dash, dcc, html | |
| from dash.dependencies import Input, Output, State | |
| #libraries required for visualisation | |
| import plotly.express as px | |
| import plotly.graph_objs as go | |
| from plotly.subplots import make_subplots | |
| #general | |
| import pandas as pd | |
| import numpy as np | |
| import random | |
| from datetime import datetime, timedelta | |
| #create dummy data | |
| car_inventory = pd.DataFrame({'Car Brand': random.choices(['Tesla', 'Tayota', 'Kia', 'Honda', 'Volvo', 'Skoda'], k = 1000)}) | |
| car_inventory['Fuel Type'] = random.choices(['Electric', 'Diesal', 'Hybrid', 'Petrol'], k = len(car_inventory)) | |
| car_inventory['Color'] = random.choices(['White', 'Blue', 'Silver', 'Black'], k = len(car_inventory)) | |
| #our fictional car dealership deals mainly with new cars, so lets assign weights to this attribute where the probability of a car within the inventory being new is 0.8 | |
| car_inventory['New/Used'] = np.random.choice(['New', 'Used'],len(car_inventory), p = [0.8,0.2]) | |
| car_inventory['Cost'] = random.sample(range(100, 15000), len(car_inventory)) | |
| #pick random date from last 90 days for car purchase | |
| def random_date(): | |
| start = datetime.now() | |
| end = start + timedelta(days=90) | |
| random_date = start + (end - start) * random.random() | |
| return random_date | |
| car_inventory['Purchase Date'] = car_inventory['Cost'].apply(lambda x: random_date().strftime('%Y/%m/%d')) | |
| def remove_cost(): | |
| no_cost = list(car_inventory.columns) | |
| no_cost.remove('Cost') | |
| return no_cost | |
| app = Dash(__name__) | |
| app.layout = html.Div([ | |
| dcc.Dropdown(id='car_attribute_dropdown', | |
| placeholder='Car Attribute',options= [{'label': i, 'value': i} for i in remove_cost()],style= { 'width': '50%','text-align':'center', | |
| 'font-size' : 'large', | |
| 'font-weight' : 'bold', | |
| 'font-family' : "DejaVu Sans Mono, monospace"}), | |
| dcc.Graph( id = 'bar_graph', style= { 'width': '80%', 'height': '800px'})]) | |
| @app.callback( | |
| Output("bar_graph", "figure"), | |
| Input("car_attribute_dropdown", "value"), | |
| ) | |
| def make_grouped_plot(attribute): | |
| #an if statement to handle if no value is selected in dropdown and None is passed | |
| if attribute is None: | |
| attribute = 'Car Brand' | |
| df = pd.DataFrame(car_inventory.groupby(attribute)['Cost'].agg({'sum', 'size'}).reset_index()).rename(columns= {'size' : 'Unit', 'sum': 'Potential Revenue'}) | |
| #create figure with secondary y-axis | |
| fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
| #with plotly.go, each trace needs to be added into the figure seperately | |
| fig.add_trace(go.Bar(x=df[attribute], y=df['Unit'], name='Unit Count' ,marker_color = '#43B02A',offsetgroup=1 ,), secondary_y=False) | |
| fig.add_trace(go.Bar(x=df[attribute], y=df['Potential Revenue'], name='Potential Revenue' ,marker_color = '#00A3E0',offsetgroup=2 ,hovertemplate = '%{y:$,.0f}'), secondary_y=True) | |
| #change layout preferences | |
| fig.update_layout( | |
| barmode='group', | |
| font_size = 20, | |
| hovermode="x unified", | |
| ) | |
| #set y-axes titles | |
| fig.update_yaxes(title_text="Potential Revenue: <b>Cost (in $) </b> ", secondary_y=True) | |
| fig.update_yaxes(title_text="Unit <b>Count</b>", secondary_y=False) | |
| return fig | |
| if __name__ == '__main__': | |
| #app.run_server(host='127.0.0.1', port= int(os.environ['CDSW_APP_PORT'])) | |
| app.run_server(debug=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment