Skip to content

Instantly share code, notes, and snippets.

@19h
Last active October 20, 2025 19:47
Show Gist options
  • Select an option

  • Save 19h/1e5fc5a55136d10d20d06cd24723aa3b to your computer and use it in GitHub Desktop.

Select an option

Save 19h/1e5fc5a55136d10d20d06cd24723aa3b to your computer and use it in GitHub Desktop.
Robust, ditto-like deduplicating recursive copy for macOS/APFS
// ============================================================================
// dcopy — Robust, APFS-aware, ditto-like recursive copy for macOS
// ============================================================================
//
// dcopy is a robust, mission-grade copy/clone engine for macOS/APFS. It marries
// fast, low-syscall enumeration with parallel hashing and IO, opportunistic APFS
// clone paths, sparse-aware streaming, and multi-strategy deduplication. It
// prioritizes crash safety (temp-file + fsync + atomic rename), correctness, and
// predictable performance on very large trees.
//
// Problem statement (why this exists)
// -----------------------------------
// Moving multi-terabyte, high-value datasets on APFS efficiently and safely is
// non-trivial:
//
// * Traditional tools either don’t exploit APFS clone-on-write (CoW) or do so
// inconsistently across versions and mount types.
// * rsync/cp may stream bytes even when an in-filesystem clone would suffice.
// * Sparse files, hardlinks, xattrs, and directory durability are often
// handled in ways that trade safety for speed, or vice versa, without
// transparent control.
// * Deduplication is typically content-hash only; APFS also enables physical
// extent-based opportunities on a single volume.
//
// dcopy addresses these gaps with explicit APFS-aware fast paths, strict crash
// safety by default, and tunable concurrency/IO budgets.
//
// Contrast with ditto / cp / rsync / scp
// --------------------------------------
// * ditto: Good metadata handling on macOS; APFS clone usage varies by version
// and options. dcopy always attempts clonefile(2)/fclonefileat(2) on same-FS,
// else falls back. dcopy also adds physical-extent dedupe and persistent hash
// caching.
// * cp: On macOS, `cp -c`/`--clone` exists on some versions; behavior differs
// across releases. dcopy detects and falls back automatically, and adds
// sparse-aware streaming, parallelism, and durable temp-rename semantics.
// * rsync: Powerful delta/remote sync; expensive on local CoW filesystems if
// cloning would suffice. rsync’s metadata/durability knobs are numerous and
// non-APFS-specific. dcopy is single-host/local only, APFS-aware, and built
// for large local moves with strict atomicity/fdatasync discipline.
// * scp: Network copy; not CoW-aware, not sparse-aware on the remote FS.
// dcopy focuses on local APFS volumes.
//
// APFS primer (concise)
// ---------------------
// * APFS is CoW: metadata and data are clone-on-write. File “cloning” creates a
// new inode whose logical blocks reference the same physical extents as the
// source. Writes to either inode copy-on-write new blocks, diverging storage.
// * APFS clone syscalls: clonefile(2)/fclonefileat(2) create a logical clone
// within the same APFS volume; cross-volume returns EXDEV.
// * Sparse files: APFS supports holes. The logical size can far exceed allocated
// physical bytes. On Darwin, SEEK_DATA/SEEK_HOLE and F_LOG2PHYS_EXT expose
// sparsity and logical→physical extent mapping.
// * Integrity: rename(2) is atomic within a filesystem; combined with fsync on
// file and directory, it provides strong crash-consistency for file creation.
//
// Interfaces used (Darwin/XNU & friends)
// --------------------------------------
// * Enumeration: getattrlistbulk(2) (fast batched metadata) with adaptive masks;
// per-subtree fallback to FTS if EINVAL or partial support.
// * Cloning: clonefile(2)/fclonefileat(2) (APFS-native).
// * Kernel copy helpers: copyfile(3)/fcopyfile(3) with COPYFILE_CLONE where
// possible, falling back to COPYFILE_ALL.
// * Sparse IO: SEEK_DATA/SEEK_HOLE scanning; F_PREALLOCATE to reserve space;
// F_NOCACHE on both fds; F_RDAHEAD / F_RDADVISE for read-ahead hints.
// * Physical extent fingerprinting: fcntl(F_LOG2PHYS_EXT) to walk logical→
// physical extents and derive a compact, volume-local “phys-fp” key.
// * Durability: fsync(2), fcntl(F_FULLFSYNC) when available; renameatx_np with
// RENAME_EXCL when no-clobber is desired.
// * iCloud: SF_DATALESS flag filtering to avoid materialization (opt-in).
//
// Architectural overview
// ----------------------
// Phases (high-level):
// 1) Enumerate: Traverse all roots (bulk API; per-subtree FTS fallback). Build
// a flat vector of Entry {path, rel, type, size, times, dev, ino, nlink}.
// 2) Pre-analysis:
// a) Size binning: stable sort by size; sum bytes_total.
// b) Sampling: for size-duplicate groups, compute 64-bit sample (head/mid/
// tail XXH3). Groups with identical (size,sample) are candidates for hash.
// c) Physical fingerprints: for groups with ≥3 items and size≥threshold,
// compute phys-fp via F_LOG2PHYS_EXT (opportunistic dedupe on same volume).
// d) Hashing: for candidate groups, compute XXH3-128 digests in parallel,
// reusing a persistent append-only hash cache keyed by (dev, ino, size,
// mtime, ctime).
// 3) Scheduling:
// a) Emit directory creation jobs first, to construct tree topology.
// b) Emit file jobs sorted by size descending (improve early throughput).
// c) Emit “other” (symlinks/..). All jobs flow into an IO job queue.
// 4) IO execution (N workers):
// a) For each file: try fast paths in order—same-volume clone; anchor-clone
// by phys-fp; anchor-clone by content hash; kernel copy; sparse streaming;
// dense streaming. All writes go to a uniquely named temp file in the
// target dir, then fsync + atomic rename.
// b) Hardlinks: track first “appearance” of (dev, ino) and link subsequent
// entries to maintain hardlink topology.
// c) Metadata: for files, copy with copyfile(COPYFILE_METADATA). Directories
// obey the selected metadata policy (full|safe|minimal).
// d) Durability: strict mode fsyncs target directory after rename; batch mode
// defers per-directory fsync using a shard-local budget.
// e) Optional deletion: if enabled, verify dst vs src (size|sample|hash), and
// unlink the source only on successful verification (never when src==dst).
//
// Internal subsystems:
// * Persistent hash cache: append-only binary log on disk for XXH128 digests,
// cheap in-memory index keyed by (dev, ino, size, mtimes). Avoids rehashing.
// * Three sharded lock-free-style maps (with per-shard mutex):
// - DigestMap (content hash → anchor dst path), used for dedupe clone.
// - InoMap ((dev,ino) → first dst path), used for hardlink preservation.
// - PhysMap (phys-fp → anchor dst path), used for physical clone dedupe.
// Sharding minimizes lock contention under high concurrency.
// * Token-bucket inflight limiter: global cap on concurrently “in-flight” bytes
// across workers to bound page-cache and memory pressure.
// * Buffer pool: fixed-size aligned read buffers per IO worker to reduce malloc/
// free churn and improve cache locality.
// * Directory FD cache: small LRU for parent dir fds to reduce open/close/fsync
// overhead when many files land in the same directory.
// * Progress/logging: a dedicated progress updater renders a single status line;
// all human logs (COPY/CLONE/LINK/DEL) synchronize on a global log mutex to
// avoid interleaving.
//
// Failure handling & fallbacks
// ---------------------------
// * getattrlistbulk(2) → per-subtree FTS on EINVAL/incompatibility.
// * clonefile(2)/fclonefileat(2) → copyfile()/streaming on EXDEV/ENOTSUP/EPERM.
// * SEEK_DATA/SEEK_HOLE absent → dense streaming copy.
// * F_PREALLOCATE may fail (e.g., network FS) → best-effort, continue.
// * copyfile()/fcopyfile() errors → streaming fallback.
// * Hashing errors → mark un-hashed; copy still proceeds.
// * Deletion is strictly gated by verification and inode inequality (src!=dst).
//
// Safety & correctness model
// --------------------------
// * Writes use temp files (unique per destination directory). File content is
// fully written and fsync’d (F_FULLFSYNC if available) before atomic rename.
// * In strict mode, parent directory is fsync’d after rename (and after mkdir).
// * No-clobber by default. `--overwrite` and `--update` opt into replacement.
// * Hardlinks preserved by default; this is essential for correctness on trees
// with multi-link files (e.g., software installations).
// * Sparse semantics preserved unless `--no-sparse` is set.
// * Optional deletion uses a selectable verification policy:
// VERIFY_SIZE (fastest; equal size only),
// VERIFY_SAMPLE (XXH3-64 of head/mid/tail; low FP risk, not cryptographic),
// VERIFY_HASH (XXH3-128 over full file; fast and strong; default).
// * iCloud dataless entries (SF_DATALESS) are skipped by default to avoid forced
// network materialization; opt-in via `--include-icloud`.
//
// Performance characteristics (big-O-ish & practical)
// ---------------------------------------------------
// * Enumeration: O(n) with large constant improvements vs FTS via bulk batched
// syscalls. Per-record lstat only where necessary for fidelity.
// * Sampling & hashing: O(k) over candidate groups; parallelized across CPUs.
// * Scheduling: O(n log n) sort by size (qsort), then stable bucket operations.
// * IO: bounded by inflight cap and per-worker buffer; throughput typically gated
// by storage and clone support.
//
// Tunables (compile-time & constants)
// -----------------------------------
// * DCOPY_CACHELINE (default 64) : alignment/padding for shard structs.
// * READ_BUFSZ_DEFAULT (4 MiB) : per-IO buffer size default.
// * DIGEST_LEN (16) : XXH3-128 length.
// * MAX_THREADS (128) : guardrail for worker counts.
// * DEFAULT_RDADVISE_MB (32) : read-ahead window in MiB.
// * DEFAULT_INFLIGHT_MB (512) : global inflight-bytes cap in MiB.
// * DIRFD_CACHE_MAX (64) : LRU entries for directory FD cache.
// * PHYS_FP_MIN_SIZE (1 MiB) : minimum file size for phys-fp pass.
// * MAP_SHARDS (64) : shard count for Digest/INO/Phys maps;
// load factor thresholds (MAP_LF_NUM/DEN) control rehashing.
// * DMAP_INIT_TOTAL / IMAP_INIT_TOTAL: initial table sizing hints.
// * TMP_SUFFIX (\".dctmp\") : temp file marker.
// * Feature guards: HAVE_RENAMEATX_NP, RENAME_EXCL, SEEK_DATA/HOLE defines,
// XXH_STATIC_LINKING_ONLY, XXH_IMPLEMENTATION.
// Adjust in code if building for atypical environments (older SDKs, etc.).
//
// Defaults (runtime)
// ------------------
// * Metadata policy: SAFE (directories get mode only; file metadata always copied)
// * Durability: STRICT (file fsync + dir fsync after rename)
// * Enumeration: BULK (getattrlistbulk) with FTS fallback
// * Sparse: enabled; kernel copy: opt-in (`--kernel-copy`)
// * Hashing threads: = online CPUs (capped); IO threads: = min(4, CPUs)
// * Inflight cap: 512 MiB; per-IO buffer: 4 MiB; read-ahead: 32 MiB
// * Hardlinks preserved; iCloud dataless skipped; no-clobber by default
// * Deletion disabled unless `--delete-source` / `--delete-source-existing`
// * Delete verification default: HASH
//
// Data integrity notes
// --------------------
// * rename is atomic on the same filesystem; combined with fsync discipline it
// ensures that after success, either the old file or the new complete file is
// visible (never a partial). Strict mode fsyncs the parent dir to persist the
// name binding. Batch mode coalesces directory fsyncs per budget.
// * Source deletion is never performed without a positive verification and
// explicit user opt-in. The tool refuses to delete when src/dst are the same
// inode (safeguard).
//
// Build
// -----
// clang -std=c23 -O3 -ffast-math -fomit-frame-pointer -foptimize-sibling-calls \
// -fno-stack-protector -fno-strict-overflow -fno-use-cxa-atexit -flto \
// -Wall -Wextra -pthread -o dcopy dcopy.c
//
// Portability & environment
// -------------------------
// * Requires macOS with APFS for clone fast-paths and F_LOG2PHYS_EXT. Falls back
// to portable paths on other filesystems/mounts (e.g., SMB/NFS).
// * copyfile(3) semantics on network mounts can vary; sparse and preallocation
// hints may be ignored by remote servers. The engine adapts without failing.
// * F_FULLFSYNC behavior depends on underlying device driver; fsync fallback is
// used when unavailable.
//
// Operational guidance (for developers)
// -------------------------------------
// * For maximum safety on mission-critical moves, use a two-pass approach:
// 1) run without deletion, verify results, 2) re-run with --delete-source
// or --delete-source-existing, keeping VERIFY_HASH.
//
// * Increase --io-threads for many small files on SSD/NVMe. Increase --inflight
// for deep NVMe queues, but watch memory pressure. For HDDs, conservative
// thread counts typically perform better.
//
// * When measuring performance, disable excessive verbosity (-v) as log
// serialization is deliberate and can limit throughput on very chatty runs.
//
// Internal ASCII sketch
// ---------------------
// [Enumerate] → [Size bin] → [Sample groups] → [Phys-fp (optional)] → [Hash]
// | |
// └──> [Dirs → IOQ] [Files(size↓) → IOQ] [Other → IOQ] |
// ↓ |
// [IO workers] — clone → copyfile → streaming
// ↓
// [fsync + atomic rename] → [optional delete]
//
// License & support
// -----------------
// * Freely distributed. No warranty. No support. Use at your own risk. Read
// the usage/help (-h) for detailed operational semantics and defaults.
//
// © 2025
#define _DARWIN_C_SOURCE 1
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdnoreturn.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <stdalign.h>
#include <fts.h>
#include <sys/attr.h>
#include <sys/clonefile.h>
#include <sys/mount.h> /* statfs / f_fstypename */
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/sysctl.h> /* hw.memsize for RAM-based inflight clamping */
#include <sys/time.h>
#include <sys/types.h>
#include <sys/vnode.h>
#include <copyfile.h>
// Use xxHash as a header-only library
#define XXH_STATIC_LINKING_ONLY 1
#define XXH_IMPLEMENTATION 1
#include "xxhash.h"
// Darwin extensions (renameatx_np flags).
#ifndef RENAME_EXCL
#define RENAME_EXCL 0x00000004u
#endif
#ifndef HAVE_RENAMEATX_NP
#define HAVE_RENAMEATX_NP 1
#endif
extern int renameatx_np(int fromfd, const char *from, int tofd, const char *to, unsigned int flags);
// SEEK_DATA/SEEK_HOLE (Solaris/FreeBSD/Darwin extension).
#ifndef SEEK_DATA
#define SEEK_DATA 3
#endif
#ifndef SEEK_HOLE
#define SEEK_HOLE 4
#endif
#if defined(__GNUC__) || defined(__clang__)
#define DCOPY_ALIGN_TYPE(n) __attribute__((aligned(n)))
#elif defined(_MSC_VER)
#define DCOPY_ALIGN_TYPE(n) __declspec(align(n))
#else
#define DCOPY_ALIGN_TYPE(n)
#endif
#ifndef DCOPY_CACHELINE
#define DCOPY_CACHELINE 64
#endif
// ============================ Config / defaults ============================
#define READ_BUFSZ_DEFAULT (4 << 20) // 4 MiB
#define DIGEST_LEN 16 // XXH128 is 128 bits = 16 bytes
#define TMP_SUFFIX ".dctmp"
#define MAX_THREADS 128
#define DEFAULT_RDADVISE_MB 32 // 32 MiB
#define DEFAULT_INFLIGHT_MB 512 // 512 MiB
#define DIRFD_CACHE_MAX 64
#define PHYS_FP_MIN_SIZE (1 << 20) // 1 MiB: bound phys-fingerprint pass
#define MAP_SHARDS 64u
#define MAP_LF_NUM 7u
#define MAP_LF_DEN 10u
#define DMAP_INIT_TOTAL (1u << 14)
#define IMAP_INIT_TOTAL (1u << 13)
#define MIN_SHARD_CAP 16u
#define DIRB_SHARDS 64
static int g_verbose = 0;
static int g_quiet = 0;
static int g_progress_enabled = 1;
// ============================ Logging / errors ============================
static pthread_mutex_t g_log_mu = PTHREAD_MUTEX_INITIALIZER;
static noreturn void die(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
va_end(ap);
exit(2);
}
static void warnx(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "warn: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
va_end(ap);
}
static void vmsg(const char *fmt, ...) {
if (g_verbose == 0) return;
va_list ap;
va_start(ap, fmt);
pthread_mutex_lock(&g_log_mu);
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
va_end(ap);
}
/* --- File-operation prefix test (for conditional verbosity) ----------------- */
static inline int is_fileop_prefix(const char *fmt) {
/* skip leading spaces/tabs just in case */
while (*fmt == ' ' || *fmt == '\t') fmt++;
/* match the operation tags we emit: COPY / CLONE / LINK / DEL / PLAN */
return (strncmp(fmt, "COPY", 4) == 0) ||
(strncmp(fmt, "CLONE", 5) == 0) ||
(strncmp(fmt, "LINK", 4) == 0) ||
(strncmp(fmt, "DEL", 3) == 0) ||
(strncmp(fmt, "PLAN", 4) == 0);
}
/* ============================ Logging / info lines ========================== */
/* NOTE: File-operation lines (COPY/CLONE/LINK/DEL/PLAN …) only print when -v. */
static void pmsg(const char *fmt, ...) {
if (g_quiet) return;
/* Suppress noisy per-file ops unless verbose is enabled */
if (g_verbose == 0 && is_fileop_prefix(fmt)) {
return;
}
va_list ap;
va_start(ap, fmt);
pthread_mutex_lock(&g_log_mu);
if (g_progress_enabled) {
/* clear any dynamic progress line */
fprintf(stderr, "\r%*s\r", 120, "");
}
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
va_end(ap);
}
/* ============================ Autotune status line ============================ */
/* Always-on status line (ignores g_quiet) to avoid "stuck" appearance. */
static void bench_statusf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "\r"); /* begin line */
vfprintf(stderr, fmt, ap);
fprintf(stderr, " "); /* minimal padding to clear remnants */
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
va_end(ap);
}
/* End the current status line with a newline (only when appropriate). */
static void bench_status_endline(void)
{
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "\n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
}
/* Outer-run context for status; set from orchestrator before each run. */
static int g_bench_outer_idx = 0; /* 1-based */
static int g_bench_outer_total = 1; /* total runs */
// ============================ CLI options ============================
typedef enum { CLOBBER_NO = 0, CLOBBER_OVERWRITE = 1, CLOBBER_UPDATE = 2 } ClobberMode;
typedef enum { META_FULL = 0, META_SAFE = 1, META_MINIMAL = 2 } MetaMode;
typedef enum { DUR_STRICT = 0, DUR_BATCH = 1 } DurabilityMode;
typedef enum { ENUM_FTS = 0, ENUM_BULK = 1 } EnumMode;
typedef enum { VERIFY_SIZE = 0, VERIFY_SAMPLE = 1, VERIFY_HASH = 2 } VerifyMode;
typedef struct {
/* Core behavior */
bool dry_run;
bool follow_symlinks;
bool preserve_hardlinks;
bool progress;
bool include_icloud;
bool one_file_system;
bool use_kernel_copy;
bool sparse_copy;
/* Deletion model */
bool delete_source; /* --delete-source */
bool delete_source_existing; /* --delete-source-existing */
VerifyMode delete_verify; /* --delete-verify size|sample|hash */
/* Tunables */
int jobs_hash;
int jobs_io;
ClobberMode clobber;
MetaMode meta_mode;
DurabilityMode dur_mode;
EnumMode enum_mode;
size_t buf_size;
size_t rdadvise_window;
size_t inflight_cap;
size_t fsync_batch_files;
size_t fsync_batch_bytes;
/* ===================== AUTOTUNE / BENCH KNOBS ===================== */
bool autotune; /* --autotune */
int bench_seconds; /* --bench-seconds */
uint64_t bench_byte_budget; /* --bench-mib */
size_t bench_large_cap; /* --bench-large */
size_t bench_small_cap; /* --bench-small */
bool bench_show_table; /* --bench-table */
bool bench_exhaustive; /* --bench-exhaustive */
size_t bench_max_combos; /* --bench-max */
/* Search / noise control */
double bench_ci_mibs_pct; /* --bench-ci-mibs (95% CI target) */
double bench_ci_files_pct; /* --bench-ci-files (95% CI target) */
bool bench_fast; /* --bench-fast */
int bench_eta; /* --bench-eta */
/* outer repetitions (run the full autotune K times) */
int bench_runs; /* --bench-runs (default 1) */
/* Internal path forcing during benchmark runs */
bool force_streaming;
bool force_kernel_only;
} Options;
static int cpu_count(void) {
long n = sysconf(_SC_NPROCESSORS_ONLN);
if (n < 1) n = 1;
if (n > MAX_THREADS) n = MAX_THREADS;
return (int)n;
}
static bool parse_u64(const char *s, uint64_t *out) {
if (!s || !*s) return false;
char *end = NULL;
errno = 0;
unsigned long long v = strtoull(s, &end, 10);
if (errno || end == s || *end != '\0') return false;
*out = (uint64_t)v;
return true;
}
static void usage(FILE *f) {
fprintf(f,
"SYNOPSIS\n"
" dcopy [options] <src> [<src> ...] <dst>\n"
"\n"
"OVERVIEW\n"
" dcopy is a robust, APFS-aware recursive copy tool focused on durability\n"
" (temp-file + fsync + atomic rename), minimal data movement (clone paths,\n"
" sparse-aware streaming, hash/physical dedupe), and predictable performance.\n"
"\n"
"ARGUMENTS\n"
" <src> ... One or more input roots.\n"
" <dst> Destination file/dir (dir if multiple sources or src is dir).\n"
"\n"
"COMMON OPTIONS\n"
" -n Dry-run (plan only).\n"
" -v Verbose; repeatable.\n"
" -q Quiet (no progress / non-error logs).\n"
" -j N Hashing threads (default: online CPUs).\n"
" --io-threads N Copy/clone workers (default: min(4, CPUs)).\n"
" --overwrite Replace existing files atomically.\n"
" --update Replace only if newer or size differs.\n"
" --follow-symlinks Copy symlink targets instead of links.\n"
" --no-hardlinks Do not preserve hardlink topology.\n"
" --no-progress Disable dynamic progress rendering.\n"
" --no-sparse Force dense streaming copy.\n"
" --one-file-system Do not cross filesystem boundaries.\n"
" --include-icloud Include iCloud dataless placeholders.\n"
" --kernel-copy Prefer fcopyfile(3) kernel-assisted copy.\n"
" --metadata MODE Directory metadata: full|safe|minimal.\n"
" --durability MODE strict|batch.\n"
" --enum MODE bulk|fts.\n"
" --buf-size MB Per-IO-thread read buffer (default: 4).\n"
" --rdadvise MB Read-ahead advisory window (default: 32).\n"
" --inflight MB Global in-flight IO cap (default: 512).\n"
" --fsync-batch N (batch) fsync dir after N children (default: 128).\n"
" --fsync-bytes MB (batch) fsync dir after MB bytes (default: 128).\n"
"\n"
"DELETION & VERIFICATION\n"
" --delete-source After verify, delete the source file.\n"
" --delete-source-existing If dst exists and matches, delete source.\n"
" --delete-verify M size | sample | hash (default: hash).\n"
"\n"
"AUTOTUNE / BENCHMARKING (non-destructive)\n"
" --autotune Intelligent search over tunables on representative samples.\n"
" --bench-seconds SEC Soft time budget for the whole search (default: 35; 5..600).\n"
" --bench-mib MiB Byte budget per combo (default: 512; 64..16384).\n"
" --bench-large N Max large files in the sample (default: 12; 1..256).\n"
" --bench-small N Max small (<=1 MiB) files (default: 1024; 1..32768).\n"
" --bench-table Also print a ranked table of tested combinations.\n"
" --bench-exhaustive Test ALL parameter combinations; ignores time/max.\n"
" --bench-max N Upper-bound the number of combos to evaluate (0 = no cap).\n"
" --bench-ci-mibs PCT Target 95%% CI half-width for MiB/s (default: 3.0).\n"
" --bench-ci-files PCT Target 95%% CI half-width for files/s (default: 10.0).\n"
" --bench-fast Reuse cached recommendation if profile matches.\n"
" --bench-eta N Successive Halving factor (default: 3).\n"
" --bench-runs N Run the entire autotune N times and aggregate (default: 1; 1..50).\n"
"\n"
"EXAMPLES\n"
" dcopy --autotune --bench-table /SRC /DST\n"
" dcopy --autotune --bench-runs 5 --bench-table /SRC /DST\n"
"\n"
);
}
// ============================ Helpers ============================
static char *xstrdup(const char *s) {
size_t n = strlen(s) + 1;
char *p = (char *)malloc(n);
if (!p) {
die("OOM");
}
memcpy(p, s, n);
return p;
}
static void path_dirname(const char *path, char *out, size_t outsz) {
const char *slash = strrchr(path, '/');
if (!slash) {
snprintf(out, outsz, ".");
return;
}
if (slash == path) {
snprintf(out, outsz, "/");
return;
}
size_t len = (size_t)(slash - path);
if (len >= outsz) len = outsz - 1;
memcpy(out, path, len);
out[len] = '\0';
}
static const char *path_basename(const char *path) {
const char *slash = strrchr(path, '/');
return slash ? slash + 1 : path;
}
static void path_join2(const char *a, const char *b, char *out, size_t n) {
if (!a || !*a) {
snprintf(out, n, "%s", b ? b : "");
return;
}
if (!b || !*b) {
snprintf(out, n, "%s", a);
return;
}
size_t la = strlen(a);
bool need_slash = a[la - 1] != '/';
snprintf(out, n, "%s%s%s", a, need_slash ? "/" : "", b);
}
static int fsync_full(int fd) {
#ifdef F_FULLFSYNC
if (fcntl(fd, F_FULLFSYNC) == 0) {
return 0;
}
#endif
return fsync(fd);
}
/* Treat these as "permission-like" errors where we should warn+skip, not abort. */
__attribute__((always_inline))
static inline int is_perm_error(int err) {
return err == EPERM || err == EACCES || err == EROFS || err == ENOTSUP;
}
/* Best-effort: create all parents. Never fatal. Returns 0 on success/already-exists,
-1 on error (errno preserved). */
static int
ensure_dir_exists_recursive(const char *path) {
char tmp[PATH_MAX];
snprintf(tmp, sizeof(tmp), "%s", path);
size_t n = strlen(tmp);
for (size_t i = 1; i < n; i++) {
if (tmp[i] != '/') continue;
tmp[i] = '\0';
if (tmp[0] != '\0') {
if (mkdir(tmp, 0777) != 0 && errno != EEXIST) {
int e = errno;
warnx("mkdir: %s: %s", tmp, strerror(e));
tmp[i] = '/';
errno = e;
return is_perm_error(e) ? -2 : -1;
}
}
tmp[i] = '/';
}
if (mkdir(tmp, 0777) != 0 && errno != EEXIST) {
int e = errno;
warnx("mkdir: %s: %s", tmp, strerror(e));
errno = e;
return is_perm_error(e) ? -2 : -1;
}
return 0;
}
static int ensure_parent_dirs_for(const char *final_path) {
char dir[PATH_MAX];
path_dirname(final_path, dir, sizeof(dir));
return ensure_dir_exists_recursive(dir);
}
static const char *human_bytes(double b, char *buf, size_t n) {
static const char *units[] = {"B", "KiB", "MiB", "GiB", "TiB", "PiB"};
int i = 0;
while (b >= 1024.0 && i < 5) {
b /= 1024.0;
i++;
}
snprintf(buf, n, "%.2f %s", b, units[i]);
return buf;
}
static void
human_rate(double bytes_per_sec, char out[], size_t out_sz)
{
char qty[32];
human_bytes(bytes_per_sec, qty, sizeof(qty));
snprintf(out, out_sz, "%s/s", qty);
}
/* --------------------------------------------------------------------------
* Autotune helpers (RAM clamp, FS detection, scratch cleanup, time)
* -------------------------------------------------------------------------- */
static uint64_t get_memsize_bytes(void) {
uint64_t mem = 0;
size_t sz = sizeof(mem);
if (sysctlbyname("hw.memsize", &mem, &sz, NULL, 0) != 0 ||
sz != sizeof(mem) ||
mem == 0)
{
/* Sensible fallback */
mem = 8ull << 30;
}
return mem;
}
static void remove_tree_recursive(const char *root) {
char *roots[2] = { (char*)root, NULL };
FTS *fts = fts_open(roots, FTS_PHYSICAL | FTS_NOCHDIR, NULL);
if (!fts) return;
for (FTSENT *e; (e = fts_read(fts)) != NULL; ) {
switch (e->fts_info) {
case FTS_D: break; /* pre-order dir */
case FTS_DP: (void)rmdir(e->fts_path); break; /* post-order dir */
case FTS_F:
case FTS_SL:
case FTS_SLNONE:
case FTS_DEFAULT:
(void)unlink(e->fts_path);
break;
default:
break;
}
}
(void)fts_close(fts);
}
static double now_sec(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return (double)tv.tv_sec + (double)tv.tv_usec / 1e6;
}
static void clamp_inflight_to_ram(Options *o) {
const uint64_t ram = get_memsize_bytes();
const uint64_t max_allowed = (ram >> 2); /* 25% of RAM */
const uint64_t min_floor = (256ull << 20); /* 256 MiB */
if ((uint64_t)o->inflight_cap > max_allowed) o->inflight_cap = (size_t)max_allowed;
if ((uint64_t)o->inflight_cap < min_floor) o->inflight_cap = (size_t)min_floor;
}
// ============================ Statistics ============================
typedef struct Stats {
/* Totals discovered during planning/enqueue */
uint64_t files_total; /* number of regular files to process */
uint64_t bytes_total; /* logical bytes across files only */
uint64_t symlinks_total; /* number of symlinks to process */
uint64_t dirs_total_jobs; /* number of directory jobs enqueued */
/* Live progress during IO (files only, keeps behavior for progress bar) */
uint64_t files_done; /* number of regular files completed */
uint64_t bytes_done; /* logical progress bytes (includes holes/clones) */
uint64_t bytes_phys_io; /* true physical I/O bytes written/read */
/* File operation accounting (regular files) */
uint64_t files_copied;
uint64_t bytes_copied;
uint64_t files_cloned_src;
uint64_t bytes_cloned_src;
uint64_t files_cloned_dedupe;
uint64_t bytes_cloned_dedupe;
uint64_t files_hardlinked;
uint64_t bytes_hardlinked;
uint64_t files_skipped;
uint64_t bytes_skipped;
/* Directory + symlink creation accounting */
uint64_t dirs_created; /* directories created (not total) */
uint64_t symlinks_created; /* symlinks created at destination */
/* Source deletion accounting */
uint64_t files_deleted_src; /* regular files deleted from source */
uint64_t bytes_deleted_src; /* logical bytes for files only */
uint64_t symlinks_deleted_src; /* symlinks deleted from source */
/* Directory job progress accounting */
uint64_t dirs_done_jobs; /* number of directory jobs completed */
/* Phase signal: 0 while only preparing directory structure,
set to 1 immediately before enqueuing the first T_FILE job. */
volatile sig_atomic_t copy_phase_started;
struct timeval start_time;
} Stats;
// ============================ Dir FD LRU cache ============================
typedef struct {
char path[PATH_MAX];
int fd;
uint64_t tick;
bool used;
} DirFDEntry;
typedef struct {
DirFDEntry v[DIRFD_CACHE_MAX];
uint64_t tick;
pthread_mutex_t mu;
} DirFDCache;
static DirFDCache g_dirfd_cache;
static void dirfd_cache_init(void) {
memset(&g_dirfd_cache, 0, sizeof(g_dirfd_cache));
pthread_mutex_init(&g_dirfd_cache.mu, NULL);
}
static int dirfd_cache_open(const char *dirpath) {
pthread_mutex_lock(&g_dirfd_cache.mu);
g_dirfd_cache.tick++;
uint64_t now = g_dirfd_cache.tick;
for (int i = 0; i < DIRFD_CACHE_MAX; i++) {
if (g_dirfd_cache.v[i].used && strcmp(g_dirfd_cache.v[i].path, dirpath) == 0) {
g_dirfd_cache.v[i].tick = now;
int fd = g_dirfd_cache.v[i].fd;
pthread_mutex_unlock(&g_dirfd_cache.mu);
return fd;
}
}
int fd = open(dirpath, O_RDONLY | O_CLOEXEC);
if (fd < 0) {
pthread_mutex_unlock(&g_dirfd_cache.mu);
return -1;
}
int slot = -1;
uint64_t oldtick = UINT64_MAX;
for (int i = 0; i < DIRFD_CACHE_MAX; i++) {
if (!g_dirfd_cache.v[i].used) {
slot = i;
break;
}
if (g_dirfd_cache.v[i].tick < oldtick) {
oldtick = g_dirfd_cache.v[i].tick;
slot = i;
}
}
if (g_dirfd_cache.v[slot].used) {
close(g_dirfd_cache.v[slot].fd);
}
snprintf(g_dirfd_cache.v[slot].path, sizeof(g_dirfd_cache.v[slot].path), "%s", dirpath);
g_dirfd_cache.v[slot].fd = fd;
g_dirfd_cache.v[slot].tick = now;
g_dirfd_cache.v[slot].used = true;
pthread_mutex_unlock(&g_dirfd_cache.mu);
return fd;
}
static void dirfd_cache_close_all(void) {
pthread_mutex_lock(&g_dirfd_cache.mu);
for (int i = 0; i < DIRFD_CACHE_MAX; i++) {
if (g_dirfd_cache.v[i].used) {
close(g_dirfd_cache.v[i].fd);
g_dirfd_cache.v[i].used = false;
}
}
pthread_mutex_unlock(&g_dirfd_cache.mu);
}
static void dirfd_cache_fsync_all(void) {
pthread_mutex_lock(&g_dirfd_cache.mu);
for (int i = 0; i < DIRFD_CACHE_MAX; i++) {
if (g_dirfd_cache.v[i].used) {
(void)fsync_full(g_dirfd_cache.v[i].fd);
}
}
pthread_mutex_unlock(&g_dirfd_cache.mu);
}
// ============================ Persistent Hash Cache ============================
typedef struct {
dev_t dev;
ino_t ino;
uint64_t size;
int64_t mtime_sec;
int32_t mtime_nsec;
int64_t ctime_sec;
int32_t ctime_nsec;
unsigned char digest[DIGEST_LEN];
} HashCacheEnt;
typedef struct {
HashCacheEnt *v;
size_t n, cap;
} HashCacheVec;
typedef struct {
uint64_t h;
size_t idx;
bool used;
} HIdxSlot;
typedef struct {
HIdxSlot *tab;
size_t cap, fill;
} HIdx;
static HashCacheVec g_hcache = {0};
static char g_hcache_path[PATH_MAX];
static HIdx g_hidx = {0};
/* single lock for cache+index+file append */
static pthread_rwlock_t g_hcache_rw = PTHREAD_RWLOCK_INITIALIZER;
__attribute__((always_inline))
static uint64_t mix64(uint64_t x) {
x ^= x >> 33;
x *= 0xff51afd7ed558ccdULL;
x ^= x >> 33;
x *= 0xc4ceb9fe1a85ec53ULL;
x ^= x >> 33;
return x;
}
__attribute__((always_inline))
static uint64_t hkey(dev_t d, ino_t i, uint64_t sz, int64_t ms, int32_t mn, int64_t cs, int32_t cn) {
uint64_t h = 0x9e3779b97f4a7c15ULL;
h ^= mix64((uint64_t)d) + (h << 6) + (h >> 2);
h ^= mix64((uint64_t)i) + (h << 6) + (h >> 2);
h ^= mix64(sz) + (h << 6) + (h >> 2);
h ^= mix64((uint64_t)ms) + (h << 6) + (h >> 2);
h ^= mix64((uint64_t)mn) + (h << 6) + (h >> 2);
h ^= mix64((uint64_t)cs) + (h << 6) + (h >> 2);
h ^= mix64((uint64_t)cn) + (h << 6) + (h >> 2);
return h;
}
static void hidx_init(void) {
g_hidx.cap = 1u << 14; // 16384
g_hidx.tab = (HIdxSlot *)calloc(g_hidx.cap, sizeof(HIdxSlot));
if (!g_hidx.tab) {
die("OOM");
}
}
static void hidx_rehash(void) {
size_t ncap = g_hidx.cap << 1;
HIdxSlot *nt = (HIdxSlot *)calloc(ncap, sizeof(HIdxSlot));
if (!nt) {
die("OOM");
}
for (size_t i = 0; i < g_hidx.cap; i++) {
if (g_hidx.tab[i].used) {
uint64_t h = g_hidx.tab[i].h;
size_t mask = ncap - 1, j = (size_t)(h & mask);
while (nt[j].used) {
j = (j + 1) & mask;
}
nt[j] = g_hidx.tab[i];
}
}
free(g_hidx.tab);
g_hidx.tab = nt;
g_hidx.cap = ncap;
}
static void hidx_put(uint64_t h, size_t idx) {
if ((g_hidx.fill * 10) >= (g_hidx.cap * 7)) {
hidx_rehash();
}
size_t mask = g_hidx.cap - 1, j = (size_t)(h & mask);
while (g_hidx.tab[j].used) {
if (g_hidx.tab[j].h == h) {
g_hidx.tab[j].idx = idx;
return;
}
j = (j + 1) & mask;
}
g_hidx.tab[j].used = true;
g_hidx.tab[j].h = h;
g_hidx.tab[j].idx = idx;
g_hidx.fill++;
}
static ssize_t hidx_get(uint64_t h) {
size_t mask = g_hidx.cap - 1, j = (size_t)(h & mask);
while (g_hidx.tab[j].used) {
if (g_hidx.tab[j].h == h) {
return (ssize_t)g_hidx.tab[j].idx;
}
j = (j + 1) & mask;
}
return -1;
}
static void hcache_load(const char *hint_dir) {
const char *home = getenv("HOME");
if (home && *home) {
snprintf(g_hcache_path, sizeof(g_hcache_path),
"%s/Library/Caches/dcopy/hashcache.bin",
home);
} else if (hint_dir && *hint_dir) {
snprintf(g_hcache_path, sizeof(g_hcache_path),
"%s/.dcopy-hashcache.bin", hint_dir);
} else {
snprintf(g_hcache_path, sizeof(g_hcache_path), ".dcopy-hashcache.bin");
}
pthread_rwlock_wrlock(&g_hcache_rw);
hidx_init();
FILE *f = fopen(g_hcache_path, "rb");
if (!f) {
pthread_rwlock_unlock(&g_hcache_rw);
return;
}
HashCacheEnt ent;
while (fread(&ent, sizeof(ent), 1, f) == 1) {
if (g_hcache.n == g_hcache.cap) {
size_t ncap = g_hcache.cap ? g_hcache.cap * 2 : 8192;
HashCacheEnt *nv = (HashCacheEnt *)realloc(g_hcache.v, ncap * sizeof(HashCacheEnt));
if (!nv) {
fclose(f);
pthread_rwlock_unlock(&g_hcache_rw);
die("OOM");
}
g_hcache.v = nv;
g_hcache.cap = ncap;
}
g_hcache.v[g_hcache.n] = ent;
uint64_t hk = hkey(ent.dev, ent.ino, ent.size, ent.mtime_sec,
ent.mtime_nsec, ent.ctime_sec, ent.ctime_nsec);
hidx_put(hk, g_hcache.n);
g_hcache.n++;
}
fclose(f);
pthread_rwlock_unlock(&g_hcache_rw);
}
static void hcache_append(const HashCacheEnt *ent) {
pthread_rwlock_wrlock(&g_hcache_rw);
int fd = open(g_hcache_path, O_CREAT | O_WRONLY | O_APPEND, 0600);
if (fd >= 0) {
/* best-effort; ignore short write errors (not fatal for correctness) */
(void)write(fd, ent, (unsigned)sizeof(*ent));
close(fd);
}
if (g_hcache.n == g_hcache.cap) {
size_t ncap = g_hcache.cap ? g_hcache.cap * 2 : 8192;
HashCacheEnt *nv = (HashCacheEnt *)realloc(g_hcache.v, ncap * sizeof(HashCacheEnt));
if (!nv) {
pthread_rwlock_unlock(&g_hcache_rw);
die("OOM");
}
g_hcache.v = nv;
g_hcache.cap = ncap;
}
g_hcache.v[g_hcache.n] = *ent;
uint64_t hk = hkey(ent->dev, ent->ino, ent->size,
ent->mtime_sec, ent->mtime_nsec,
ent->ctime_sec, ent->ctime_nsec);
hidx_put(hk, g_hcache.n);
g_hcache.n++;
pthread_rwlock_unlock(&g_hcache_rw);
}
static bool hcache_lookup(dev_t dev, ino_t ino, uint64_t size,
int64_t msec, int32_t mnsec,
int64_t csec, int32_t cnsec,
unsigned char out[DIGEST_LEN])
{
uint64_t hk = hkey(dev, ino, size, msec, mnsec, csec, cnsec);
pthread_rwlock_rdlock(&g_hcache_rw);
ssize_t idx = hidx_get(hk);
if (idx >= 0) {
HashCacheEnt *e = &g_hcache.v[(size_t)idx];
if (e->dev == dev && e->ino == ino && e->size == size &&
e->mtime_sec == msec && e->mtime_nsec == mnsec &&
e->ctime_sec == csec && e->ctime_nsec == cnsec) {
memcpy(out, e->digest, DIGEST_LEN);
pthread_rwlock_unlock(&g_hcache_rw);
return true;
}
}
pthread_rwlock_unlock(&g_hcache_rw);
return false;
}
// ============================ Data model ============================
typedef enum { T_DIR, T_FILE, T_SYMLINK, T_OTHER } EntType;
typedef struct {
char *src_path;
char *rel_path;
EntType type;
mode_t mode;
dev_t dev;
ino_t ino;
nlink_t nlink;
off_t size;
struct timespec mtime;
struct timespec ctime;
bool hashed;
unsigned char digest[DIGEST_LEN];
uint64_t sample64;
bool has_physfp;
uint64_t physfp;
} Entry;
typedef struct {
Entry *v;
size_t n, cap;
} VecEntry;
static void ve_push(VecEntry *ve, Entry e) {
if (ve->n == ve->cap) {
size_t ncap = ve->cap ? ve->cap * 2 : 4096;
Entry *nv = (Entry *)realloc(ve->v, ncap * sizeof(Entry));
if (!nv) {
die("OOM");
}
ve->v = nv;
ve->cap = ncap;
}
ve->v[ve->n++] = e;
}
static void ve_free(VecEntry *ve) {
if (!ve) {
return;
}
for (size_t i = 0; i < ve->n; i++) {
free(ve->v[i].src_path);
free(ve->v[i].rel_path);
}
free(ve->v);
ve->v = NULL;
ve->n = ve->cap = 0;
}
typedef struct {
char *src_root;
bool is_dir;
char *inject_base;
} RootPlan;
// ============================ Enumeration ============================
static const uint32_t ATTR_CMN_MASK_BULK =
ATTR_CMN_NAME
| ATTR_CMN_DEVID
| ATTR_CMN_FILEID
| ATTR_CMN_OBJTYPE
| ATTR_CMN_MODTIME
| ATTR_CMN_CRTIME
| ATTR_CMN_FLAGS;
static const uint32_t ATTR_DIR_MASK_BULK =
ATTR_DIR_LINKCOUNT;
static const uint32_t ATTR_FILE_MASK_BULK =
ATTR_FILE_LINKCOUNT
| ATTR_FILE_TOTALSIZE;
static inline size_t ATTR_ALIGN4(size_t n) {
return (n + 3u) & ~3u;
}
static void collect_entries_fts(VecEntry *out, const RootPlan *rp, const Options *opt);
static void collect_entries_bulk(VecEntry *out, const RootPlan *rp, const Options *opt) {
typedef struct {
char dpath[PATH_MAX];
char relprefix[PATH_MAX];
dev_t dev; /* device of the directory at dpath (authoritative for XDEV checks) */
} Work;
Work *stack = NULL;
size_t n = 0, cap = 0;
struct stat st_root;
if (lstat(rp->src_root, &st_root) != 0) {
warnx("stat: %s: %s", rp->src_root, strerror(errno));
return;
}
char base_rel[PATH_MAX];
if (rp->is_dir) {
snprintf(base_rel, sizeof(base_rel), "%s", rp->inject_base ? rp->inject_base : "");
} else {
snprintf(base_rel, sizeof(base_rel), "%s", rp->inject_base ? rp->inject_base : path_basename(rp->src_root));
}
/* Single-file root: just emit one entry and return */
if (!S_ISDIR(st_root.st_mode)) {
Entry e = (Entry){0};
e.src_path = xstrdup(rp->src_root);
e.rel_path = xstrdup(base_rel);
e.mode = st_root.st_mode;
e.dev = st_root.st_dev;
e.ino = st_root.st_ino;
e.nlink = st_root.st_nlink;
e.size = st_root.st_size;
e.mtime = st_root.st_mtimespec;
e.ctime = st_root.st_ctimespec;
if (S_ISREG(e.mode)) e.type = T_FILE;
else if (S_ISLNK(e.mode)) e.type = T_SYMLINK;
else if (S_ISDIR(e.mode)) e.type = T_DIR;
else e.type = T_OTHER;
#ifdef SF_DATALESS
if (!opt->include_icloud) {
if (st_root.st_flags & SF_DATALESS) {
return; /* skip dataless items when requested */
}
}
#endif
ve_push(out, e);
return;
}
/* Emit the root directory itself (empty relpath allowed when inject_base == "") */
{
Entry rootE = (Entry){0};
rootE.src_path = xstrdup(rp->src_root);
rootE.rel_path = xstrdup(base_rel[0] ? base_rel : "");
rootE.mode = st_root.st_mode;
rootE.dev = st_root.st_dev;
rootE.ino = st_root.st_ino;
rootE.nlink = st_root.st_nlink;
rootE.size = st_root.st_size;
rootE.mtime = st_root.st_mtimespec;
rootE.ctime = st_root.st_ctimespec;
rootE.type = T_DIR;
ve_push(out, rootE);
}
if (n == cap) {
cap = 16;
stack = (Work *)malloc(cap * sizeof(Work));
if (!stack) {
die("OOM");
}
}
snprintf(stack[n].dpath, sizeof(stack[n].dpath), "%s", rp->src_root);
snprintf(stack[n].relprefix, sizeof(stack[n].relprefix), "%s", base_rel);
stack[n].dev = st_root.st_dev;
n++;
/* Prepare getattrlistbulk(2) attribute masks with fallbacks */
struct attrlist al;
memset(&al, 0, sizeof(al));
al.bitmapcount = ATTR_BIT_MAP_COUNT;
al.commonattr = ATTR_CMN_RETURNED_ATTRS | ATTR_CMN_MASK_BULK; /* includes NAME/DEVID/FILEID/OBJTYPE/MODTIME/CRTIME/FLAGS */
al.dirattr = ATTR_DIR_MASK_BULK; /* DIR_LINKCOUNT */
al.fileattr = ATTR_FILE_MASK_BULK; /* FILE_LINKCOUNT / TOTALSIZE */
const size_t bufsz = 64 * 1024;
void *buf = malloc(bufsz);
if (!buf) {
die("OOM");
}
while (n > 0) {
Work w = stack[--n];
int dfd = dirfd_cache_open(w.dpath);
if (dfd < 0) {
warnx("open dir: %s: %s", w.dpath, strerror(errno));
continue;
}
for (;;) {
struct attrlist cur = al;
int phase = 0;
int nrec = -1;
for (;;) {
errno = 0;
nrec = getattrlistbulk(dfd, &cur, buf, bufsz, 0);
if (nrec >= 0) {
break;
}
if (errno == EINVAL && phase == 0) {
/* Retry without devid/fileid/size/flags (minimal but still includes name + basic times) */
struct attrlist tmp = {0};
tmp.bitmapcount = ATTR_BIT_MAP_COUNT;
tmp.commonattr = ATTR_CMN_NAME | ATTR_CMN_OBJTYPE | ATTR_CMN_MODTIME | ATTR_CMN_CRTIME;
tmp.dirattr = ATTR_DIR_LINKCOUNT;
tmp.fileattr = 0;
cur = tmp;
phase = 1;
if (g_verbose) {
vmsg("bulk: EINVAL -> retry reduced mask on %s", w.dpath);
}
continue;
}
if (errno == EINVAL && phase == 1) {
/* Last resort: only name + objtype (most portable) */
struct attrlist tmp = {0};
tmp.bitmapcount = ATTR_BIT_MAP_COUNT;
tmp.commonattr = ATTR_CMN_NAME | ATTR_CMN_OBJTYPE;
tmp.dirattr = 0;
tmp.fileattr = 0;
cur = tmp;
phase = 2;
if (g_verbose) {
vmsg("bulk: EINVAL -> retry minimal mask on %s", w.dpath);
}
continue;
}
if (nrec < 0) {
/* Fall back to FTS for this subtree */
vmsg("getattrlistbulk failed on %s: %s -> fallback FTS", w.dpath, strerror(errno));
RootPlan subrp = {
.src_root = (char *)w.dpath,
.is_dir = true,
.inject_base = (char *)w.relprefix,
};
collect_entries_fts(out, &subrp, opt);
nrec = 0;
}
break;
}
if (nrec == 0) {
break;
}
char *p = (char *)buf;
for (int irec = 0; irec < nrec; irec++) {
uint32_t reclen = *(uint32_t *)p;
p += 4;
char *rec = (char *)p;
/* Returned groups (ATTR_CMN_RETURNED_ATTRS populates these) */
attrgroup_t retc = 0, retv = 0, retd = 0, retf = 0, retfk = 0;
memcpy(&retc, rec, sizeof(attrgroup_t)); rec += ATTR_ALIGN4(sizeof(attrgroup_t));
memcpy(&retv, rec, sizeof(attrgroup_t)); rec += ATTR_ALIGN4(sizeof(attrgroup_t));
memcpy(&retd, rec, sizeof(attrgroup_t)); rec += ATTR_ALIGN4(sizeof(attrgroup_t));
memcpy(&retf, rec, sizeof(attrgroup_t)); rec += ATTR_ALIGN4(sizeof(attrgroup_t));
memcpy(&retfk, rec, sizeof(attrgroup_t)); rec += ATTR_ALIGN4(sizeof(attrgroup_t));
/* Name */
char namebuf[NAME_MAX + 1] = {0};
if (retc & ATTR_CMN_NAME) {
attrreference_t *ref = (attrreference_t *)rec;
const char *nm = ((char *)rec) + ref->attr_dataoffset;
size_t nn = (size_t)ref->attr_length;
if (nn > NAME_MAX) {
nn = NAME_MAX;
}
memcpy(namebuf, nm, nn);
namebuf[nn] = '\0';
rec += ATTR_ALIGN4(sizeof(attrreference_t));
} else {
/* No name -> skip this record safely */
p += reclen - 4;
continue;
}
/* Basic attributes possibly present */
dev_t dev = 0;
uint64_t fileid = 0;
fsobj_type_t objtype = 0;
struct timespec mt = {0}, ct = {0};
uint32_t cmn_flags = 0;
uint32_t dir_linkcount = 0;
uint32_t file_linkcount = 0;
off_t totsz = 0;
if (retc & ATTR_CMN_DEVID) { memcpy(&dev, rec, sizeof(dev)); rec += ATTR_ALIGN4(sizeof(dev)); }
if (retc & ATTR_CMN_FILEID) { memcpy(&fileid, rec, sizeof(fileid)); rec += ATTR_ALIGN4(sizeof(fileid)); }
if (retc & ATTR_CMN_OBJTYPE) { memcpy(&objtype, rec, sizeof(objtype)); rec += ATTR_ALIGN4(sizeof(objtype)); }
if (retc & ATTR_CMN_MODTIME) { memcpy(&mt, rec, sizeof(mt)); rec += ATTR_ALIGN4(sizeof(mt)); }
if (retc & ATTR_CMN_CRTIME) { memcpy(&ct, rec, sizeof(ct)); rec += ATTR_ALIGN4(sizeof(ct)); }
if (retc & ATTR_CMN_FLAGS) { memcpy(&cmn_flags, rec, sizeof(cmn_flags)); rec += ATTR_ALIGN4(sizeof(cmn_flags)); }
if (retd & ATTR_DIR_LINKCOUNT) { memcpy(&dir_linkcount, rec, sizeof(dir_linkcount)); rec += ATTR_ALIGN4(sizeof(dir_linkcount)); }
if (retf & ATTR_FILE_LINKCOUNT){ memcpy(&file_linkcount, rec, sizeof(file_linkcount)); rec += ATTR_ALIGN4(sizeof(file_linkcount)); }
if (retf & ATTR_FILE_TOTALSIZE){ memcpy(&totsz, rec, sizeof(totsz)); rec += ATTR_ALIGN4(sizeof(totsz)); }
/* Join child path */
char child[PATH_MAX];
if (w.dpath[0] == '/' && w.dpath[1] == '\0') {
snprintf(child, sizeof(child), "/%s", namebuf);
} else {
path_join2(w.dpath, namebuf, child, sizeof(child));
}
if (strcmp(namebuf, ".") == 0 || strcmp(namebuf, "..") == 0) {
p += reclen - 4;
continue;
}
/* Authoritative classification via lstat() */
struct stat stx;
int have_stat = (lstat(child, &stx) == 0);
/* iCloud dataless filtering */
#ifdef SF_DATALESS
if (!opt->include_icloud) {
bool dataless = false;
if (have_stat) {
dataless = (stx.st_flags & SF_DATALESS) != 0;
} else if (retc & ATTR_CMN_FLAGS) {
dataless = (cmn_flags & SF_DATALESS) != 0;
}
if (dataless) {
p += reclen - 4;
continue;
}
}
#endif
/* Resolve entry type */
EntType ty = T_OTHER;
if (have_stat) {
if (S_ISDIR(stx.st_mode)) ty = T_DIR;
else if (S_ISREG(stx.st_mode)) ty = T_FILE;
else if (S_ISLNK(stx.st_mode)) ty = T_SYMLINK;
else ty = T_OTHER;
} else {
/* Fallback to OBJTYPE/group hints if lstat failed */
if (retc & ATTR_CMN_OBJTYPE) {
uint32_t vt = (uint32_t)objtype;
if (vt == VDIR) ty = T_DIR;
else if (vt == VREG) ty = T_FILE;
else if (vt == VLNK) ty = T_SYMLINK;
else ty = T_OTHER;
} else if (retd & ATTR_DIR_LINKCOUNT) {
ty = T_DIR;
} else if (retf & (ATTR_FILE_LINKCOUNT | ATTR_FILE_TOTALSIZE)) {
ty = T_FILE;
} else {
ty = T_OTHER;
}
}
/* Normalize attributes from lstat if bulk record omitted them */
if (have_stat) {
if (!(retc & ATTR_CMN_DEVID)) dev = stx.st_dev;
if (!(retc & ATTR_CMN_FILEID)) fileid = (uint64_t)stx.st_ino;
if (!(retc & ATTR_CMN_MODTIME)) mt = stx.st_mtimespec;
if (!(retc & ATTR_CMN_CRTIME)) ct = stx.st_ctimespec;
if (ty == T_FILE) {
if (!(retf & ATTR_FILE_TOTALSIZE)) totsz = stx.st_size;
if (!(retf & ATTR_FILE_LINKCOUNT)) file_linkcount = (uint32_t)stx.st_nlink;
} else if (ty == T_DIR) {
if (!(retd & ATTR_DIR_LINKCOUNT)) dir_linkcount = (uint32_t)stx.st_nlink;
}
}
/* Build Entry */
Entry e = (Entry){0};
e.src_path = xstrdup(child);
if (w.relprefix[0]) {
char rel[PATH_MAX];
path_join2(w.relprefix, namebuf, rel, sizeof(rel));
e.rel_path = xstrdup(rel);
} else {
e.rel_path = xstrdup(namebuf);
}
e.type = ty;
e.mode = have_stat ? stx.st_mode : 0;
e.dev = dev;
e.ino = (ino_t)fileid;
e.mtime = mt;
e.ctime = ct;
if (ty == T_DIR) e.nlink = (nlink_t)dir_linkcount;
else if (ty == T_FILE) e.nlink = (nlink_t)file_linkcount;
else e.nlink = (nlink_t)(have_stat ? stx.st_nlink : 1);
e.size = (ty == T_FILE) ? totsz : 0;
ve_push(out, e);
/* Recurse into directories, honoring --one-file-system */
if (ty == T_DIR) {
dev_t child_dev = have_stat ? stx.st_dev : dev;
if (opt->one_file_system && child_dev != w.dev) {
p += reclen - 4;
continue;
}
if (n == cap) {
cap = cap ? (cap << 1) : 16;
Work *nw = (Work *)realloc(stack, cap * sizeof(Work));
if (!nw) {
die("OOM");
}
stack = nw;
}
snprintf(stack[n].dpath, sizeof(stack[n].dpath), "%s", child);
if (w.relprefix[0]) {
snprintf(stack[n].relprefix, sizeof(stack[n].relprefix), "%s/%s", w.relprefix, namebuf);
} else {
snprintf(stack[n].relprefix, sizeof(stack[n].relprefix), "%s", namebuf);
}
stack[n].dev = child_dev;
n++;
}
/* advance to next record */
p += reclen - 4;
}
}
}
free(buf);
free(stack);
}
static void collect_entries_fts(VecEntry *out, const RootPlan *rp, const Options *opt) {
int fts_opts = opt->follow_symlinks ? FTS_LOGICAL : FTS_PHYSICAL;
char *roots[2] = {rp->src_root, NULL};
FTS *fts = fts_open(roots, fts_opts | FTS_NOCHDIR, NULL);
if (!fts) {
die("fts_open: %s", strerror(errno));
}
char root_with_slash[PATH_MAX];
size_t rl = strlen(rp->src_root);
snprintf(root_with_slash, sizeof(root_with_slash), "%s%s", rp->src_root,
(rl > 0 && rp->src_root[rl - 1] == '/') ? "" : "/");
size_t base_trim = strlen(root_with_slash);
FTSENT *ent;
while ((ent = fts_read(fts)) != NULL) {
if (opt->one_file_system && ent->fts_statp && ent->fts_level > 0 && ent->fts_statp->st_dev != fts->fts_dev) {
(void)fts_set(fts, ent, FTS_SKIP);
continue;
}
if (ent->fts_info == FTS_DNR || ent->fts_info == FTS_ERR || ent->fts_info == FTS_NS) {
warnx("fts: %s: %s", ent->fts_path, strerror(ent->fts_errno));
continue;
}
if (ent->fts_info == FTS_DP) {
continue;
}
Entry e = {0};
e.src_path = xstrdup(ent->fts_path);
const char *suffix = ent->fts_path + base_trim;
if (suffix < ent->fts_path) {
suffix = ent->fts_path;
}
if (rp->inject_base && rp->inject_base[0]) {
char rel[PATH_MAX];
path_join2(rp->inject_base, suffix, rel, sizeof(rel));
e.rel_path = xstrdup(rel);
} else {
e.rel_path = xstrdup(suffix);
}
struct stat *st = ent->fts_statp;
e.mode = st->st_mode;
e.dev = st->st_dev;
e.ino = st->st_ino;
e.nlink = st->st_nlink;
e.size = st->st_size;
e.mtime = st->st_mtimespec;
e.ctime = st->st_ctimespec;
if (S_ISDIR(st->st_mode)) e.type = T_DIR;
else if (S_ISREG(st->st_mode)) e.type = T_FILE;
else if (S_ISLNK(st->st_mode)) e.type = T_SYMLINK;
else e.type = T_OTHER;
ve_push(out, e);
}
if (errno != 0) {
warnx("fts_read error: %s", strerror(errno));
}
(void)fts_close(fts);
}
// ============================ Fingerprint & Hash ============================
static uint64_t sample_fingerprint(const char *path, off_t fsize) {
int fd = open(path, O_RDONLY | O_NOFOLLOW);
if (fd < 0) {
return 0;
}
const size_t sample_size = 4096;
unsigned char buf[4096];
bool ok = true;
uint64_t result = 0;
XXH3_state_t* const state = XXH3_createState();
if (!state) {
close(fd);
return 0;
}
XXH3_64bits_reset(state);
#ifdef F_NOCACHE
(void)fcntl(fd, F_NOCACHE, 1);
#endif
// Head sample
ssize_t r = pread(fd, buf, sample_size, 0);
if (r > 0) {
XXH3_64bits_update(state, buf, (size_t)r);
} else if (r < 0) {
ok = false;
}
// Middle sample
if (ok && fsize > (off_t)(2 * sample_size)) {
off_t mid = (fsize - (off_t)sample_size) / 2;
r = pread(fd, buf, sample_size, mid);
if (r > 0) {
XXH3_64bits_update(state, buf, (size_t)r);
} else if (r < 0) {
ok = false;
}
}
// Tail sample
if (ok && fsize > (off_t)sample_size) {
off_t tail = fsize - (off_t)sample_size;
r = pread(fd, buf, sample_size, tail);
if (r > 0) {
XXH3_64bits_update(state, buf, (size_t)r);
} else if (r < 0) {
ok = false;
}
}
if (ok) {
result = XXH3_64bits_digest(state);
}
XXH3_freeState(state);
close(fd);
return result;
}
static ssize_t safe_read(int fd, void *buf, size_t n) {
for (;;) {
ssize_t r = read(fd, buf, n);
if (r >= 0) {
return r;
}
if (errno == EINTR) {
continue;
}
return -1;
}
}
static bool xxh128_file(const char *path, unsigned char out[DIGEST_LEN], int bufsize) {
int fd = open(path, O_RDONLY | O_NOFOLLOW);
if (fd < 0) {
return false;
}
#ifdef F_NOCACHE
(void)fcntl(fd, F_NOCACHE, 1);
#endif
XXH3_state_t* const state = XXH3_createState();
if (!state) {
close(fd);
return false;
}
XXH3_128bits_reset(state);
void *buf = malloc((size_t)bufsize);
if (!buf) {
XXH3_freeState(state);
close(fd);
return false;
}
for (;;) {
ssize_t r = safe_read(fd, buf, (size_t)bufsize);
if (r < 0) {
free(buf);
XXH3_freeState(state);
close(fd);
return false;
}
if (r == 0) {
break;
}
XXH3_128bits_update(state, buf, (size_t)r);
}
XXH128_hash_t const hash = XXH3_128bits_digest(state);
memcpy(out, &hash, sizeof(hash));
XXH3_freeState(state);
free(buf);
close(fd);
return true;
}
__attribute__((always_inline))
static bool phys_fingerprint_fd(int fd, off_t fsize, uint64_t *out_h) {
#ifdef F_LOG2PHYS_EXT
struct log2phys l2p;
off_t off = 0;
uint64_t h = 0x9e3779b97f4a7c15ULL;
while (off < fsize) {
memset(&l2p, 0, sizeof(l2p));
l2p.l2p_devoffset = off;
l2p.l2p_contigbytes = fsize - off;
if (fcntl(fd, F_LOG2PHYS_EXT, &l2p) == -1) {
return false;
}
if (l2p.l2p_devoffset < 0 || l2p.l2p_contigbytes <= 0) {
return false;
}
uint64_t P = (uint64_t)l2p.l2p_devoffset;
uint64_t C = (uint64_t)l2p.l2p_contigbytes;
h ^= mix64(P + 0x9e37) + (h << 6) + (h >> 2);
h ^= mix64(C + 0x4a7c) + (h << 6) + (h >> 2);
off += l2p.l2p_contigbytes;
}
*out_h = h;
return true;
#else
(void)fd;
(void)fsize;
(void)out_h;
return false;
#endif
}
static uint64_t phys_fingerprint_path(const char *path, off_t fsize) {
int fd = open(path, O_RDONLY | O_NOFOLLOW);
if (fd < 0) {
return 0;
}
#ifdef F_NOCACHE
(void)fcntl(fd, F_NOCACHE, 1);
#endif
uint64_t h = 0;
bool ok = phys_fingerprint_fd(fd, fsize, &h);
close(fd);
return ok ? h : 0;
}
// ============================ Verify & Source Deletion ============================
static bool file_xxh128_path(const char *path, unsigned char out[DIGEST_LEN], int bufsize) {
return xxh128_file(path, out, bufsize);
}
static bool file_sample64_path(const char *path, off_t size, uint64_t *out) {
*out = sample_fingerprint(path, size);
return (*out != 0);
}
/* -------------------- Regular file equality -------------------- */
typedef enum {
DEQ_OK = 0,
DEQ_SIZE_MISMATCH,
DEQ_HASH_MISMATCH,
DEQ_SRC_STAT_FAIL,
DEQ_DST_STAT_FAIL,
DEQ_SRC_HASH_FAIL,
DEQ_DST_HASH_FAIL,
DEQ_SAME_INODE_GUARD
} DeqReason;
static bool files_equal_for_delete(const Options *opt,
const char *src_path,
const struct stat *st_src,
const char *dst_path,
const struct stat *st_dst)
{
if (st_dst->st_size != st_src->st_size) {
return false;
}
if (opt->delete_verify == VERIFY_SIZE) {
return true;
}
if (opt->delete_verify == VERIFY_SAMPLE) {
uint64_t s_src = 0, s_dst = 0;
if (!file_sample64_path(src_path, (off_t)st_src->st_size, &s_src)) return false;
if (!file_sample64_path(dst_path, (off_t)st_dst->st_size, &s_dst)) return false;
return s_src == s_dst;
}
/* VERIFY_HASH */
unsigned char src_h[DIGEST_LEN], dst_h[DIGEST_LEN];
if (!file_xxh128_path(src_path, src_h, (int)opt->buf_size)) return false;
if (!file_xxh128_path(dst_path, dst_h, (int)opt->buf_size)) return false;
return memcmp(src_h, dst_h, DIGEST_LEN) == 0;
}
/* Same as files_equal_for_delete but records a concrete reason for mismatch,
and optionally prints detailed diagnostics under -v. */
static DeqReason files_equal_with_reason(const Options *opt,
const char *src_path,
const struct stat *st_src,
const char *dst_path,
const struct stat *st_dst,
bool verbose_log)
{
if (st_src->st_dev == st_dst->st_dev && st_src->st_ino == st_dst->st_ino) {
if (verbose_log) vmsg("existing-equal: same inode guard: %s == %s", src_path, dst_path);
return DEQ_SAME_INODE_GUARD;
}
if (st_dst->st_size != st_src->st_size) {
if (verbose_log) vmsg("existing-equal: size mismatch: src=%lld dst=%lld (%s)",
(long long)st_src->st_size, (long long)st_dst->st_size, dst_path);
return DEQ_SIZE_MISMATCH;
}
if (opt->delete_verify == VERIFY_SIZE) {
return DEQ_OK;
}
if (opt->delete_verify == VERIFY_SAMPLE) {
uint64_t s_src = 0, s_dst = 0;
if (!file_sample64_path(src_path, (off_t)st_src->st_size, &s_src)) {
if (verbose_log) vmsg("existing-equal: sample src failed: %s", src_path);
return DEQ_SRC_HASH_FAIL;
}
if (!file_sample64_path(dst_path, (off_t)st_dst->st_size, &s_dst)) {
if (verbose_log) vmsg("existing-equal: sample dst failed: %s", dst_path);
return DEQ_DST_HASH_FAIL;
}
if (s_src != s_dst) {
if (verbose_log) vmsg("existing-equal: sample mismatch for %s", dst_path);
return DEQ_HASH_MISMATCH;
}
return DEQ_OK;
}
/* VERIFY_HASH */
unsigned char src_h[DIGEST_LEN], dst_h[DIGEST_LEN];
if (!file_xxh128_path(src_path, src_h, (int)opt->buf_size)) {
if (verbose_log) vmsg("existing-equal: hash src failed: %s", src_path);
return DEQ_SRC_HASH_FAIL;
}
if (!file_xxh128_path(dst_path, dst_h, (int)opt->buf_size)) {
if (verbose_log) vmsg("existing-equal: hash dst failed: %s", dst_path);
return DEQ_DST_HASH_FAIL;
}
if (memcmp(src_h, dst_h, DIGEST_LEN) != 0) {
if (verbose_log) {
/* Print a short 64-bit prefix of each hash for quick triage. */
uint64_t a = 0, b = 0;
memcpy(&a, src_h, sizeof(uint64_t));
memcpy(&b, dst_h, sizeof(uint64_t));
vmsg("existing-equal: hash mismatch for %s (src=%016llx dst=%016llx)",
dst_path, (unsigned long long)a, (unsigned long long)b);
}
return DEQ_HASH_MISMATCH;
}
return DEQ_OK;
}
static void note_deleted_source(Stats *st, const Entry *e) {
(void)__atomic_add_fetch(&st->files_deleted_src, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_deleted_src, (uint64_t)e->size, __ATOMIC_RELAXED);
}
static void plan_note_deleted_source(Stats *st, const Entry *e) {
(void)__atomic_add_fetch(&st->files_deleted_src, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_deleted_src, (uint64_t)e->size, __ATOMIC_RELAXED);
}
/* Returns 1 if deleted/planned, 0 if not deleted, -1 on error (files) */
static int verify_and_delete_source(const Options *opt, const Entry *e, const char *dst_path, Stats *st) {
if (!opt->delete_source) return 0;
struct stat ss, sd;
if (lstat(e->src_path, &ss) != 0) {
warnx("delete: stat src failed: %s: %s", e->src_path, strerror(errno));
return -1;
}
if (lstat(dst_path, &sd) != 0) {
warnx("delete: stat dst failed: %s: %s", dst_path, strerror(errno));
return -1;
}
if (ss.st_dev == sd.st_dev && ss.st_ino == sd.st_ino) {
vmsg("delete: skip (src==dst inode) %s", e->src_path);
return 0;
}
if (!files_equal_for_delete(opt, e->src_path, &ss, dst_path, &sd)) {
return 0;
}
if (opt->dry_run) {
pmsg("PLAN DELSRC %s", e->src_path);
plan_note_deleted_source(st, e);
return 1;
}
if (unlink(e->src_path) == 0) {
pmsg("DEL %s", e->src_path);
note_deleted_source(st, e);
return 1;
}
warnx("unlink: %s: %s", e->src_path, strerror(errno));
return -1;
}
/* Equality check against an already-existing destination for --delete-source-existing (files).
Emits reasoned diagnostics under -v when mismatch prevents deletion. */
static bool equal_against_existing_for_delete(const Options *opt,
const char *src_path,
const struct stat *st_src,
const char *dst_path,
const struct stat *st_dst)
{
DeqReason r = files_equal_with_reason(opt, src_path, st_src, dst_path, st_dst, /*verbose_log=*/(g_verbose > 0));
return r == DEQ_OK;
}
/* -------------------- Symlink helpers -------------------- */
/* Read a symlink into a freshly-allocated, NUL-terminated buffer. Returns true on success. */
static bool readlink_malloc(const char *path, char **out, size_t *out_len)
{
const size_t START = 256;
size_t n = START;
for (;;) {
char *buf = (char *)malloc(n + 1);
if (!buf) return false;
ssize_t r = readlink(path, buf, n);
if (r < 0) {
free(buf);
return false;
}
if ((size_t)r < n) {
buf[r] = '\0';
if (out) *out = buf;
if (out_len) *out_len = (size_t)r;
return true;
}
free(buf);
if (n >= 32 * 1024) {
return false;
}
n <<= 1;
}
}
/* Compare the *contents* of two symlinks without following them. */
static bool symlink_targets_equal_paths(const char *a, const char *b)
{
struct stat sa, sb;
if (lstat(a, &sa) != 0 || lstat(b, &sb) != 0) return false;
if (!S_ISLNK(sa.st_mode) || !S_ISLNK(sb.st_mode)) return false;
char *ta = NULL, *tb = NULL;
size_t la = 0, lb = 0;
if (!readlink_malloc(a, &ta, &la)) return false;
if (!readlink_malloc(b, &tb, &lb)) { free(ta); return false; }
bool eq = (la == lb) && (memcmp(ta, tb, la) == 0);
free(ta);
free(tb);
return eq;
}
/* Separate symlink delete accounting to keep the report accurate. */
static void note_deleted_symlink(Stats *st) {
(void)__atomic_add_fetch(&st->symlinks_deleted_src, 1, __ATOMIC_RELAXED);
}
static void plan_note_deleted_symlink(Stats *st) {
(void)__atomic_add_fetch(&st->symlinks_deleted_src, 1, __ATOMIC_RELAXED);
}
/* Delete a source symlink if the destination symlink exists and the *link bodies* are identical.
Returns 1 if deleted/planned, 0 if not deleted, -1 on error. */
static int verify_and_delete_symlink_existing_equal(const Options *opt,
const Entry *e,
const char *dst_path,
Stats *st)
{
if (!opt->delete_source_existing) return 0;
struct stat ss, sd;
if (lstat(e->src_path, &ss) != 0) return -1;
if (lstat(dst_path, &sd) != 0) return -1;
if (!S_ISLNK(ss.st_mode) || !S_ISLNK(sd.st_mode)) return 0;
if (ss.st_dev == sd.st_dev && ss.st_ino == sd.st_ino) return 0;
if (!symlink_targets_equal_paths(e->src_path, dst_path)) return 0;
if (opt->dry_run) {
pmsg("PLAN DELSRC %s (existing-equal symlink)", e->src_path);
plan_note_deleted_symlink(st);
return 1;
}
if (unlink(e->src_path) == 0) {
pmsg("DEL %s (existing-equal symlink)", e->src_path);
note_deleted_symlink(st);
return 1;
}
warnx("unlink: %s: %s", e->src_path, strerror(errno));
return -1;
}
/* Delete a source symlink after we have successfully created the destination symlink
and verified the link bodies match. Returns 1 if deleted/planned, 0 if not deleted, -1 on error. */
static int verify_and_delete_source_symlink(const Options *opt,
const Entry *e,
const char *dst_path,
Stats *st)
{
if (!opt->delete_source) return 0;
struct stat ss, sd;
if (lstat(e->src_path, &ss) != 0) return -1;
if (lstat(dst_path, &sd) != 0) return -1;
if (!S_ISLNK(ss.st_mode) || !S_ISLNK(sd.st_mode)) return 0;
if (ss.st_dev == sd.st_dev && ss.st_ino == sd.st_ino) return 0;
if (!symlink_targets_equal_paths(e->src_path, dst_path)) return 0;
if (opt->dry_run) {
pmsg("PLAN DELSRC %s", e->src_path);
plan_note_deleted_symlink(st);
return 1;
}
if (unlink(e->src_path) == 0) {
pmsg("DEL %s", e->src_path);
note_deleted_symlink(st);
return 1;
}
warnx("unlink: %s: %s", e->src_path, strerror(errno));
return -1;
}
// =========================== Path pruning ======================================
/* Count '/' components (for depth sort) */
static int path_depth(const char *p) {
int d = 0;
for (const char *s = p; *s; s++) {
if (*s == '/') {
d++;
}
}
return d;
}
static int cmp_dir_depth_desc(const void *a, const void *b) {
const Entry *ea = *(Entry * const *)a;
const Entry *eb = *(Entry * const *)b;
int da = path_depth(ea->src_path);
int db = path_depth(eb->src_path);
if (da != db) {
/* deeper first */
return (db - da);
}
/* stable-ish tie-breaker */
return strcmp(eb->src_path, ea->src_path);
}
/* Attempt to prune all source directories that are now empty.
Safe to run after IO workers (no concurrent unlinks left). */
static void prune_empty_source_dirs(const Options *opt, VecEntry *ents) {
/* Prune when either delete mode may have removed all file children. */
if (!(opt->delete_source || opt->delete_source_existing)) {
return;
}
// Drop all cached dir FDs so rmdir() cannot hit EBUSY
// on roots we previously opened during getattrlistbulk()/IO.
dirfd_cache_close_all();
/* Collect directory pointers */
size_t n = 0;
for (size_t i = 0; i < ents->n; i++) {
if (ents->v[i].type == T_DIR) {
n++;
}
}
if (n == 0) {
return;
}
Entry **dirs = (Entry **)malloc(n * sizeof(*dirs));
if (!dirs) {
die("OOM");
}
size_t k = 0;
for (size_t i = 0; i < ents->n; i++) {
if (ents->v[i].type == T_DIR) {
dirs[k++] = &ents->v[i];
}
}
qsort(dirs, n, sizeof(*dirs), cmp_dir_depth_desc);
for (size_t i = 0; i < n; i++) {
const char *d = dirs[i]->src_path;
if (opt->dry_run) {
/* Plan-only visibility is gated by -v via pmsg() prefix filter */
pmsg("PLAN DEL %s (dir, if empty)", d);
continue;
}
if (rmdir(d) == 0) {
/* only printed with -v */
pmsg("DEL %s", d);
continue;
}
// ENOTEMPTY / EEXIST: directory has surviving children -> keep.
// EBUSY commonly occurs if some process has CWD or we kept a dirfd
// open; by this point we've closed ours. Log remaining oddities.
if (errno == ENOTEMPTY || errno == EEXIST) {
if (g_verbose) {
/* List a few leftover entries to aid diagnosis (e.g., .DS_Store). */
DIR *dirp = opendir(d);
if (dirp) {
int shown = 0;
struct dirent *de;
fprintf(stderr, "KEEP %s (non-empty):", d);
while ((de = readdir(dirp)) && shown < 3) {
if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0) {
continue;
}
fprintf(stderr, " %s", de->d_name);
shown++;
}
fprintf(stderr, "%s\n", (shown == 3 ? " …" : ""));
closedir(dirp);
} else {
vmsg("rmdir: %s: directory not empty", d);
}
}
} else if (errno != ENOENT) {
vmsg("rmdir: %s: %s", d, strerror(errno));
}
}
free(dirs);
}
// ============================ In-flight I/O Limiter ============================
static pthread_mutex_t g_tb_mu = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t g_tb_cv = PTHREAD_COND_INITIALIZER;
static size_t g_inflight = 0;
static size_t g_inflight_cap = DEFAULT_INFLIGHT_MB << 20;
static void tb_reserve(size_t bytes) {
pthread_mutex_lock(&g_tb_mu);
while (g_inflight + bytes > g_inflight_cap) {
pthread_cond_wait(&g_tb_cv, &g_tb_mu);
}
g_inflight += bytes;
pthread_mutex_unlock(&g_tb_mu);
}
static void tb_release(size_t bytes) {
pthread_mutex_lock(&g_tb_mu);
if (g_inflight < bytes) {
g_inflight = 0;
} else {
g_inflight -= bytes;
}
pthread_cond_broadcast(&g_tb_cv);
pthread_mutex_unlock(&g_tb_mu);
}
// ============================ I/O Buffer Pool ============================
typedef struct BufNode {
struct BufNode *next;
size_t sz;
char data[];
} BufNode;
static pthread_mutex_t g_bp_mu = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t g_bp_cv = PTHREAD_COND_INITIALIZER;
static BufNode *g_bp_free = NULL;
static size_t g_bp_bufsz = READ_BUFSZ_DEFAULT;
static void bp_init(size_t bufsz, int count) {
g_bp_bufsz = bufsz;
for (int i = 0; i < count; i++) {
BufNode *n = (BufNode *)malloc(sizeof(BufNode) + bufsz);
if (!n) {
die("OOM");
}
n->sz = bufsz;
n->next = g_bp_free;
g_bp_free = n;
}
}
static BufNode *bp_acquire(void) {
pthread_mutex_lock(&g_bp_mu);
while (!g_bp_free) {
pthread_cond_wait(&g_bp_cv, &g_bp_mu);
}
BufNode *n = g_bp_free;
g_bp_free = n->next;
n->next = NULL;
pthread_mutex_unlock(&g_bp_mu);
return n;
}
static void bp_release(BufNode *n) {
pthread_mutex_lock(&g_bp_mu);
n->next = g_bp_free;
g_bp_free = n;
pthread_cond_signal(&g_bp_cv);
pthread_mutex_unlock(&g_bp_mu);
}
// ============================ Batch Durability Management ============================
typedef struct {
dev_t dev;
ino_t ino;
size_t files;
size_t bytes;
} DirBudget;
typedef struct {
DirBudget v[256];
size_t n;
pthread_mutex_t mu;
} DirbShard;
static DirbShard g_dirb[DIRB_SHARDS];
__attribute__((always_inline))
static inline size_t dirb_idx(dev_t d, ino_t i) {
return (size_t)((mix64((uint64_t)d) ^ mix64((uint64_t)i)) & (DIRB_SHARDS - 1));
}
static void dirb_note(int dirfd, size_t bytes, const Options *opt) {
if (opt->dur_mode != DUR_BATCH) {
return;
}
struct stat st;
if (fstat(dirfd, &st) != 0) {
return;
}
size_t si = dirb_idx(st.st_dev, st.st_ino);
DirbShard *S = &g_dirb[si];
pthread_mutex_lock(&S->mu);
size_t pos = SIZE_MAX;
for (size_t k = 0; k < S->n; k++) {
if (S->v[k].dev == st.st_dev && S->v[k].ino == st.st_ino) {
pos = k;
break;
}
}
if (pos == SIZE_MAX) {
if (S->n < (sizeof(S->v) / sizeof(S->v[0]))) {
pos = S->n++;
} else {
pos = 0;
}
S->v[pos] = (DirBudget){
.dev = st.st_dev,
.ino = st.st_ino,
.files = 0,
.bytes = 0
};
}
S->v[pos].files++;
S->v[pos].bytes += bytes;
if (S->v[pos].files >= opt->fsync_batch_files || S->v[pos].bytes >= opt->fsync_batch_bytes) {
(void)fsync_full(dirfd);
S->v[pos].files = 0;
S->v[pos].bytes = 0;
}
pthread_mutex_unlock(&S->mu);
}
// ============================ Thread-safe Maps (Dedupe/Hardlink Tracking) ============================
#define IS_POW2(x) (((x) & ((x)-1u)) == 0u)
#if !IS_POW2(MAP_SHARDS)
#error "MAP_SHARDS must be a power-of-two"
#endif
__attribute__((always_inline))
static inline uint64_t fnv1a64_mix(const void *data, size_t len) {
const unsigned char *p = (const unsigned char *)data;
uint64_t h = 1469598103934665603ull;
for (size_t i = 0; i < len; i++) {
h ^= p[i];
h *= 1099511628211ull;
}
h = mix64(h);
if (h == 0) {
h = 0x9e3779b97f4a7c15ull;
}
return h;
}
__attribute__((always_inline))
static inline uint64_t inode_hash(dev_t d, ino_t i) {
uint64_t h = mix64((uint64_t)d) ^ mix64((uint64_t)i);
if (h == 0) {
h = 0x2545F4914F6CDD1Dull;
}
return h;
}
// ============================================================================
// Bit / math helpers
// ============================================================================
// smallest power-of-two >= x (x >= 1)
__attribute__((always_inline))
static inline size_t
next_pow2_size(size_t x)
{
if (x <= 1) {
return 1;
}
x--;
/* Propagate top bit rightward */
for (size_t shift = 1; shift < sizeof(size_t) * 8; shift <<= 1) {
x |= (x >> shift);
}
return x + 1;
}
// count leading zeros for size_t
__attribute__((always_inline))
static inline unsigned
clzzu(size_t x)
{
#if defined(__GNUC__) || defined(__clang__)
# if UINTPTR_MAX == 0xFFFFFFFFFFFFFFFFull
return (x ? (unsigned)__builtin_clzll((unsigned long long)x) : (unsigned)(8*sizeof(size_t)));
# else
return (x ? (unsigned)__builtin_clz((unsigned)x) : (unsigned)(8*sizeof(size_t)));
# endif
#else
/* Portable fallback */
unsigned n = 0;
size_t m = (size_t)1 << (sizeof(size_t) * 8 - 1);
if (x == 0) return (unsigned)(8*sizeof(size_t));
while ((x & m) == 0) { n++; m >>= 1; }
return n;
#endif
}
// floor(log2(x)) for size_t, x > 0
__attribute__((always_inline))
static inline unsigned
ilog2u(size_t x)
{
/* Precondition: x > 0 */
return (unsigned)(8 * sizeof(size_t) - 1 - clzzu(x));
}
// --- DigestMap ---
typedef struct {
unsigned char digest[DIGEST_LEN];
char *dst_path;
uint64_t hash;
} DigestSlot;
#define DIGEST_SHARD_FIELDS \
DigestSlot *tab; \
size_t cap; \
size_t fill; \
pthread_mutex_t mu;
typedef struct {
DIGEST_SHARD_FIELDS
} DigestShardCore;
enum {
DigestShardPadRaw = (DCOPY_CACHELINE - (sizeof(DigestShardCore) % DCOPY_CACHELINE)) % DCOPY_CACHELINE,
DigestShardPad = (DigestShardPadRaw == 0 ? DCOPY_CACHELINE : DigestShardPadRaw)
};
typedef struct {
DIGEST_SHARD_FIELDS
char _pad[DigestShardPad];
} DigestShard DCOPY_ALIGN_TYPE(DCOPY_CACHELINE);
_Static_assert(_Alignof(DigestShard) >= DCOPY_CACHELINE, "DigestShard alignment failed");
_Static_assert((sizeof(DigestShard) % DCOPY_CACHELINE) == 0, "DigestShard size must be multiple of cacheline");
#undef DIGEST_SHARD_FIELDS
typedef struct {
DigestShard shard[MAP_SHARDS];
size_t shard_mask;
unsigned shard_bits;
} DigestMap;
static void dmap_shard_init(DigestShard *s, size_t cap) {
if (cap < MIN_SHARD_CAP) {
cap = MIN_SHARD_CAP;
}
cap = next_pow2_size(cap);
s->tab = (DigestSlot *)calloc(cap, sizeof(DigestSlot));
if (!s->tab) {
die("OOM");
}
s->cap = cap;
s->fill = 0;
if (pthread_mutex_init(&s->mu, NULL) != 0) {
die("pthread_mutex_init");
}
}
static void dmap_shard_free(DigestShard *s) {
if (!s->tab) {
return;
}
for (size_t i = 0; i < s->cap; i++) {
if (s->tab[i].hash != 0 && s->tab[i].dst_path) {
free(s->tab[i].dst_path);
}
}
free(s->tab);
s->tab = NULL;
s->cap = s->fill = 0;
pthread_mutex_destroy(&s->mu);
}
static void dmap_shard_grow_unlocked(DigestShard *s) {
size_t ncap = s->cap << 1;
DigestSlot *nt = (DigestSlot *)calloc(ncap, sizeof(DigestSlot));
if (!nt) {
die("OOM");
}
size_t mask = ncap - 1;
for (size_t i = 0; i < s->cap; i++) {
DigestSlot *old = &s->tab[i];
if (old->hash == 0) {
continue;
}
size_t j = (size_t)(old->hash & mask);
while (nt[j].hash != 0) {
j = (j + 1) & mask;
}
nt[j] = *old;
}
free(s->tab);
s->tab = nt;
s->cap = ncap;
}
static inline bool dcmp_digest(const unsigned char a[DIGEST_LEN], const unsigned char b[DIGEST_LEN]) {
return memcmp(a, b, DIGEST_LEN) == 0;
}
static inline const char *dmap_shard_get_unlocked(DigestShard *s, const unsigned char d[DIGEST_LEN], uint64_t h) {
size_t mask = s->cap - 1;
size_t j = (size_t)(h & mask);
#if defined(__GNUC__) || defined(__clang__)
__builtin_prefetch(&s->tab[j], 0, 1);
#endif
for (;;) {
DigestSlot *sl = &s->tab[j];
uint64_t sh = sl->hash;
if (sh == 0) return NULL;
if (sh == h && dcmp_digest(sl->digest, d)) return sl->dst_path;
j = (j + 1) & mask;
}
}
static inline const char *dmap_shard_put_unlocked(DigestShard *s, const unsigned char d[DIGEST_LEN], uint64_t h,
const char *dst) {
if ((s->fill * MAP_LF_DEN) >= (s->cap * MAP_LF_NUM)) {
dmap_shard_grow_unlocked(s);
}
size_t mask = s->cap - 1;
size_t j = (size_t)(h & mask);
for (;;) {
DigestSlot *sl = &s->tab[j];
if (sl->hash == 0) {
sl->hash = h;
memcpy(sl->digest, d, DIGEST_LEN);
sl->dst_path = xstrdup(dst);
s->fill++;
return sl->dst_path;
}
if (sl->hash == h && dcmp_digest(sl->digest, d)) {
return sl->dst_path;
}
j = (j + 1) & mask;
}
}
static void dmap_init(DigestMap *m) {
m->shard_mask = MAP_SHARDS - 1u;
m->shard_bits = ilog2u(MAP_SHARDS);
size_t per = (DMAP_INIT_TOTAL / MAP_SHARDS);
if (per < MIN_SHARD_CAP) {
per = MIN_SHARD_CAP;
}
for (size_t s = 0; s < MAP_SHARDS; s++) {
dmap_shard_init(&m->shard[s], per);
}
}
static void dmap_free(DigestMap *m) {
for (size_t s = 0; s < MAP_SHARDS; s++) {
dmap_shard_free(&m->shard[s]);
}
}
static char *dmap_get(DigestMap *m, const unsigned char d[DIGEST_LEN]) {
uint64_t h = fnv1a64_mix(d, DIGEST_LEN);
size_t si = (size_t)((h >> (64 - m->shard_bits)) & m->shard_mask);
DigestShard *S = &m->shard[si];
pthread_mutex_lock(&S->mu);
const char *p = dmap_shard_get_unlocked(S, d, h);
pthread_mutex_unlock(&S->mu);
return (char *)p;
}
static void dmap_put(DigestMap *m, const unsigned char d[DIGEST_LEN], const char *dst) {
uint64_t h = fnv1a64_mix(d, DIGEST_LEN);
size_t si = (size_t)((h >> (64 - m->shard_bits)) & m->shard_mask);
DigestShard *S = &m->shard[si];
pthread_mutex_lock(&S->mu);
(void)dmap_shard_put_unlocked(S, d, h, dst);
pthread_mutex_unlock(&S->mu);
}
// --- InoMap ---
typedef struct {
dev_t dev;
ino_t ino;
} InoKey;
typedef struct {
InoKey key;
char *dst;
uint64_t hash;
} InoSlot;
#define INO_SHARD_FIELDS \
InoSlot *tab; \
size_t cap; \
size_t fill; \
pthread_mutex_t mu;
typedef struct {
INO_SHARD_FIELDS
} InoShardCore;
enum {
InoShardPadRaw = (DCOPY_CACHELINE - (sizeof(InoShardCore) % DCOPY_CACHELINE)) % DCOPY_CACHELINE,
InoShardPad = (InoShardPadRaw == 0 ? DCOPY_CACHELINE : InoShardPadRaw)
};
typedef struct {
INO_SHARD_FIELDS
char _pad[InoShardPad];
} InoShard DCOPY_ALIGN_TYPE(DCOPY_CACHELINE);
_Static_assert(_Alignof(InoShard) >= DCOPY_CACHELINE, "InoShard alignment failed");
_Static_assert((sizeof(InoShard) % DCOPY_CACHELINE) == 0, "InoShard size must be multiple of cacheline");
#undef INO_SHARD_FIELDS
typedef struct {
InoShard shard[MAP_SHARDS];
size_t shard_mask;
unsigned shard_bits;
} InoMap;
static void imap_shard_init(InoShard *s, size_t cap) {
if (cap < MIN_SHARD_CAP) {
cap = MIN_SHARD_CAP;
}
cap = next_pow2_size(cap);
s->tab = (InoSlot *)calloc(cap, sizeof(InoSlot));
if (!s->tab) {
die("OOM");
}
s->cap = cap;
s->fill = 0;
if (pthread_mutex_init(&s->mu, NULL) != 0) {
die("pthread_mutex_init");
}
}
static void imap_shard_free(InoShard *s) {
if (!s->tab) {
return;
}
for (size_t i = 0; i < s->cap; i++) {
if (s->tab[i].hash != 0 && s->tab[i].dst) {
free(s->tab[i].dst);
}
}
free(s->tab);
s->tab = NULL;
s->cap = s->fill = 0;
pthread_mutex_destroy(&s->mu);
}
static void imap_shard_grow_unlocked(InoShard *s) {
size_t ncap = s->cap << 1;
InoSlot *nt = (InoSlot *)calloc(ncap, sizeof(InoSlot));
if (!nt) {
die("OOM");
}
size_t mask = ncap - 1;
for (size_t i = 0; i < s->cap; i++) {
InoSlot *old = &s->tab[i];
if (old->hash == 0) {
continue;
}
size_t j = (size_t)(old->hash & mask);
while (nt[j].hash != 0) {
j = (j + 1) & mask;
}
nt[j] = *old;
}
free(s->tab);
s->tab = nt;
s->cap = ncap;
}
__attribute__((always_inline))
static inline bool inokey_eq(InoKey a, InoKey b) {
return a.dev == b.dev && a.ino == b.ino;
}
static inline const char
*imap_shard_get_unlocked(InoShard *s, InoKey k, uint64_t h) {
size_t mask = s->cap - 1;
size_t j = (size_t)(h & mask);
#if defined(__GNUC__) || defined(__clang__)
__builtin_prefetch(&s->tab[j], 0, 1);
#endif
for (;;) {
InoSlot *sl = &s->tab[j];
uint64_t sh = sl->hash;
if (sh == 0) {
return NULL;
}
if (sh == h && inokey_eq(sl->key, k)) {
return sl->dst;
}
j = (j + 1) & mask;
}
}
static inline const char *imap_shard_put_unlocked(InoShard *s, InoKey k, uint64_t h, const char *dst) {
if ((s->fill * MAP_LF_DEN) >= (s->cap * MAP_LF_NUM)) {
imap_shard_grow_unlocked(s);
}
size_t mask = s->cap - 1;
size_t j = (size_t)(h & mask);
for (;;) {
InoSlot *sl = &s->tab[j];
if (sl->hash == 0) {
sl->hash = h;
sl->key = k;
sl->dst = xstrdup(dst);
s->fill++;
return sl->dst;
}
if (sl->hash == h && inokey_eq(sl->key, k)) {
return sl->dst;
}
j = (j + 1) & mask;
}
}
static void imap_init(InoMap *m) {
m->shard_mask = MAP_SHARDS - 1u;
m->shard_bits = ilog2u(MAP_SHARDS);
size_t per = (IMAP_INIT_TOTAL / MAP_SHARDS);
if (per < MIN_SHARD_CAP) {
per = MIN_SHARD_CAP;
}
for (size_t s = 0; s < MAP_SHARDS; s++) {
imap_shard_init(&m->shard[s], per);
}
}
static void imap_free(InoMap *m) {
for (size_t s = 0; s < MAP_SHARDS; s++) {
imap_shard_free(&m->shard[s]);
}
}
static char *imap_get(InoMap *m, InoKey k) {
uint64_t h = inode_hash(k.dev, k.ino);
size_t si = (size_t)((h >> (64 - m->shard_bits)) & m->shard_mask);
InoShard *S = &m->shard[si];
pthread_mutex_lock(&S->mu);
const char *p = imap_shard_get_unlocked(S, k, h);
pthread_mutex_unlock(&S->mu);
return (char *)p;
}
static void imap_put(InoMap *m, InoKey k, const char *dst) {
uint64_t h = inode_hash(k.dev, k.ino);
size_t si = (size_t)((h >> (64 - m->shard_bits)) & m->shard_mask);
InoShard *S = &m->shard[si];
pthread_mutex_lock(&S->mu);
(void)imap_shard_put_unlocked(S, k, h, dst);
pthread_mutex_unlock(&S->mu);
}
// --- PhysMap ---
typedef struct {
uint64_t key;
char *dst;
uint64_t hash;
} PSlot;
typedef struct {
PSlot *tab;
size_t cap;
size_t fill;
pthread_mutex_t mu;
} PShardCore;
enum {
PShardPadRaw = (DCOPY_CACHELINE - (sizeof(PShardCore) % DCOPY_CACHELINE)) % DCOPY_CACHELINE,
PShardPad = (PShardPadRaw == 0 ? DCOPY_CACHELINE : PShardPadRaw)
};
typedef struct {
PSlot *tab;
size_t cap;
size_t fill;
pthread_mutex_t mu;
char _pad[PShardPad];
} PShard DCOPY_ALIGN_TYPE(DCOPY_CACHELINE);
typedef struct {
PShard shard[MAP_SHARDS];
size_t shard_mask;
unsigned shard_bits;
} PhysMap;
static inline uint64_t h64(uint64_t x) {
uint64_t h = mix64(x);
return h ? h : 0x9e3779b97f4a7c15ULL;
}
static void pshard_init(PShard *s, size_t cap) {
if (cap < MIN_SHARD_CAP) {
cap = MIN_SHARD_CAP;
}
cap = next_pow2_size(cap);
s->tab = (PSlot *)calloc(cap, sizeof(PSlot));
if (!s->tab) {
die("OOM");
}
s->cap = cap;
s->fill = 0;
if (pthread_mutex_init(&s->mu, NULL) != 0) {
die("pthread_mutex_init");
}
}
static void pshard_free(PShard *s) {
if (!s->tab) {
return;
}
for (size_t i = 0; i < s->cap; i++) {
if (s->tab[i].hash && s->tab[i].dst) {
free(s->tab[i].dst);
}
}
free(s->tab);
s->tab = NULL;
s->cap = s->fill = 0;
pthread_mutex_destroy(&s->mu);
}
static void pshard_grow(PShard *s) {
size_t ncap = s->cap << 1;
PSlot *nt = (PSlot *)calloc(ncap, sizeof(PSlot));
if (!nt) {
die("OOM");
}
size_t mask = ncap - 1;
for (size_t i = 0; i < s->cap; i++) {
PSlot *old = &s->tab[i];
if (!old->hash) {
continue;
}
size_t j = (size_t)(old->hash & mask);
while (nt[j].hash) {
j = (j + 1) & mask;
}
nt[j] = *old;
}
free(s->tab);
s->tab = nt;
s->cap = ncap;
}
static void pmap_init(PhysMap *m) {
m->shard_mask = MAP_SHARDS - 1u;
m->shard_bits = ilog2u(MAP_SHARDS);
size_t per = (IMAP_INIT_TOTAL / MAP_SHARDS);
if (per < MIN_SHARD_CAP) {
per = MIN_SHARD_CAP;
}
for (size_t s = 0; s < MAP_SHARDS; s++) {
pshard_init(&m->shard[s], per);
}
}
static void pmap_free(PhysMap *m) {
for (size_t s = 0; s < MAP_SHARDS; s++) {
pshard_free(&m->shard[s]);
}
}
static char *pmap_get(PhysMap *m, uint64_t key) {
uint64_t hv = h64(key);
size_t si = (size_t)((hv >> (64 - m->shard_bits)) & m->shard_mask);
PShard *S = &m->shard[si];
pthread_mutex_lock(&S->mu);
size_t mask = S->cap - 1;
size_t j = (size_t)(hv & mask);
#if defined(__GNUC__) || defined(__clang__)
__builtin_prefetch(&S->tab[j], 0, 1);
#endif
while (S->tab[j].hash) {
if (S->tab[j].hash == hv && S->tab[j].key == key) {
char *p = S->tab[j].dst;
pthread_mutex_unlock(&S->mu);
return p;
}
j = (j + 1) & mask;
}
pthread_mutex_unlock(&S->mu);
return NULL;
}
static void pmap_put(PhysMap *m, uint64_t key, const char *dst) {
uint64_t hv = h64(key);
size_t si = (size_t)((hv >> (64 - m->shard_bits)) & m->shard_mask);
PShard *S = &m->shard[si];
pthread_mutex_lock(&S->mu);
if ((S->fill * MAP_LF_DEN) >= (S->cap * MAP_LF_NUM)) {
pshard_grow(S);
}
size_t mask = S->cap - 1;
size_t j = (size_t)(hv & mask);
for (;;) {
PSlot *sl = &S->tab[j];
if (!sl->hash) {
sl->hash = hv;
sl->key = key;
sl->dst = xstrdup(dst);
S->fill++;
break;
}
if (sl->hash == hv && sl->key == key) {
break;
}
j = (j + 1) & mask;
}
pthread_mutex_unlock(&S->mu);
}
// ============================ Copy Engine ============================
typedef struct {
const Options *opt;
DigestMap *dmap;
InoMap *imap;
PhysMap *pmap;
Stats *stats;
} IOContext;
static unsigned g_tmp_counter = 0;
static unsigned next_tmp_counter(void) {
return __atomic_add_fetch(&g_tmp_counter, 1, __ATOMIC_RELAXED);
}
static void make_temp_name(const char *final_name, char *out, size_t outsz) {
snprintf(
out,
outsz,
".%s%s.%ld.%u",
final_name,
TMP_SUFFIX,
(long)getpid(),
next_tmp_counter()
);
}
static int create_dir_like(const Options *opt, const char *src_dir, const char *dst_dir, Stats *st) {
struct stat sdst;
/* Fast-path: destination already exists */
if (lstat(dst_dir, &sdst) == 0) {
if (!S_ISDIR(sdst.st_mode)) {
warnx("destination exists and not a dir: %s", dst_dir);
return -1;
}
if (!opt->dry_run) {
/* Apply directory metadata per policy */
if (opt->meta_mode == META_FULL) {
if (copyfile(src_dir, dst_dir, NULL, COPYFILE_METADATA | COPYFILE_NOFOLLOW) != 0) {
vmsg("metadata(dir,full): %s -> %s: %s", src_dir, dst_dir, strerror(errno));
}
} else if (opt->meta_mode == META_SAFE) {
/* SAFE: mode only (skip utimensat here to avoid extra syscalls; dirs will be dirtied anyway) */
struct stat ssrc;
if (lstat(src_dir, &ssrc) == 0) {
(void)chmod(dst_dir, ssrc.st_mode & 07777);
/* intentionally omit utimensat for dirs in SAFE mode */
}
} /* META_MINIMAL: do nothing */
/* Durability */
if (opt->dur_mode == DUR_STRICT) {
int dfd = open(dst_dir, O_RDONLY | O_CLOEXEC);
if (dfd >= 0) {
(void)fsync_full(dfd);
close(dfd);
}
char pdir[PATH_MAX];
path_dirname(dst_dir, pdir, sizeof(pdir));
int pdfd = open(pdir, O_RDONLY | O_CLOEXEC);
if (pdfd >= 0) {
(void)fsync_full(pdfd);
close(pdfd);
}
} else {
/* DUR_BATCH: count durability against the parent directory (reuse cached fd) */
char pdir[PATH_MAX];
path_dirname(dst_dir, pdir, sizeof(pdir));
int pdfd = dirfd_cache_open(pdir);
if (pdfd >= 0) {
dirb_note(pdfd, 0, opt); /* no open/close of dst_dir */
}
}
} else {
pmsg("PLAN MKDIR %s (exists, metadata policy=%d)", dst_dir, (int)opt->meta_mode);
(void)__atomic_add_fetch(&st->dirs_created, 1, __ATOMIC_RELAXED);
}
return 0;
}
if (opt->dry_run) {
pmsg("PLAN MKDIR %s", dst_dir);
(void)__atomic_add_fetch(&st->dirs_created, 1, __ATOMIC_RELAXED);
return 0;
}
/* Create just the final directory; if missing parents, ensure once and retry */
if (mkdir(dst_dir, 0777) != 0) {
if (errno == ENOENT) {
int rc = ensure_parent_dirs_for(dst_dir);
if (rc != 0) {
int e = errno;
if (is_perm_error(e) || rc == -2) {
warnx("mkdir: %s: %s (parents blocked)", dst_dir, strerror(e));
return -1; /* skip this dir subtree */
}
warnx("mkdir: %s: %s", dst_dir, strerror(e));
return -1;
}
if (mkdir(dst_dir, 0777) != 0 && errno != EEXIST) {
int e = errno;
warnx("mkdir: %s: %s", dst_dir, strerror(e));
return -1;
}
} else if (errno != EEXIST) {
int e = errno;
warnx("mkdir: %s: %s", dst_dir, strerror(e));
return -1;
}
}
(void)__atomic_add_fetch(&st->dirs_created, 1, __ATOMIC_RELAXED);
/* Metadata per policy */
if (opt->meta_mode == META_FULL) {
if (copyfile(src_dir, dst_dir, NULL, COPYFILE_METADATA | COPYFILE_NOFOLLOW) != 0) {
vmsg("metadata(dir,full): %s -> %s: %s", src_dir, dst_dir, strerror(errno));
}
} else if (opt->meta_mode == META_SAFE) {
struct stat ssrc;
if (lstat(src_dir, &ssrc) == 0) {
(void)chmod(dst_dir, ssrc.st_mode & 07777);
/* intentionally omit utimensat for dirs in SAFE mode */
}
} /* META_MINIMAL: do nothing */
/* Durability handling */
if (opt->dur_mode == DUR_STRICT) {
int dfd = open(dst_dir, O_RDONLY | O_CLOEXEC);
if (dfd >= 0) {
(void)fsync_full(dfd);
close(dfd);
}
char pdir[PATH_MAX];
path_dirname(dst_dir, pdir, sizeof(pdir));
int pdfd = open(pdir, O_RDONLY | O_CLOEXEC);
if (pdfd >= 0) {
(void)fsync_full(pdfd);
close(pdfd);
}
} else {
/* DUR_BATCH: account durability on the parent directory only */
char pdir[PATH_MAX];
path_dirname(dst_dir, pdir, sizeof(pdir));
int pdfd = dirfd_cache_open(pdir);
if (pdfd >= 0) {
dirb_note(pdfd, 0, opt);
close(pdfd);
}
}
return 0;
}
static int maybe_should_overwrite(const Options *opt, const struct stat *st_src, const struct stat *st_dst) {
if (opt->clobber == CLOBBER_OVERWRITE) {
return 1;
}
if (opt->clobber == CLOBBER_UPDATE) {
if (st_src->st_mtimespec.tv_sec > st_dst->st_mtimespec.tv_sec) {
return 1;
}
if (st_src->st_mtimespec.tv_sec == st_dst->st_mtimespec.tv_sec &&
st_src->st_mtimespec.tv_nsec > st_dst->st_mtimespec.tv_nsec) {
return 1;
}
if (st_src->st_size != st_dst->st_size) {
return 1;
}
return 0;
}
return 0;
}
static bool same_volume_path_dirfd(const char *src_path, int ddirfd) {
struct stat s1, s2;
if (lstat(src_path, &s1) != 0) {
return false;
}
if (fstat(ddirfd, &s2) != 0) {
return false;
}
return s1.st_dev == s2.st_dev;
}
static void copy_metadata_policy_fd(const Options *opt, int sfd, int dfd, const char *src_path,
const char *dst_path) {
(void)opt;
copyfile_flags_t f = COPYFILE_METADATA | COPYFILE_NOFOLLOW;
copyfile_state_t st = copyfile_state_alloc();
if (st) {
if (fcopyfile(sfd, dfd, st, f) != 0) {
if (copyfile(src_path, dst_path, NULL, f) != 0) {
warnx("metadata: %s -> %s: %s", src_path, dst_path, strerror(errno));
}
}
copyfile_state_free(st);
} else {
if (copyfile(src_path, dst_path, NULL, f) != 0) {
warnx("metadata: %s -> %s: %s", src_path, dst_path, strerror(errno));
}
}
}
static int rename_tmp_to_final(int ddirfd, const char *tmp, const char *final, const Options *opt) {
#if HAVE_RENAMEATX_NP
unsigned flags = (opt->clobber == CLOBBER_NO) ? RENAME_EXCL : 0;
return renameatx_np(ddirfd, tmp, ddirfd, final, flags);
#else
if (opt->clobber == CLOBBER_NO) {
struct stat st;
if (fstatat(ddirfd, final, &st, AT_SYMLINK_NOFOLLOW) == 0) {
errno = EEXIST;
return -1;
}
}
return renameat(ddirfd, tmp, ddirfd, final);
#endif
}
static int try_clone_to_tmp_fd(int sfd, int ddirfd, const char *tmpname) {
(void)unlinkat(ddirfd, tmpname, 0);
if (fclonefileat(sfd, ddirfd, tmpname, 0) == 0) {
int tfd = openat(ddirfd, tmpname, O_RDONLY | O_NOFOLLOW);
if (tfd >= 0) {
(void)fsync_full(tfd);
close(tfd);
}
return 0;
}
return -1;
}
static int try_clone_to_tmp_path(const char *src_path, int ddirfd, const char *tmpname) {
int sfd = open(src_path, O_RDONLY | O_NOFOLLOW);
if (sfd < 0) {
return -1;
}
int rc = try_clone_to_tmp_fd(sfd, ddirfd, tmpname);
close(sfd);
return rc;
}
static int try_fcopyfile_kernel(int sfd, int dfd, bool try_clone) {
copyfile_state_t st = copyfile_state_alloc();
copyfile_flags_t f = COPYFILE_ALL | COPYFILE_NOFOLLOW;
if (try_clone) {
f |= COPYFILE_CLONE;
}
int rc = fcopyfile(sfd, dfd, st, f);
copyfile_state_free(st);
return rc;
}
static int copy_streaming_dense(const Options *opt, int sfd, int ddirfd, const char *tmpname, off_t total_sz,
Stats *stats, unsigned char *opt_digest) {
#ifdef F_NOCACHE
(void)fcntl(sfd, F_NOCACHE, 1);
#endif
int dfd = openat(ddirfd, tmpname, O_WRONLY | O_CREAT | O_EXCL, 0600);
if (dfd < 0) {
return -1;
}
#ifdef F_NOCACHE
(void)fcntl(dfd, F_NOCACHE, 1);
#endif
if (total_sz > 0) {
fstore_t fs = {0};
fs.fst_flags = F_ALLOCATECONTIG;
fs.fst_posmode = F_PEOFPOSMODE;
fs.fst_length = total_sz;
if (fcntl(dfd, F_PREALLOCATE, &fs) == -1) {
fs.fst_flags = F_ALLOCATEALL;
(void)fcntl(dfd, F_PREALLOCATE, &fs);
}
(void)ftruncate(dfd, total_sz);
}
#ifdef F_RDAHEAD
(void)fcntl(sfd, F_RDAHEAD, 1);
#endif
#ifdef F_RDADVISE
struct radvisory ra = {.ra_offset = 0, .ra_count = (int)opt->rdadvise_window};
(void)fcntl(sfd, F_RDADVISE, &ra);
#endif
XXH3_state_t* state = NULL;
if (opt_digest) {
state = XXH3_createState();
if (state) {
XXH3_128bits_reset(state);
}
}
BufNode *buf = bp_acquire();
for (;;) {
ssize_t r = read(sfd, buf->data, buf->sz);
if (r < 0) {
if (errno == EINTR) {
continue;
}
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
if (r == 0) {
break;
}
size_t off = 0;
while (off < (size_t)r) {
ssize_t w = write(dfd, buf->data + off, (size_t)r - off);
if (w < 0) {
if (errno == EINTR) {
continue;
}
if (errno == EAGAIN) {
(void)sched_yield();
continue;
}
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
off += (size_t)w;
/* Logical progress + physical I/O bytes */
(void)__atomic_add_fetch(&stats->bytes_done, (uint64_t)w, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&stats->bytes_phys_io, (uint64_t)w, __ATOMIC_RELAXED);
}
if (state) {
XXH3_128bits_update(state, buf->data, (size_t)r);
}
}
if (opt->dur_mode == DUR_STRICT) {
(void)fsync_full(dfd);
}
bp_release(buf);
if (state) {
XXH128_hash_t const hash = XXH3_128bits_digest(state);
memcpy(opt_digest, &hash, sizeof(hash));
XXH3_freeState(state);
}
close(dfd);
return 0;
}
static inline bool looks_sparse(const struct stat *st) {
uint64_t alloc = (uint64_t)st->st_blocks * 512ull;
return S_ISREG(st->st_mode) && st->st_size > 0 && alloc < (uint64_t)st->st_size;
}
static int copy_streaming_sparse(const Options *opt, int sfd, int ddirfd, const char *tmpname, off_t total_sz,
Stats *stats, unsigned char *opt_digest) {
#ifdef F_NOCACHE
(void)fcntl(sfd, F_NOCACHE, 1);
#endif
(void)unlinkat(ddirfd, tmpname, 0);
int dfd = openat(ddirfd, tmpname, O_WRONLY | O_CREAT | O_EXCL, 0600);
if (dfd < 0) {
return -1;
}
#ifdef F_NOCACHE
(void)fcntl(dfd, F_NOCACHE, 1);
#endif
#ifdef F_RDAHEAD
(void)fcntl(sfd, F_RDAHEAD, 1);
#endif
#ifdef F_RDADVISE
struct radvisory ra = {.ra_offset = 0, .ra_count = (int)opt->rdadvise_window};
(void)fcntl(sfd, F_RDADVISE, &ra);
#endif
XXH3_state_t* state = NULL;
if (opt_digest) {
state = XXH3_createState();
if (state) {
XXH3_128bits_reset(state);
}
}
errno = 0;
off_t pos = lseek(sfd, 0, SEEK_DATA);
bool have_holes = !(pos == (off_t)-1 && (errno == EINVAL || errno == ENXIO));
if (!have_holes) {
close(dfd);
if (state) XXH3_freeState(state);
return copy_streaming_dense(opt, sfd, ddirfd, tmpname, total_sz, stats, opt_digest);
}
BufNode *buf = bp_acquire();
off_t off = 0;
while (off < total_sz) {
off_t data = lseek(sfd, off, SEEK_DATA);
if (data == (off_t)-1) {
if (errno == ENXIO) {
if (off < total_sz) {
uint64_t hole = (uint64_t)(total_sz - off);
/* logical progress only for holes */
(void)__atomic_add_fetch(&stats->bytes_done, hole, __ATOMIC_RELAXED);
}
break;
}
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
if (off < data) {
uint64_t hole = (uint64_t)(data - off);
/* logical progress only for holes */
(void)__atomic_add_fetch(&stats->bytes_done, hole, __ATOMIC_RELAXED);
}
off_t hole = lseek(sfd, data, SEEK_HOLE);
if (hole == (off_t)-1) {
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
if (hole > total_sz) {
hole = total_sz;
}
if (lseek(sfd, data, SEEK_SET) == (off_t)-1) {
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
if (lseek(dfd, data, SEEK_SET) == (off_t)-1) {
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
off_t to_copy = hole - data;
while (to_copy > 0) {
size_t chunk = (size_t)((to_copy > (off_t)buf->sz) ? buf->sz : to_copy);
ssize_t r = read(sfd, buf->data, chunk);
if (r < 0) {
if (errno == EINTR) {
continue;
}
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
if (r == 0) {
break;
}
size_t woff = 0;
while (woff < (size_t)r) {
ssize_t w = write(dfd, buf->data + woff, (size_t)r - woff);
if (w < 0) {
if (errno == EINTR) {
continue;
}
if (errno == EAGAIN) {
(void)sched_yield();
continue;
}
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
woff += (size_t)w;
/* Logical progress + physical I/O bytes for data regions */
(void)__atomic_add_fetch(&stats->bytes_done, (uint64_t)w, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&stats->bytes_phys_io, (uint64_t)w, __ATOMIC_RELAXED);
}
if (state) {
XXH3_128bits_update(state, buf->data, (size_t)r);
}
to_copy -= r;
}
off = hole;
}
if (ftruncate(dfd, total_sz) != 0) {
bp_release(buf);
close(dfd);
if (state) {
XXH3_freeState(state);
}
return -1;
}
if (opt->dur_mode == DUR_STRICT) {
(void)fsync_full(dfd);
}
bp_release(buf);
if (state) {
XXH128_hash_t const hash = XXH3_128bits_digest(state);
memcpy(opt_digest, &hash, sizeof(hash));
XXH3_freeState(state);
}
close(dfd);
return 0;
}
static int copy_file_with_strategies(const IOContext *io, const Entry *e, const char *dst_final) {
const Options *opt = io->opt;
Stats *st = io->stats;
if (!opt->dry_run) {
int ec = ensure_parent_dirs_for(dst_final);
if (ec != 0) {
int err = errno;
if (is_perm_error(err) || ec == -2) {
if (g_verbose) {
pmsg("SKIP %s (perm-denied parents: %s)", dst_final, strerror(err));
}
(void)__atomic_add_fetch(&st->files_skipped, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_skipped, (uint64_t)e->size, __ATOMIC_RELAXED);
return 0; /* soft-skip */
}
/* Non-permission mkdir failure: mark as failed job (non-fatal overall) */
warnx("mkdir parents for %s: %s", dst_final, strerror(err));
return -1;
}
}
struct stat st_dst, st_src;
bool dst_exists = (lstat(dst_final, &st_dst) == 0);
if (lstat(e->src_path, &st_src) != 0) {
warnx("stat src: %s: %s", e->src_path, strerror(errno));
return -1;
}
/* Refresh entry’s size so all downstream size uses are consistent. */
((Entry *)e)->size = st_src.st_size;
/* --- capture live inode topology for hardlink decisions --- */
dev_t cur_dev = st_src.st_dev;
ino_t cur_ino = st_src.st_ino;
nlink_t cur_nlink = st_src.st_nlink;
off_t cur_size = st_src.st_size;
/* Optionally also keep the Entry coherent (not strictly required) */
((Entry *)e)->dev = cur_dev;
((Entry *)e)->ino = cur_ino;
((Entry *)e)->nlink = cur_nlink;
/* Invalidate any precomputed digest if the inode changed since enumeration. */
if (e->hashed &&
(e->size != st_src.st_size ||
e->mtime.tv_sec != st_src.st_mtimespec.tv_sec ||
e->mtime.tv_nsec != st_src.st_mtimespec.tv_nsec ||
e->ctime.tv_sec != st_src.st_ctimespec.tv_sec ||
e->ctime.tv_nsec != st_src.st_ctimespec.tv_nsec)) {
((Entry *)e)->hashed = false; /* stale pre-hash -> do not trust */
}
/* Existing destination policy */
if (dst_exists && !maybe_should_overwrite(opt, &st_src, &st_dst)) {
if (opt->delete_source_existing) {
/* Attempt equality with logging of the reason under -v */
DeqReason er = files_equal_with_reason(opt,
e->src_path, &st_src,
dst_final, &st_dst,
/*verbose_log=*/(g_verbose > 0));
if (er == DEQ_OK) {
if (opt->dry_run) {
pmsg("PLAN DELSRC %s (existing-equal)", e->src_path);
(void)__atomic_add_fetch(&st->files_skipped, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_skipped, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->files_deleted_src, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_deleted_src, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
return 0;
}
if (unlink(e->src_path) == 0) {
pmsg("DEL %s (existing-equal)", e->src_path);
(void)__atomic_add_fetch(&st->files_skipped, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_skipped, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->files_deleted_src, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_deleted_src, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
return 0;
}
warnx("unlink: %s: %s", e->src_path, strerror(errno));
(void)__atomic_add_fetch(&st->files_skipped, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_skipped, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
return 0;
} else {
/* When verbose, files_equal_with_reason already printed the concrete reason. */
if (g_verbose) {
/* No further action; fall through to SKIP accounting. */
}
}
}
if (opt->dry_run) pmsg("PLAN SKIP (exists) %s", dst_final);
else pmsg("SKIP %s", dst_final);
(void)__atomic_add_fetch(&st->files_skipped, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_skipped, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
return 0;
}
/* Resolve destination dir FD */
char ddir_path[PATH_MAX];
path_dirname(dst_final, ddir_path, sizeof(ddir_path));
int ddirfd = dirfd_cache_open(ddir_path);
if (ddirfd < 0) {
warnx("open dir: %s: %s", ddir_path, strerror(errno));
return -1;
}
const char *fname = path_basename(dst_final);
/* ===================== HARDLINK QUICK-PATH ===================== */
if (opt->preserve_hardlinks && cur_nlink > 1) {
InoKey k = { .dev = cur_dev, .ino = cur_ino };
char *first = imap_get(io->imap, k);
/* Sanity-check: if we have an anchor, it must match source size */
if (first) {
struct stat st_first;
if (lstat(first, &st_first) != 0 || st_first.st_size != cur_size) {
first = NULL; /* stale/mismatched anchor: disable hard-link path */
}
}
if (first) {
if (opt->dry_run) {
pmsg("PLAN HARDLINK %s <= %s", dst_final, first);
(void)__atomic_add_fetch(&st->files_hardlinked, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_hardlinked, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)verify_and_delete_source(opt, e, dst_final, st);
return 0;
}
char tmpname[NAME_MAX + 128];
make_temp_name(fname, tmpname, sizeof(tmpname));
(void)unlinkat(ddirfd, tmpname, 0);
char fdir[PATH_MAX];
path_dirname(first, fdir, sizeof(fdir));
int fdfd = dirfd_cache_open(fdir);
if (fdfd >= 0 &&
linkat(fdfd, path_basename(first), ddirfd, tmpname, 0) == 0)
{
if (rename_tmp_to_final(ddirfd, tmpname, fname, opt) != 0) {
warnx("rename after hardlink: %s -> %s: %s",
tmpname, fname, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
/* fall through to COPY/CLONE fallback */
goto COPY_FALLBACK;
}
/* --- verify that the newly linked dst matches live source size --- */
struct stat st_newdst;
bool link_ok = (fstatat(ddirfd, fname, &st_newdst, AT_SYMLINK_NOFOLLOW) == 0) &&
(st_newdst.st_size == cur_size);
if (!link_ok) {
/* Mismatched hard-link target (likely stale anchor). Undo and fall back. */
(void)unlinkat(ddirfd, fname, 0);
goto COPY_FALLBACK;
}
if (opt->dur_mode == DUR_STRICT) (void)fsync_full(ddirfd);
else dirb_note(ddirfd, (size_t)e->size, opt);
if (copyfile(e->src_path, dst_final, NULL,
COPYFILE_METADATA | COPYFILE_NOFOLLOW) != 0)
{
vmsg("metadata(min): %s -> %s: %s",
e->src_path, dst_final, strerror(errno));
}
pmsg("LINK %s <= %s", dst_final, first);
(void)__atomic_add_fetch(&st->files_hardlinked, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_hardlinked, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
/* Record live inode anchor for future members of this hard-link set */
if (opt->preserve_hardlinks && cur_nlink > 1) {
InoKey kk = { .dev = cur_dev, .ino = cur_ino };
imap_put(io->imap, kk, dst_final);
}
(void)verify_and_delete_source(opt, e, dst_final, st);
return 0;
}
/* If linkat/rename failed, fall through to COPY/CLONE fallback. */
}
}
COPY_FALLBACK:
/* ===================== DEDUPE / CLONE / COPY ===================== */
/* Autotune gating (disable clone paths when forced) */
const bool disable_clone = (opt->force_streaming || opt->force_kernel_only);
/* Dedupe via physical fingerprint → clone from anchor */
if (!disable_clone && e->has_physfp && e->physfp != 0) {
char *anchor = pmap_get(io->pmap, e->physfp);
if (anchor && same_volume_path_dirfd(anchor, ddirfd)) {
if (opt->dry_run) {
pmsg("PLAN CLONE(dedupe-phys) %s <= %s", dst_final, anchor);
(void)__atomic_add_fetch(&st->files_cloned_dedupe, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_cloned_dedupe, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)verify_and_delete_source(opt, e, dst_final, st);
return 0;
}
char tmpname[NAME_MAX + 128];
make_temp_name(fname, tmpname, sizeof(tmpname));
if (try_clone_to_tmp_path(anchor, ddirfd, tmpname) == 0) {
int tfd = openat(ddirfd, tmpname, O_RDONLY | O_NOFOLLOW);
if (tfd >= 0) {
int sfd = open(e->src_path, O_RDONLY | O_NOFOLLOW);
if (sfd >= 0) {
copy_metadata_policy_fd(opt, sfd, tfd, e->src_path, dst_final);
close(sfd);
}
close(tfd);
}
if (rename_tmp_to_final(ddirfd, tmpname, fname, opt) != 0) {
warnx("rename tmp->dst: %s -> %s: %s", tmpname, fname, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
return -1;
}
if (opt->dur_mode == DUR_STRICT) (void)fsync_full(ddirfd);
else dirb_note(ddirfd, (size_t)e->size, opt);
pmsg("CLONE %s <= %s (dedupe-phys)", dst_final, anchor);
(void)__atomic_add_fetch(&st->files_cloned_dedupe, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_cloned_dedupe, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
if (e->has_physfp) {
pmap_put(io->pmap, e->physfp, dst_final);
}
/* seed hardlink map with live metadata if relevant */
if (opt->preserve_hardlinks && cur_nlink > 1) {
InoKey kk = { .dev = cur_dev, .ino = cur_ino };
imap_put(io->imap, kk, dst_final);
}
(void)verify_and_delete_source(opt, e, dst_final, st);
return 0;
}
}
}
/* Dedupe via content hash → clone from anchor */
if (!disable_clone && e->hashed) {
char *anchor = dmap_get(io->dmap, e->digest);
if (anchor && same_volume_path_dirfd(anchor, ddirfd)) {
if (opt->dry_run) {
pmsg("PLAN CLONE(dedupe) %s <= %s", dst_final, anchor);
(void)__atomic_add_fetch(&st->files_cloned_dedupe, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_cloned_dedupe, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)verify_and_delete_source(opt, e, dst_final, st);
return 0;
}
char tmpname[NAME_MAX + 128];
make_temp_name(fname, tmpname, sizeof(tmpname));
if (try_clone_to_tmp_path(anchor, ddirfd, tmpname) == 0) {
int tfd = openat(ddirfd, tmpname, O_RDONLY | O_NOFOLLOW);
if (tfd >= 0) {
int sfd = open(e->src_path, O_RDONLY | O_NOFOLLOW);
if (sfd >= 0) {
copy_metadata_policy_fd(opt, sfd, tfd, e->src_path, dst_final);
close(sfd);
}
close(tfd);
}
if (rename_tmp_to_final(ddirfd, tmpname, fname, opt) != 0) {
warnx("rename tmp->dst: %s -> %s: %s", tmpname, fname, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
return -1;
}
if (opt->dur_mode == DUR_STRICT) (void)fsync_full(ddirfd);
else dirb_note(ddirfd, (size_t)e->size, opt);
pmsg("CLONE %s <= %s (dedupe)", dst_final, anchor);
(void)__atomic_add_fetch(&st->files_cloned_dedupe, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_cloned_dedupe, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
/* seed hardlink map with live metadata if relevant */
if (opt->preserve_hardlinks && cur_nlink > 1) {
InoKey kk = { .dev = cur_dev, .ino = cur_ino };
imap_put(io->imap, kk, dst_final);
}
(void)verify_and_delete_source(opt, e, dst_final, st);
return 0;
}
}
}
/* --------------------- Streaming/KERNEL copy section --------------------- */
/* Reserve inflight window for streaming fallback */
const off_t src_sz = st_src.st_size;
size_t reserve = (size_t)((src_sz > 0 && src_sz < (off_t)SIZE_MAX)
? src_sz : (off_t)(16 << 20));
tb_reserve(reserve);
char tmpname[NAME_MAX + 128];
make_temp_name(fname, tmpname, sizeof(tmpname));
bool success = false;
/* Same-volume clone (unless disabled by autotune) */
if (!disable_clone && same_volume_path_dirfd(e->src_path, ddirfd)) {
if (try_clone_to_tmp_path(e->src_path, ddirfd, tmpname) == 0) {
int tfd = openat(ddirfd, tmpname, O_RDONLY | O_NOFOLLOW);
if (tfd >= 0) {
int sfd = open(e->src_path, O_RDONLY | O_NOFOLLOW);
if (sfd >= 0) {
copy_metadata_policy_fd(opt, sfd, tfd, e->src_path, dst_final);
close(sfd);
}
close(tfd);
}
if (rename_tmp_to_final(ddirfd, tmpname, fname, opt) != 0) {
warnx("rename tmp->dst: %s -> %s: %s",
tmpname, fname, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
tb_release(reserve);
return -1;
}
if (opt->dur_mode == DUR_STRICT) (void)fsync_full(ddirfd);
else dirb_note(ddirfd, (size_t)e->size, opt);
pmsg("CLONE %s <= %s", dst_final, e->src_path);
(void)__atomic_add_fetch(&st->files_cloned_src, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_cloned_src, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
success = true;
}
}
int rc = -1;
int sfd = -1;
if (!success) {
sfd = open(e->src_path, O_RDONLY | O_NOFOLLOW);
if (sfd < 0) {
tb_release(reserve);
warnx("open src: %s: %s", e->src_path, strerror(errno));
return -1;
}
/* Kernel-assisted copy (optionally forced for benchmarking) */
if (opt->use_kernel_copy || opt->force_kernel_only) {
int dfd = openat(ddirfd, tmpname, O_WRONLY | O_CREAT | O_EXCL, 0600);
if (dfd >= 0) {
const bool try_clone_flag = (opt->use_kernel_copy && !opt->force_kernel_only);
rc = try_fcopyfile_kernel(sfd, dfd, try_clone_flag);
if (rc == 0) {
if (opt->dur_mode == DUR_STRICT) {
(void)fsync_full(dfd);
}
(void)__atomic_add_fetch(&st->bytes_done, (uint64_t)e->size, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_phys_io, (uint64_t)e->size, __ATOMIC_RELAXED);
}
close(dfd);
if (rc != 0) {
(void)unlinkat(ddirfd, tmpname, 0);
}
}
if (opt->force_kernel_only && rc != 0) {
close(sfd);
tb_release(reserve);
warnx("kernel-copy path failed for benchmarking");
return -1;
}
}
/* Streaming fallback */
if (rc != 0 && !opt->force_kernel_only) {
unsigned char digest_tmp[DIGEST_LEN];
bool want_digest = !e->hashed;
if (opt->sparse_copy && looks_sparse(&st_src)) {
rc = copy_streaming_sparse(opt, sfd, ddirfd, tmpname, src_sz, st, want_digest ? digest_tmp : NULL);
} else {
rc = copy_streaming_dense(opt, sfd, ddirfd, tmpname, src_sz, st, want_digest ? digest_tmp : NULL);
}
if (rc == 0 && want_digest) {
((Entry *)e)->hashed = true;
memcpy(((Entry *)e)->digest, digest_tmp, DIGEST_LEN);
HashCacheEnt ent = {
.dev = e->dev,
.ino = e->ino,
.size = (uint64_t)e->size,
.mtime_sec = e->mtime.tv_sec,
.mtime_nsec = e->mtime.tv_nsec,
.ctime_sec = e->ctime.tv_sec,
.ctime_nsec = e->ctime.tv_nsec
};
memcpy(ent.digest, e->digest, DIGEST_LEN);
hcache_append(&ent);
}
}
if (sfd >= 0) close(sfd);
if (rc != 0) {
tb_release(reserve);
warnx("copy: %s -> %s failed: %s", e->src_path, tmpname, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
return -1;
}
/* Finalize: metadata, rename, durability */
int tfd = openat(ddirfd, tmpname, O_RDONLY | O_NOFOLLOW);
if (tfd >= 0) {
int sfd2 = open(e->src_path, O_RDONLY | O_NOFOLLOW);
if (sfd2 >= 0) {
copy_metadata_policy_fd(opt, sfd2, tfd, e->src_path, dst_final);
close(sfd2);
}
close(tfd);
}
if (rename_tmp_to_final(ddirfd, tmpname, fname, opt) != 0) {
warnx("rename tmp->dst: %s -> %s: %s", tmpname, fname, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
tb_release(reserve);
return -1;
}
if (opt->dur_mode == DUR_STRICT) (void)fsync_full(ddirfd);
else dirb_note(ddirfd, (size_t)e->size, opt);
char hb[64];
pmsg("COPY %s (%s)", dst_final, human_bytes((double)e->size, hb, sizeof(hb)));
(void)__atomic_add_fetch(&st->files_copied, 1, __ATOMIC_RELAXED);
(void)__atomic_add_fetch(&st->bytes_copied, (uint64_t)e->size, __ATOMIC_RELAXED);
}
/* Record anchors for dedupe/hardlink preservation */
if (e->hashed) dmap_put(io->dmap, e->digest, dst_final);
if (e->has_physfp) pmap_put(io->pmap, e->physfp, dst_final);
if (opt->preserve_hardlinks && cur_nlink > 1) {
InoKey k = { .dev = cur_dev, .ino = cur_ino };
imap_put(io->imap, k, dst_final);
}
(void)verify_and_delete_source(opt, e, dst_final, st);
tb_release(reserve);
return 0;
}
// ============================ Parallel Execution ============================
typedef struct {
VecEntry *ents;
size_t *indices;
size_t count;
size_t next;
pthread_mutex_t mu;
volatile uint64_t done;
int bufsize;
} WorkQueue;
typedef struct {
size_t *indices;
size_t start;
size_t end;
VecEntry *ents;
} SortWork;
typedef struct {
size_t entry_idx;
char dst_path[PATH_MAX];
} IOJob;
typedef struct {
IOJob *queue;
size_t cap;
size_t count;
size_t head;
size_t tail;
volatile sig_atomic_t done;
pthread_mutex_t head_mu;
pthread_cond_t cv_work;
} IOJobQueue;
typedef struct {
IOJobQueue *q;
VecEntry *ents;
IOContext *ctx;
} IOWorkerCtx;
static void *sample_worker(void *arg) {
WorkQueue *w = (WorkQueue *)arg;
for (;;) {
size_t idx;
pthread_mutex_lock(&w->mu);
if (w->next >= w->count) {
pthread_mutex_unlock(&w->mu);
break;
}
idx = w->indices[w->next++];
pthread_mutex_unlock(&w->mu);
Entry *e = &w->ents->v[idx];
e->sample64 = sample_fingerprint(e->src_path, e->size);
(void)__atomic_add_fetch(&w->done, 1, __ATOMIC_RELAXED);
}
return NULL;
}
static void *hash_worker(void *arg) {
WorkQueue *w = (WorkQueue *)arg;
for (;;) {
size_t idx;
pthread_mutex_lock(&w->mu);
if (w->next >= w->count) {
pthread_mutex_unlock(&w->mu);
break;
}
idx = w->indices[w->next++];
pthread_mutex_unlock(&w->mu);
Entry *e = &w->ents->v[idx];
if (e->type != T_FILE) {
(void)__atomic_add_fetch(&w->done, 1, __ATOMIC_RELAXED);
continue;
}
if (!e->hashed) {
if (hcache_lookup(e->dev, e->ino, (uint64_t)e->size, e->mtime.tv_sec, e->mtime.tv_nsec,
e->ctime.tv_sec, e->ctime.tv_nsec, e->digest)) {
e->hashed = true;
(void)__atomic_add_fetch(&w->done, 1, __ATOMIC_RELAXED);
continue;
}
}
if (xxh128_file(e->src_path, e->digest, w->bufsize)) {
e->hashed = true;
HashCacheEnt ent = {.dev = e->dev,
.ino = e->ino,
.size = (uint64_t)e->size,
.mtime_sec = e->mtime.tv_sec,
.mtime_nsec = e->mtime.tv_nsec,
.ctime_sec = e->ctime.tv_sec,
.ctime_nsec = e->ctime.tv_nsec};
memcpy(ent.digest, e->digest, DIGEST_LEN);
hcache_append(&ent);
} else {
e->hashed = false;
warnx("hash failed: %s: %s", e->src_path, strerror(errno));
}
(void)__atomic_add_fetch(&w->done, 1, __ATOMIC_RELAXED);
}
return NULL;
}
static void *phys_worker(void *arg) {
WorkQueue *w = (WorkQueue *)arg;
for (;;) {
size_t idx;
pthread_mutex_lock(&w->mu);
if (w->next >= w->count) {
pthread_mutex_unlock(&w->mu);
break;
}
idx = w->indices[w->next++];
pthread_mutex_unlock(&w->mu);
Entry *e = &w->ents->v[idx];
if (e->type == T_FILE && e->size >= PHYS_FP_MIN_SIZE) {
uint64_t fp = phys_fingerprint_path(e->src_path, e->size);
if (fp) {
e->has_physfp = true;
e->physfp = fp;
}
}
(void)__atomic_add_fetch(&w->done, 1, __ATOMIC_RELAXED);
}
return NULL;
}
static void insertion_sort_by_sample64(size_t *indices, size_t start, size_t end, VecEntry *ents) {
for (size_t i = start + 1; i < end; i++) {
size_t key_idx = indices[i];
uint64_t key_sample = ents->v[key_idx].sample64;
size_t j = i;
while (j > start && ents->v[indices[j - 1]].sample64 > key_sample) {
indices[j] = indices[j - 1];
j--;
}
indices[j] = key_idx;
}
}
static void *sort_worker(void *arg) {
SortWork *work = (SortWork *)arg;
insertion_sort_by_sample64(
work->indices,
work->start,
work->end,
work->ents
);
return NULL;
}
static void io_queue_init(IOJobQueue *q, size_t initial_cap) {
q->queue = (IOJob *)malloc(initial_cap * sizeof(IOJob));
if (!q->queue) {
die("OOM");
}
q->cap = initial_cap;
q->count = 0;
q->head = 0;
q->tail = 0;
q->done = 0;
pthread_mutex_init(&q->head_mu, NULL);
pthread_cond_init(&q->cv_work, NULL);
}
static void io_queue_grow_unlocked(IOJobQueue *q) {
size_t new_cap = q->cap ? (q->cap << 1) : 4096;
if (new_cap <= q->count + 1) {
new_cap = q->count + 1 + (q->count >> 1) + 1;
}
IOJob *nq = (IOJob *)malloc(new_cap * sizeof(IOJob));
if (!nq) {
die("OOM");
}
if (q->count) {
if (q->head < q->tail) {
memcpy(nq, &q->queue[q->head], q->count * sizeof(IOJob));
} else {
size_t first = q->cap - q->head;
memcpy(nq, &q->queue[q->head], first * sizeof(IOJob));
memcpy(nq + first, &q->queue[0], q->tail * sizeof(IOJob));
}
}
free(q->queue);
q->queue = nq;
q->cap = new_cap;
q->head = 0;
q->tail = q->count;
}
static void io_queue_push(IOJobQueue *q, IOJob job) {
pthread_mutex_lock(&q->head_mu);
if (q->count >= q->cap - 1) {
io_queue_grow_unlocked(q);
}
q->queue[q->tail] = job;
q->tail = (q->tail + 1) % q->cap;
q->count++;
pthread_cond_signal(&q->cv_work);
pthread_mutex_unlock(&q->head_mu);
}
static bool io_queue_pop(IOJobQueue *q, IOJob *job) {
pthread_mutex_lock(&q->head_mu);
while (q->count == 0 && !q->done) {
pthread_cond_wait(&q->cv_work, &q->head_mu);
}
if (q->count == 0) {
pthread_mutex_unlock(&q->head_mu);
return false;
}
*job = q->queue[q->head];
q->head = (q->head + 1) % q->cap;
(void)__atomic_fetch_sub(&q->count, 1, __ATOMIC_RELAXED);
pthread_mutex_unlock(&q->head_mu);
return true;
}
static void io_queue_finish(IOJobQueue *q) {
q->done = 1;
pthread_cond_broadcast(&q->cv_work);
}
static void *io_worker(void *arg) {
IOWorkerCtx *wctx = (IOWorkerCtx *)arg;
IOContext *io = wctx->ctx;
const Options *opt = io->opt;
Stats *stats = io->stats;
IOJob job;
while (io_queue_pop(wctx->q, &job)) {
Entry *e = &wctx->ents->v[job.entry_idx];
switch (e->type) {
case T_DIR: {
(void)create_dir_like(opt, e->src_path, job.dst_path, stats);
/* increment directory job completion (counts both created and already-present dirs) */
(void)__atomic_add_fetch(&stats->dirs_done_jobs, 1, __ATOMIC_RELAXED);
break;
}
case T_SYMLINK: {
/* Read source link body first */
char *link_body = NULL;
size_t link_len = 0;
if (!readlink_malloc(e->src_path, &link_body, &link_len)) {
warnx("readlink: %s: %s", e->src_path, strerror(errno));
break;
}
/* Fast-path: if destination already exists and is an equal symlink */
struct stat sdst;
const bool dst_exists = (lstat(job.dst_path, &sdst) == 0);
if (dst_exists && S_ISLNK(sdst.st_mode)) {
if (symlink_targets_equal_paths(e->src_path, job.dst_path)) {
/* Idempotent: optionally delete source when --delete-source-existing */
(void)verify_and_delete_symlink_existing_equal(io->opt, e, job.dst_path, io->stats);
free(link_body);
break;
}
/* Destination exists but differs: honor clobber policy */
if (io->opt->clobber == CLOBBER_NO) {
pmsg("SKIP %s (exists, no-clobber symlink)", job.dst_path);
free(link_body);
break;
}
} else if (dst_exists) {
/* Exists but not a symlink */
if (io->opt->clobber == CLOBBER_NO) {
pmsg("SKIP %s (exists, no-clobber)", job.dst_path);
free(link_body);
break;
}
}
/* Ensure parent dir and create symlink via temp + atomic rename */
if (ensure_parent_dirs_for(job.dst_path) != 0) {
int e = errno;
if (is_perm_error(e)) {
if (g_verbose) {
pmsg("SKIP %s (perm-denied parents: %s)", job.dst_path, strerror(e));
}
} else {
warnx("mkdir parents for %s: %s", job.dst_path, strerror(e));
}
break; /* skip this symlink job, continue others */
}
char ddir[PATH_MAX];
path_dirname(job.dst_path, ddir, sizeof(ddir));
int ddirfd = dirfd_cache_open(ddir);
if (ddirfd < 0) {
warnx("open dir: %s: %s", ddir, strerror(errno));
free(link_body);
break;
}
const char *fname = path_basename(job.dst_path);
char tmpname[NAME_MAX + 128];
make_temp_name(fname, tmpname, sizeof(tmpname));
(void)unlinkat(ddirfd, tmpname, 0);
if (symlinkat(link_body, ddirfd, tmpname) != 0) {
warnx("symlink: %s -> %s: %s", tmpname, link_body, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
free(link_body);
break;
}
if (rename_tmp_to_final(ddirfd, tmpname, fname, io->opt) != 0) {
warnx("rename symlink: %s -> %s: %s", tmpname, fname, strerror(errno));
(void)unlinkat(ddirfd, tmpname, 0);
free(link_body);
break;
}
/* Durability for the directory entry */
if (io->opt->dur_mode == DUR_STRICT) {
(void)fsync_full(ddirfd);
} else {
dirb_note(ddirfd, 0, io->opt);
}
/* Copy symlink metadata only (NOFOLLOW) */
if (copyfile(e->src_path, job.dst_path, NULL, COPYFILE_METADATA | COPYFILE_NOFOLLOW) != 0) {
vmsg("metadata(min, symlink): %s -> %s: %s", e->src_path, job.dst_path, strerror(errno));
}
pmsg("SYMLINK %s -> %s", job.dst_path, link_body);
(void)__atomic_add_fetch(&io->stats->symlinks_created, 1, __ATOMIC_RELAXED);
/* Optional deletion of source symlink after we made an identical one */
(void)verify_and_delete_source_symlink(io->opt, e, job.dst_path, io->stats);
free(link_body);
break;
}
case T_FILE:
(void)copy_file_with_strategies(io, e, job.dst_path);
(void)__atomic_add_fetch(&stats->files_done, 1, __ATOMIC_RELAXED);
break;
default:
vmsg("skip special: %s", e->src_path);
break;
}
}
return NULL;
}
// ============================ Comparators ============================
static VecEntry *g_sort_ents = NULL;
static int cmp_size_then_rel_idx_asc(const void *a, const void *b) {
size_t ia = *(const size_t *)a, ib = *(const size_t *)b;
const Entry *ea = &g_sort_ents->v[ia], *eb = &g_sort_ents->v[ib];
if (ea->size < eb->size) return -1;
if (ea->size > eb->size) return 1;
return strcmp(ea->rel_path, eb->rel_path);
}
static int cmp_size_desc_then_rel(const void *a, const void *b) {
size_t ia = *(const size_t *)a, ib = *(const size_t *)b;
const Entry *ea = &g_sort_ents->v[ia], *eb = &g_sort_ents->v[ib];
if (ea->size > eb->size) return -1;
if (ea->size < eb->size) return 1;
return strcmp(ea->rel_path, eb->rel_path);
}
/* ==========================================================================
* Benchmark Runner (internal)
* ========================================================================== */
/* ---------- Size histogram for profile similarity (4 buckets) ---------- */
static inline int size_bucket(off_t sz) {
if ((uint64_t)sz <= (64ull << 10)) return 0; /* ≤ 64 KiB */
if ((uint64_t)sz <= (1ull << 20)) return 1; /* ≤ 1 MiB */
if ((uint64_t)sz <= (64ull << 20)) return 2; /* ≤ 64 MiB */
return 3;
}
/* ===== Autotune model types (must appear before predictors that use them) ===== */
#ifndef DCOPY_PERFOBS_DEFINED
#define DCOPY_PERFOBS_DEFINED 1
typedef struct {
double mibs_mean; /* MiB/s (physical throughput) */
double filesps_mean; /* small-file rate (files/s) */
double majflt_rate; /* major faults per repeat */
} PerfObs;
#endif
/* ---------- Workload mix (bytes + small-file count) & time predictor ---------- */
typedef struct {
uint64_t bytes_total; /* total logical bytes across files */
uint64_t files_small; /* count of files <= small_thresh_bytes */
double small_thresh_bytes; /* threshold used to define "small" (default: 1 MiB) */
} WorkloadMix;
static WorkloadMix compute_workload_mix(const VecEntry *all, double small_thresh_bytes)
{
WorkloadMix wm = {0};
wm.small_thresh_bytes = small_thresh_bytes;
for (size_t i = 0; i < all->n; i++) {
const Entry *e = &all->v[i];
if (e->type != T_FILE) {
continue;
}
wm.bytes_total += (uint64_t)e->size;
if ((double)e->size <= small_thresh_bytes) {
wm.files_small++;
}
}
return wm;
}
/* Predict full-tree wall time for a combo measured as:
- o->mibs : MiB/s (PHYSICAL I/O throughput; we already compute this)
- o->filesps : files/s (small-file rate measured by the subset)
Model: time = (bytes_total / MBps) + (files_small / filesps)
Note: MBps = mibs (MiB/s), convert bytes_total to MiB.
*/
__attribute__((always_inline))
static double predict_time_seconds(const PerfObs *o, const WorkloadMix *wm)
{
const double eps = 1e-9;
const double mb = (double)wm->bytes_total / (1024.0 * 1024.0);
const double mbps = (o->mibs_mean > eps) ? o->mibs_mean : eps;
const double fps = (o->filesps_mean > eps) ? o->filesps_mean : eps;
const double t_bytes = mb / mbps;
const double t_files = (double)wm->files_small / fps;
return t_bytes + t_files;
}
/* ---------- Environment profile key (src/dst APFS + mount flags + hw) ---------- */
typedef struct {
dev_t src_dev;
dev_t dst_dev;
int apfs_src;
int apfs_dst;
uint32_t src_mnt_flags;
uint32_t dst_mnt_flags;
int os_major, os_minor;
int ncpu;
uint64_t ram_bytes;
} EnvKey;
/* ---------- Clone feasibility & cost probe ---------- */
typedef struct {
int clone_allowed; /* any success on fclonefileat */
double clone_cost_sec; /* median end-to-end temp->rename(+fsync) cost */
} CloneProbe;
/* Best-effort median of small vector */
__attribute__((always_inline))
static double
median_d(double *a, int n)
{
if (n <= 0) return DBL_MAX; /* fast-math safe sentinel */
/* insertion sort (small n) */
for (int i = 1; i < n; i++) {
double key = a[i];
int j = i - 1;
while (j >= 0 && a[j] > key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
return a[n / 2];
}
__attribute__((always_inline))
static double
mad_d(const double *x, int n, double med)
{
if (n <= 0) return DBL_MAX; /* fast-math safe sentinel */
/* guard temporary size (matches outer-run cap of 50; buffer sized 64) */
double dev[64];
if (n > (int)(sizeof(dev) / sizeof(dev[0]))) return DBL_MAX;
for (int i = 0; i < n; i++) dev[i] = fabs(x[i] - med);
return median_d(dev, n);
}
static CloneProbe probe_clone(const VecEntry *all, const char *dst_root) {
CloneProbe P = {0};
char scratch[PATH_MAX];
snprintf(scratch, sizeof(scratch), "%s/.dcopy-probe.%ld.%u",
dst_root, (long)getpid(), (unsigned)arc4random());
(void)ensure_dir_exists_recursive(scratch);
/* Collect up to 6 representative files by size buckets */
const int MAXP = 6;
size_t picked[MAXP];
int np = 0;
int seen_b[4] = {0,0,0,0};
for (size_t i = 0; i < all->n && np < MAXP; i++) {
const Entry *e = &all->v[i];
if (e->type != T_FILE || e->size <= 0) {
continue;
}
int b = size_bucket(e->size);
if (seen_b[b] >= 2) {
/* at most two per bucket */
continue;
}
picked[np++] = i;
seen_b[b]++;
}
double costs[MAXP];
int nc = 0;
for (int k = 0; k < np; k++) {
const Entry *e = &all->v[picked[k]];
char tmpname[PATH_MAX];
char finalname[PATH_MAX];
snprintf(tmpname, sizeof(tmpname), "%s/tmp.%u", scratch, (unsigned)arc4random());
snprintf(finalname,sizeof(finalname),"%s/out.%u", scratch, (unsigned)arc4random());
ensure_parent_dirs_for(finalname);
int ddirfd = dirfd_cache_open(scratch);
if (ddirfd < 0) {
continue;
}
double t0 = now_sec();
/* Try cloning e->src_path into tmp within scratch */
if (try_clone_to_tmp_path(e->src_path, ddirfd, path_basename(tmpname)) == 0) {
/* finalize to 'finalname' for realistic rename cost */
if (rename_tmp_to_final(ddirfd, path_basename(tmpname),
path_basename(finalname), &(Options){ .clobber = CLOBBER_OVERWRITE }) == 0) {
(void)fsync_full(ddirfd);
double t1 = now_sec();
costs[nc++] = (t1 - t0);
P.clone_allowed = 1;
(void)unlink(finalname);
} else {
(void)unlink(tmpname);
}
} else {
(void)unlink(tmpname);
}
}
if (nc > 0) {
P.clone_cost_sec = median_d(costs, nc);
} else {
P.clone_cost_sec = 0.0;
}
remove_tree_recursive(scratch);
return P;
}
/* ---------- Latin Hypercube-like seeding over discrete sets ---------- */
typedef struct {
int io_threads;
size_t buf_mib, inflight_mib, rdadv_mib;
DurabilityMode dur;
int pathmode; /* 0 streaming-only, 1 kernel-only */
} TuneCombo;
typedef struct {
TuneCombo theta;
double mibs, filesps, majflt_rate;
double score; /* now = -pred_secs */
double eval_frac; /* evaluation fraction (e.g., 0.25, 0.60, 1.00) */
double pred_secs; /* predicted full-tree time in seconds */
} Trial;
/* Fast-math-safe sentinels + measured predicate */
#ifndef DCOPY_SENTINELS_DEFINED
#define DCOPY_SENTINELS_DEFINED 1
#include <float.h>
#define DCOPY_PSECS_INF (DBL_MAX) /* unmeasured predicted seconds */
#define DCOPY_SCORE_NEG_INF (-(DBL_MAX)) /* unmeasured score */
static inline int trial_measured(const Trial *t) {
return t->pred_secs < (DBL_MAX / 2.0);
}
#endif
static int combo_equal(const TuneCombo *a, const TuneCombo *b) {
return a->io_threads == b->io_threads &&
a->buf_mib == b->buf_mib &&
a->inflight_mib == b->inflight_mib &&
a->rdadv_mib == b->rdadv_mib &&
a->dur == b->dur &&
a->pathmode == b->pathmode;
}
static int push_unique_trial(Trial *T, int *n, int cap, TuneCombo th) {
for (int i = 0; i < *n; i++) {
if (combo_equal(&T[i].theta, &th)) {
return 0;
}
}
if (*n >= cap) {
return 0;
}
T[*n].theta = th;
(*n)++;
return 1;
}
static int seed_combos(Trial *out, int cap) {
const int cpus = cpu_count();
const int io_set[] = { (cpus < 2 ? 1 : 2),
(cpus < 4 ? cpus : 4),
(cpus < 8 ? cpus : 8) };
const size_t buf_set[] = {1,2,4,8,16}; /* MiB */
const size_t infl_set[] = {256,512,1024,2048,4096}; /* MiB */
const size_t rd_set[] = {16,32,64,128}; /* MiB */
const DurabilityMode dur_set[] = {DUR_STRICT, DUR_BATCH};
const int path_set[] = {0,1}; /* 0 streaming-only, 1 kernel-only */
int n = 0;
(void)push_unique_trial(out, &n, cap, (TuneCombo){ io_set[0], 1, 256, 16, DUR_STRICT, 0 });
(void)push_unique_trial(out, &n, cap, (TuneCombo){ io_set[1], 4, 512, 32, DUR_BATCH, 0 });
(void)push_unique_trial(out, &n, cap, (TuneCombo){ io_set[2], 8, 1024, 64, DUR_BATCH, 1 });
while (n < cap) {
TuneCombo th = {
.io_threads = io_set[arc4random_uniform((uint32_t)(sizeof(io_set)/sizeof(io_set[0])))],
.buf_mib = buf_set[arc4random_uniform((uint32_t)(sizeof(buf_set)/sizeof(buf_set[0])))],
.inflight_mib = infl_set[arc4random_uniform((uint32_t)(sizeof(infl_set)/sizeof(infl_set[0])))],
.rdadv_mib = rd_set[arc4random_uniform((uint32_t)(sizeof(rd_set)/sizeof(rd_set[0])))],
.dur = dur_set[arc4random_uniform((uint32_t)(sizeof(dur_set)/sizeof(dur_set[0])))],
.pathmode = path_set[arc4random_uniform((uint32_t)(sizeof(path_set)/sizeof(path_set[0])))]
};
(void)push_unique_trial(out, &n, cap, th);
}
return n;
}
/* ---------- Student-t 95%% critical (small n lookup) ---------- */
static double tcrit95_df(int df) {
/* df = n-1; for n in [2..30], fallback to normal for df>30 */
switch (df) {
case 1: return 12.706; case 2: return 4.303; case 3: return 3.182;
case 4: return 2.776; case 5: return 2.571; case 6: return 2.447;
case 7: return 2.365; case 8: return 2.306; case 9: return 2.262;
case 10: return 2.228; case 11: return 2.201; case 12: return 2.179;
case 13: return 2.160; case 14: return 2.145; case 15: return 2.131;
case 16: return 2.120; case 17: return 2.110; case 18: return 2.101;
case 19: return 2.093; case 20: return 2.086; case 21: return 2.080;
case 22: return 2.074; case 23: return 2.069; case 24: return 2.064;
case 25: return 2.060; case 26: return 2.056; case 27: return 2.052;
case 28: return 2.048; case 29: return 2.045; case 30: return 2.042;
default: return 1.960;
}
}
/* ---------- Winsorize small arrays (protect from outliers) ---------- */
static void winsorize_5pct(double *a, int n) {
if (n < 3) {
return;
}
/* Find min and max and clamp by next values */
int imin = 0, imax = 0;
for (int i = 1; i < n; i++) {
if (a[i] < a[imin]) {
imin = i;
}
if (a[i] > a[imax]) {
imax = i;
}
}
/* Replace min and max with neighbors (rough 5% for small n) */
double avg = 0.0;
for (int i = 0; i < n; i++) {
avg += a[i];
}
avg /= n;
a[imin] = avg;
a[imax] = avg;
}
typedef struct {
double secs;
uint64_t bytes;
double mibs;
double files_per_s_small;
} BenchMetrics;
/* ---------- Fractional subset runner (declared later) ---------- */
static int run_subset_pipeline_fraction(VecEntry *subset, const char *dst_root,
Options *opt, double fraction,
BenchMetrics *out);
/* ---------- Measure one combo with adaptive repeats and CI bounds ---------- */
static PerfObs measure_combo(const TuneCombo *th,
VecEntry *S,
const char *run_dir, /* per-trial destination root */
Options base,
double frac,
double eps_mibs_pct,
double eps_files_pct,
int *combo_err)
{
/* Build options for this combo (bench overrides included) */
Options o = base;
o.jobs_io = th->io_threads;
o.buf_size = (size_t)th->buf_mib << 20;
o.inflight_cap = (size_t)th->inflight_mib << 20;
o.rdadvise_window = (size_t)th->rdadv_mib << 20;
o.dur_mode = th->dur;
o.use_kernel_copy = (th->pathmode == 1);
o.force_kernel_only = (th->pathmode == 1);
o.force_streaming = (th->pathmode == 0);
/* Critical for benchmarking: prevent EEXIST/skip noise and reduce metadata noise */
o.clobber = CLOBBER_OVERWRITE;
o.meta_mode = META_MINIMAL;
clamp_inflight_to_ram(&o);
const int NMAX = 5;
double mibs[NMAX], fps[NMAX];
int n = 0;
struct rusage ru0, ru1;
(void)getrusage(RUSAGE_SELF, &ru0);
long majflt_before = ru0.ru_majflt;
while (n < NMAX) {
/* Ensure we don't hold stale directory FDs from a prior repeat */
dirfd_cache_close_all();
/* Recreate the run directory (and parents) fresh for this repeat */
(void)(void)ensure_dir_exists_recursive(run_dir);
BenchMetrics m = {0};
int rc = run_subset_pipeline_fraction(S, run_dir, &o, frac, &m);
if (rc != 0) { if (combo_err) *combo_err = 1; break; }
mibs[n] = m.mibs;
fps[n] = m.files_per_s_small;
n++;
if (n >= 2) {
/* t-interval half-widths */
double mean_m=0, mean_f=0, s_m=0, s_f=0;
for (int i = 0; i < n; i++){
mean_m += mibs[i];
mean_f += fps[i];
}
mean_m/=n;
mean_f/=n;
for (int i = 0; i < n; i++){
s_m += (mibs[i]-mean_m)*(mibs[i]-mean_m);
s_f += (fps[i]-mean_f)*(fps[i]-mean_f);
}
s_m = (n>1) ? sqrt(s_m/(n-1)) : 0.0;
s_f = (n>1) ? sqrt(s_f/(n-1)) : 0.0;
double t = tcrit95_df(n-1);
double hw_m = t * s_m / sqrt((double)n);
double hw_f = t * s_f / sqrt((double)n);
double rel_m = (mean_m > 0) ? (hw_m/mean_m*100.0) : 100.0;
double rel_f = (mean_f > 0) ? (hw_f/mean_f*100.0) : 100.0;
if (rel_m <= eps_mibs_pct && rel_f <= eps_files_pct) {
/* Clean once more after final repeat */
remove_tree_recursive(run_dir);
dirfd_cache_close_all();
break;
}
}
/* Clean up the whole per-repeat run dir to start next repeat from a blank slate. */
remove_tree_recursive(run_dir);
/* Invalidate cached directory FDs that point to now-removed paths. */
dirfd_cache_close_all();
}
(void)getrusage(RUSAGE_SELF, &ru1);
long majflt_after = ru1.ru_majflt;
/* Stabilize if we had 3+ samples */
if (n >= 3) {
winsorize_5pct(mibs, n);
winsorize_5pct(fps, n);
}
double mean_m=0, mean_f=0;
for (int i = 0; i < n; i++){
mean_m += mibs[i];
mean_f += fps[i];
}
if (n > 0){
mean_m/=n;
mean_f/=n;
}
PerfObs obs = { .mibs_mean = mean_m, .filesps_mean = mean_f };
long df = (majflt_after > majflt_before) ? (majflt_after - majflt_before) : 0;
obs.majflt_rate = (double)df / (double)(n>0? n : 1);
/* Final safety: ensure no stale FDs leak into the next combo */
dirfd_cache_close_all();
return obs;
}
/* ---------- Score function ---------- */
static inline double score_from_pred_seconds(double secs) {
/* Lower seconds is better -> higher score */
return -secs;
}
static int run_subset_pipeline(VecEntry *subset,
const char *dst_root,
Options *opt,
BenchMetrics *out)
{
/* Ensure inflight matches this run */
g_inflight_cap = opt->inflight_cap;
/* No progress noise for micro-runs */
const int saved_quiet = g_quiet;
const int saved_prog = g_progress_enabled;
g_progress_enabled = 0;
DigestMap dmap; dmap_init(&dmap);
InoMap imap; imap_init(&imap);
PhysMap pmap; pmap_init(&pmap);
Stats stats = {0};
uint64_t small_files_cnt = 0;
for (size_t i = 0; i < subset->n; i++) {
if (subset->v[i].type == T_FILE) {
stats.files_total++;
stats.bytes_total += (uint64_t)subset->v[i].size;
if ((uint64_t)subset->v[i].size <= (1ull << 20)) {
small_files_cnt++;
}
}
}
__atomic_store_n(&stats.copy_phase_started, 0, __ATOMIC_RELAXED);
gettimeofday(&stats.start_time, NULL);
IOJobQueue io_q;
io_queue_init(&io_q, subset->n > 1024 ? subset->n : 1024);
IOContext io_ctx = { .opt = opt, .dmap = &dmap, .imap = &imap, .pmap = &pmap, .stats = &stats };
IOWorkerCtx wctx = { .q = &io_q, .ents = subset, .ctx = &io_ctx };
int n_io = opt->jobs_io ? opt->jobs_io : (cpu_count() < 4 ? cpu_count() : 4);
if (n_io < 1) {
n_io = 1;
}
if (n_io > MAX_THREADS) {
n_io = MAX_THREADS;
}
pthread_t *tids = (pthread_t *)calloc((size_t)n_io, sizeof(pthread_t));
for (int t = 0; t < n_io; t++) {
if (pthread_create(&tids[t], NULL, io_worker, &wctx) != 0) {
die("pthread_create(io_worker)");
}
}
/* 1) Directories first */
for (size_t i = 0; i < subset->n; i++) {
if (subset->v[i].type != T_DIR) continue;
char dst_path[PATH_MAX];
path_join2(dst_root, subset->v[i].rel_path, dst_path, sizeof dst_path);
IOJob j = { .entry_idx = i };
snprintf(j.dst_path, sizeof(j.dst_path), "%s", dst_path);
io_queue_push(&io_q, j);
}
/* 2) Files by size descending */
size_t nf = 0;
for (size_t i = 0; i < subset->n; i++) {
if (subset->v[i].type == T_FILE) {
nf++;
}
}
if (nf > 0) {
size_t *ord = (size_t *)malloc(nf * sizeof(size_t));
size_t k = 0;
for (size_t i = 0; i < subset->n; i++) {
if (subset->v[i].type == T_FILE) {
ord[k++] = i;
}
}
g_sort_ents = subset;
qsort(ord, nf, sizeof(size_t), cmp_size_desc_then_rel);
__atomic_store_n(&stats.copy_phase_started, 1, __ATOMIC_RELAXED);
for (size_t z = 0; z < nf; z++) {
char dst_path[PATH_MAX];
path_join2(dst_root, subset->v[ord[z]].rel_path, dst_path, sizeof dst_path);
IOJob j = { .entry_idx = ord[z] };
snprintf(j.dst_path, sizeof(j.dst_path), "%s", dst_path);
io_queue_push(&io_q, j);
}
free(ord);
}
/* 3) Symlinks/others last */
for (size_t i = 0; i < subset->n; i++) {
if (subset->v[i].type == T_FILE || subset->v[i].type == T_DIR) {
continue;
}
char dst_path[PATH_MAX];
path_join2(dst_root, subset->v[i].rel_path, dst_path, sizeof dst_path);
IOJob j = { .entry_idx = i };
snprintf(j.dst_path, sizeof(j.dst_path), "%s", dst_path);
io_queue_push(&io_q, j);
}
io_queue_finish(&io_q);
for (int t = 0; t < n_io; t++) {
pthread_join(tids[t], NULL);
}
free(tids);
if (opt->dur_mode == DUR_BATCH) {
dirfd_cache_fsync_all();
}
struct timeval now;
gettimeofday(&now, NULL);
double secs = (double)(now.tv_sec - stats.start_time.tv_sec) +
(double)(now.tv_usec - stats.start_time.tv_usec) / 1e6;
if (secs <= 0) {
secs = 1e-3;
}
/* Use PHYSICAL bytes for benchmark throughput to avoid clone/hole inflation. */
out->secs = secs;
out->bytes = stats.bytes_phys_io;
out->mibs = ((double)stats.bytes_phys_io) / secs / (1024.0 * 1024.0);
out->files_per_s_small = (secs > 0.0) ? ((double)small_files_cnt / secs) : 0.0;
dmap_free(&dmap);
imap_free(&imap);
pmap_free(&pmap);
g_quiet = saved_quiet;
g_progress_enabled = saved_prog;
return 0;
}
// ============================ Progress & Summary ============================
typedef struct {
Stats *stats;
volatile sig_atomic_t done;
} ProgressCtx;
static void update_copy_progress(Stats *stats);
static void *progress_updater_thread(void *arg) {
ProgressCtx *ctx = (ProgressCtx *)arg;
while (!ctx->done) {
update_copy_progress(ctx->stats);
struct timespec ts = {.tv_sec = 0, .tv_nsec = 100000000};
(void)nanosleep(&ts, NULL);
}
update_copy_progress(ctx->stats);
return NULL;
}
static void update_sample_progress(uint64_t done, uint64_t total) {
if (g_quiet || !g_progress_enabled) {
return;
}
static const char spinner[] = {'-', '\\', '|', '/'};
static int spin_idx = 0;
int percent = (total > 0) ? (int)((done * 100) / total) : 100;
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "\r[%c] Sampling files... %d%% (%llu/%llu)",
spinner[spin_idx], percent,
(unsigned long long)done, (unsigned long long)total);
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
spin_idx = (spin_idx + 1) % (sizeof(spinner));
if (done >= total) {
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "\r[+] Sampling files... Done. \n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
}
}
static void update_hash_progress(uint64_t done, uint64_t total) {
if (g_quiet || !g_progress_enabled) {
return;
}
static const char spinner[] = {'-', '\\', '|', '/'};
static int spin_idx = 0;
int percent = (total > 0) ? (int)((done * 100) / total) : 100;
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "\r[%c] Hashing files... %d%% (%llu/%llu)",
spinner[spin_idx], percent,
(unsigned long long)done, (unsigned long long)total);
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
spin_idx = (spin_idx + 1) % (sizeof(spinner));
if (done >= total) {
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "\r[+] Hashing files... Done. \n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
}
}
static void update_copy_progress(Stats *stats) {
if (g_quiet || !g_progress_enabled) {
return;
}
struct timeval now;
gettimeofday(&now, NULL);
double elapsed = (double)(now.tv_sec - stats->start_time.tv_sec) +
(double)(now.tv_usec - stats->start_time.tv_usec) / 1e6;
uint64_t files_done = __atomic_load_n(&stats->files_done, __ATOMIC_RELAXED);
uint64_t files_total = __atomic_load_n(&stats->files_total, __ATOMIC_RELAXED);
uint64_t bytes_done = __atomic_load_n(&stats->bytes_done, __ATOMIC_RELAXED);
uint64_t bytes_total = __atomic_load_n(&stats->bytes_total, __ATOMIC_RELAXED);
uint64_t dirs_done = __atomic_load_n(&stats->dirs_done_jobs, __ATOMIC_RELAXED);
uint64_t dirs_total = __atomic_load_n(&stats->dirs_total_jobs, __ATOMIC_RELAXED);
int phase_started = __atomic_load_n(&stats->copy_phase_started, __ATOMIC_RELAXED);
double rate = (elapsed > 0.1) ? (double)bytes_done / elapsed : 0.0;
char rate_buf[32];
(void)human_bytes(rate, rate_buf, sizeof(rate_buf));
int dir_percent = (dirs_total > 0) ? (int)((dirs_done * 100) / dirs_total ) : 100;
int file_percent = (files_total > 0) ? (int)((files_done * 100) / files_total) : 100;
pthread_mutex_lock(&g_log_mu);
if (!phase_started) {
fprintf(stderr,
"\rPreparing directory structure: Dirs %llu/%llu (%3d%%)",
(unsigned long long)dirs_done,
(unsigned long long)dirs_total,
dir_percent);
if (files_total == 0 && dirs_total > 0 && dirs_done >= dirs_total) {
fprintf(stderr, "\rPreparing directory structure: Complete. \n");
}
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
return;
}
int bar_width = 20;
int bar_pos = 0;
if (bytes_total > 0) {
int percent_bytes = (int)((bytes_done * 100) / bytes_total);
bar_pos = (percent_bytes * bar_width) / 100;
if (bar_pos < 0) {
bar_pos = 0;
}
if (bar_pos > bar_width) {
bar_pos = bar_width;
}
} else {
bar_pos = bar_width;
}
fprintf(stderr,
"\rCopying: [%.*s%.*s] %3d%% | %llu/%llu files | %s/s | Dirs %llu/%llu (%3d%%)",
bar_pos, "====================",
bar_width - bar_pos, " ",
file_percent,
(unsigned long long)files_done,
(unsigned long long)files_total,
rate_buf,
(unsigned long long)dirs_done,
(unsigned long long)dirs_total,
dir_percent);
if (files_done >= files_total) {
fprintf(stderr, "\rCopying: Complete. \n");
}
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
}
static void print_summary(const Stats *stats, const Options *opt) {
if (g_quiet) return;
char total_buf[32], copied_buf[32], cloned_src_buf[32], cloned_dedupe_buf[32],
linked_buf[32], skipped_buf[32], delsrc_buf[32];
(void)human_bytes((double)stats->bytes_total, total_buf, sizeof(total_buf));
(void)human_bytes((double)stats->bytes_copied, copied_buf, sizeof(copied_buf));
(void)human_bytes((double)stats->bytes_cloned_src, cloned_src_buf, sizeof(cloned_src_buf));
(void)human_bytes((double)stats->bytes_cloned_dedupe, cloned_dedupe_buf, sizeof(cloned_dedupe_buf));
(void)human_bytes((double)stats->bytes_hardlinked, linked_buf, sizeof(linked_buf));
(void)human_bytes((double)stats->bytes_skipped, skipped_buf, sizeof(skipped_buf));
(void)human_bytes((double)stats->bytes_deleted_src, delsrc_buf, sizeof(delsrc_buf));
pthread_mutex_lock(&g_log_mu);
fprintf(stderr, "\n--- Copy Summary ---\n");
if (opt->dry_run) {
fprintf(stderr, "Mode: Dry Run (no changes were made)\n");
}
fprintf(stderr,
"Total objects processed: %llu files (%s), %llu dirs, %llu symlinks\n\n",
(unsigned long long)stats->files_total,
total_buf,
(unsigned long long)stats->dirs_total_jobs,
(unsigned long long)stats->symlinks_total);
fprintf(stderr, "File Operations Breakdown:\n");
fprintf(stderr, " - Copied (full data): %6llu files (%s)\n",
(unsigned long long)stats->files_copied, copied_buf);
fprintf(stderr, " - Cloned (from source): %6llu files (%s)\n",
(unsigned long long)stats->files_cloned_src, cloned_src_buf);
fprintf(stderr, " - Cloned (deduplicated): %6llu files (%s)\n",
(unsigned long long)stats->files_cloned_dedupe, cloned_dedupe_buf);
fprintf(stderr, " - Hardlinked: %6llu files (%s)\n",
(unsigned long long)stats->files_hardlinked, linked_buf);
fprintf(stderr, " - Skipped (no-clobber): %6llu files (%s)\n",
(unsigned long long)stats->files_skipped, skipped_buf);
fprintf(stderr, " - Deleted sources: %6llu files (%s)\n",
(unsigned long long)stats->files_deleted_src, delsrc_buf);
fprintf(stderr, "\nSymlink Operations:\n");
fprintf(stderr, " - Created at destination: %6llu\n",
(unsigned long long)stats->symlinks_created);
fprintf(stderr, " - Deleted from source: %6llu\n",
(unsigned long long)stats->symlinks_deleted_src);
fprintf(stderr, "--------------------\n");
fflush(stderr);
pthread_mutex_unlock(&g_log_mu);
}
/* ==========================================================================
* Sampling & Autotune
* ========================================================================== */
typedef struct {
size_t *idx;
size_t n;
} IndexVec;
/* ============================================================================
* Stratified subset builder (replaces fixed 25%% rule with bucketed sampling)
* ========================================================================== */
static int
build_stratified_subset(VecEntry *all,
size_t cap_large,
size_t cap_small,
VecEntry *subset,
uint64_t byte_budget)
{
subset->v = NULL;
subset->n = 0;
subset->cap = 0;
/* Root bench/ directory */
Entry d = (Entry){0};
d.type = T_DIR;
d.src_path = xstrdup(".");
d.rel_path = xstrdup("bench");
ve_push(subset, d);
/* Collect candidates by buckets */
size_t idx_tiny_cap = cap_small;
size_t idx_small_cap = cap_small;
size_t idx_med_cap = cap_large;
size_t idx_large_cap = cap_large;
size_t tiny = 0, small = 0, med = 0, large = 0;
uint64_t left = byte_budget;
/* One pass, pick proportionally until caps and budget are hit */
for (size_t i = 0; i < all->n && left > 0; i++) {
const Entry *src = &all->v[i];
if (src->type != T_FILE || src->size <= 0) continue;
int b = size_bucket(src->size);
bool take = false;
switch (b) {
case 0: if (tiny < idx_tiny_cap) { take = true; tiny++; } break;
case 1: if (small < idx_small_cap) { take = true; small++; } break;
case 2: if (med < idx_med_cap) { take = true; med++; } break;
default:if (large < idx_large_cap) { take = true; large++; } break;
}
if (!take) continue;
/* Ensure per-file does not wildly exceed remaining budget */
if ((uint64_t)src->size > left && left < (uint64_t)src->size / 4) continue;
const char *base = path_basename(src->rel_path);
uint64_t h64 = XXH3_64bits(src->src_path, strlen(src->src_path));
Entry e = *src;
char nameonly[NAME_MAX + 96];
snprintf(nameonly, sizeof(nameonly), "bench/%016llx__%s",
(unsigned long long)h64, base);
e.rel_path = xstrdup(nameonly);
e.src_path = xstrdup(src->src_path);
ve_push(subset, e);
if (left > (uint64_t)src->size) left -= (uint64_t)src->size;
else left = 0;
}
return 0;
}
/* ============================================================================
* Run only a fraction of a prepared subset (by bytes), preserving order.
* ========================================================================== */
static int run_subset_pipeline_fraction(VecEntry *subset, const char *dst_root,
Options *opt, double fraction,
BenchMetrics *out)
{
if (fraction <= 0.0) fraction = 0.25;
if (fraction > 1.0) fraction = 1.0;
/* Compute total bytes of files in subset (ignore dirs) */
uint64_t bytes_total = 0;
for (size_t i = 0; i < subset->n; i++) {
if (subset->v[i].type == T_FILE) bytes_total += (uint64_t)subset->v[i].size;
}
uint64_t byte_cap = (uint64_t)((double)bytes_total * fraction);
VecEntry frac = {0};
/* Always include bench/ directory entry */
for (size_t i = 0; i < subset->n; i++) {
if (subset->v[i].type == T_DIR && strcmp(subset->v[i].rel_path, "bench") == 0) {
Entry d = {0};
d.type = T_DIR;
d.src_path = xstrdup(".");
d.rel_path = xstrdup("bench");
ve_push(&frac, d);
break;
}
}
uint64_t left = byte_cap;
for (size_t i = 0; i < subset->n && left > 0; i++) {
const Entry *e = &subset->v[i];
if (e->type != T_FILE) continue;
if ((uint64_t)e->size > left && left < (uint64_t)e->size / 4) continue;
Entry c = *e;
c.src_path = xstrdup(e->src_path);
c.rel_path = xstrdup(e->rel_path);
ve_push(&frac, c);
if (left > (uint64_t)e->size) left -= (uint64_t)e->size;
else left = 0;
}
/* Execute full runner on fractional subset */
int rc = run_subset_pipeline(&frac, dst_root, opt, out);
ve_free(&frac);
return rc;
}
/* --------------------------------------------------------------------------
* Autotune legend & info — SINGLE-RUN TABLE
* Matches columns:
* # | mode | tier | io | inflight | buf | rdadv | dur | throughput | t_pred(s) | score
* -------------------------------------------------------------------------- */
static void
print_autotune_legend_single(const WorkloadMix *wm, double highest_tier_seen)
{
char hb[64];
human_bytes((double)wm->bytes_total, hb, sizeof(hb));
pmsg("\nLegend / Info (single run)");
pmsg(" mode : 'streaming' = userland read/write; 'kernel' = fcopyfile(3) path.");
pmsg(" tier : evaluation fraction of the subset (0.25, 0.60, 1.00). Higher tiers are preferred.");
pmsg(" io : I/O worker threads (data path; distinct from hashing threads).");
pmsg(" inflight : global in-flight cap (MiB) to bound page-cache / memory pressure.");
pmsg(" buf : per-I/O-thread read buffer size (MiB).");
pmsg(" rdadv : read-ahead advisory window (MiB) via fcntl(F_RDADVISE).");
pmsg(" dur : durability policy — 'strict' (fsync each create+rename) vs 'batch' (coalesced fsync).");
pmsg(" throughput : average *physical* I/O rate for the subset (humanized); excludes APFS clones & holes.");
pmsg(" t_pred(s) : predicted full-tree wall time (seconds), computed as:");
pmsg(" t_pred = (bytes_total / MBps) + (files_small / filesps)");
pmsg(" where MBps and filesps come from measurements on the subset;");
pmsg(" 'small' means size ≤ %.0f KiB.", wm->small_thresh_bytes / 1024.0);
pmsg(" score : -t_pred(s) (higher score == lower predicted time).");
pmsg("\nWorkload mix used for prediction");
pmsg(" total bytes : %s", hb);
pmsg(" small-file cutoff : %.0f KiB", wm->small_thresh_bytes / 1024.0);
pmsg(" small files counted: %llu", (unsigned long long)wm->files_small);
pmsg("\nSelection policy (single run)");
pmsg(" 1) Use the highest evaluated tier present (prefer 1.00; highest seen = %.2f).", highest_tier_seen);
pmsg(" 2) Within that tier, choose the row with lowest t_pred (highest score).");
pmsg("\nNotes");
pmsg(" • Autotune uses overwrite + minimal metadata to reduce per-combo noise.");
pmsg(" • Directory-FD cache is flushed between repeats to avoid stale openat(2) failures.");
pmsg(" • Inner repeats tighten 95%% CIs; results may still vary with background load/thermals.");
pmsg(" • Table throughput is humanized; scoring uses exact MiB/s internally.");
}
/* --------------------------------------------------------------------------
* Autotune legend & info — AGGREGATED TABLE (over --bench-runs K)
* Matches columns:
* # | mode | io | inflight | buf | rdadv | dur | t_pred_med | t_MAD | t_mean | n
* -------------------------------------------------------------------------- */
static void
print_autotune_legend_agg(const WorkloadMix *wm, int K_runs, double highest_tier_seen)
{
char hb[64];
human_bytes((double)wm->bytes_total, hb, sizeof(hb));
pmsg("\nLegend / Info (aggregated over %d runs)", K_runs);
pmsg(" mode : 'streaming' = userland read/write; 'kernel' = fcopyfile(3) path.");
pmsg(" io : I/O worker threads (data path).");
pmsg(" inflight : global in-flight cap (MiB).");
pmsg(" buf : per-I/O-thread read buffer size (MiB).");
pmsg(" rdadv : read-ahead advisory window (MiB).");
pmsg(" dur : durability policy.");
pmsg(" t_pred_med : median of predicted full-tree times (seconds) across runs.");
pmsg(" t_MAD : median absolute deviation of predicted times (robust dispersion).");
pmsg(" t_mean : arithmetic mean of predicted times.");
pmsg(" n : number of runs contributing to this row (≤ %d).", K_runs);
pmsg("\nPrediction model (per run)");
pmsg(" t_pred = (bytes_total / MBps) + (files_small / filesps)");
pmsg(" • MBps and filesps measured on the subset; 'small' means size ≤ %.0f KiB.",
wm->small_thresh_bytes / 1024.0);
pmsg(" • bytes_total used here: %s; small files counted: %llu.",
hb, (unsigned long long)wm->files_small);
pmsg("\nSelection policy (aggregated)");
pmsg(" 1) Rank configs by lowest t_pred_med (robust to outliers).");
pmsg(" 2) Tie-break by smaller t_MAD, then smaller t_mean.");
pmsg(" 3) Preference is still given to configs observed at higher tiers (highest seen = %.2f).",
highest_tier_seen);
pmsg("\nNotes");
pmsg(" • The aggregated table summarizes only the winning config from each run.");
pmsg(" • Inner per-combo CI control remains active; outer aggregation reduces environmental noise.");
pmsg(" • Throughput columns are omitted here by design; the decision metric is t_pred.");
}
/* ---------- Full-equality for TuneCombo ---------- */
static int combo_equal_full(const TuneCombo *a, const TuneCombo *b) {
return a->io_threads == b->io_threads &&
a->buf_mib == b->buf_mib &&
a->inflight_mib == b->inflight_mib &&
a->rdadv_mib == b->rdadv_mib &&
a->dur == b->dur &&
a->pathmode == b->pathmode;
}
/* ---------- Aggregation rows ---------- */
typedef struct {
TuneCombo theta;
double secs[64]; /* predicted seconds per outer run (max 50 used) */
int n;
} AggRow;
/* Compute best (lowest) median so far across populated AggRow slots. */
static double agg_best_median_so_far(const AggRow *agg, int rn)
{
double best = DBL_MAX;
double buf[64];
for (int i = 0; i < rn; i++) {
if (agg[i].n <= 0) {
continue;
}
int n = agg[i].n;
for (int j = 0; j < n; j++) {
buf[j] = agg[i].secs[j];
}
double med = median_d(buf, n);
if (med < best) {
best = med;
}
}
return best;
}
static int agg_find_or_add(AggRow *rows, int *rn, int cap, const TuneCombo *th) {
for (int i = 0; i < *rn; i++) {
if (combo_equal_full(&rows[i].theta, th)) {
return i;
}
}
if (*rn >= cap) {
return -1;
}
rows[*rn].theta = *th;
rows[*rn].n = 0;
return (*rn)++;
}
/* --------------------------------------------------------------------------
* Aggregation helpers: compute row statistics, sort, and print table
* -------------------------------------------------------------------------- */
/* Per-config statistics over outer runs */
typedef struct {
int idx; /* index into AggRow[] */
double med; /* median of predicted seconds */
double mad; /* median absolute deviation */
double mean; /* arithmetic mean of predicted seconds */
int n; /* number of samples */
} AggStatRow;
/* Compute median, MAD, and mean for one aggregated row */
static AggStatRow
agg_compute_stats(const AggRow *ar)
{
AggStatRow r = {0};
r.idx = -1; /* caller sets idx */
if (ar->n <= 0) {
r.med = DBL_MAX;
r.mad = DBL_MAX;
r.mean = DBL_MAX;
r.n = 0;
return r;
}
double buf[64];
for (int j = 0; j < ar->n; j++) buf[j] = ar->secs[j];
r.med = median_d(buf, ar->n);
r.mad = mad_d(ar->secs, ar->n, r.med);
double sum = 0.0;
for (int j = 0; j < ar->n; j++) sum += ar->secs[j];
r.mean = sum / (double)ar->n;
r.n = ar->n;
return r;
}
/* Sort rows by (med asc, MAD asc, mean asc) */
static void
agg_sort_rows(AggStatRow *rows, int m)
{
for (int i = 0; i < m; i++) {
int best = i;
for (int j = i + 1; j < m; j++) {
const AggStatRow *A = &rows[best], *B = &rows[j];
if (B->med < A->med - 1e-9 ||
(fabs(B->med - A->med) <= 1e-9 && B->mad < A->mad - 1e-9) ||
(fabs(B->med - A->med) <= 1e-9 && fabs(B->mad - A->mad) <= 1e-9 && B->mean < A->mean - 1e-9))
{
best = j;
}
}
if (best != i) {
AggStatRow tmp = rows[i];
rows[i] = rows[best];
rows[best] = tmp;
}
}
}
/* Print aggregated ranking table */
static void
agg_print_table(const AggRow *agg, const AggStatRow *rows, int m, int K)
{
pmsg("\n--- Aggregated Results (median over %d runs) ---", K);
pmsg("%-3s %-9s %-7s %-11s %-9s %-9s %-10s %-12s %-10s %-10s %-4s",
"#", "mode", "io", "inflight", "buf", "rdadv", "dur",
"t_pred_med", "t_MAD", "t_mean", "n");
for (int r = 0; r < m; r++) {
const AggRow *ar = &agg[ rows[r].idx ];
const TuneCombo *t = &ar->theta;
pmsg("%-3d %-9s %-7d %-11zu %-9zu %-9zu %-10s %-12.2f %-10.2f %-10.2f %-4d",
r + 1,
(t->pathmode == 1 ? "kernel" : "streaming"),
t->io_threads,
t->inflight_mib,
t->buf_mib,
t->rdadv_mib,
(t->dur == DUR_BATCH ? "batch" : "strict"),
rows[r].med, rows[r].mad, rows[r].mean, rows[r].n);
}
}
typedef struct {
Options o;
double score;
double mibs;
double filesps;
const char *label; /* "streaming" | "kernel" */
} ComboRes;
/* Single-run autotune with lightweight, live progress output, final validation,
and full table+legend. */
static Trial
run_autotune_once(VecEntry *all, const char *dst_root, Options base, int print_table, double *out_best_frac)
{
/* Workload mix */
WorkloadMix WM = compute_workload_mix(all, 1.0 * (1024.0 * 1024.0));
/* Suppress noisy inner printing for table-less runs, but we still show status. */
int saved_quiet = g_quiet, saved_prog = g_progress_enabled;
if (!print_table) {
g_quiet = 1;
g_progress_enabled = 0;
}
/* Scratch */
char bench_leaf[64];
snprintf(bench_leaf, sizeof bench_leaf, ".dcopy-bench.%ld.%u",
(long)getpid(), (unsigned)arc4random());
char scratch[PATH_MAX];
path_join2(dst_root, bench_leaf, scratch, sizeof scratch);
(void)ensure_dir_exists_recursive(scratch);
clamp_inflight_to_ram(&base);
/* Probe (not used in prediction yet) */
CloneProbe probe = probe_clone(all, scratch);
(void)probe;
/* Subset */
VecEntry subset = (VecEntry){0};
(void)build_stratified_subset(
all,
base.bench_large_cap,
base.bench_small_cap,
&subset,
base.bench_byte_budget
);
/* Seed */
enum { MAX_COMBOS = 36 };
Trial pool[MAX_COMBOS];
int pool_n = 0;
pool_n = seed_combos(pool, MAX_COMBOS);
for (int z = 0; z < pool_n; z++) {
pool[z].pred_secs = DCOPY_PSECS_INF; /* unmeasured */
pool[z].score = DCOPY_SCORE_NEG_INF;
pool[z].eval_frac = 0.0;
}
const int eta = (base.bench_eta >= 2 ? base.bench_eta : 3);
const double tier_frac[] = {0.25, 0.60, 1.00};
const int tier_count = 3;
const bool exhaustive = base.bench_exhaustive;
const size_t max_combos = base.bench_max_combos; /* 0 => unlimited */
const double t_start = now_sec();
const double t_budget = (double)((base.bench_seconds > 0) ? base.bench_seconds : 0);
int current_n = pool_n;
int tier = 0;
int tested_total = 0;
int global_trial_idx = 0;
enum { STOP_NONE=0, STOP_TIME=1, STOP_MAX=2 } stop_reason = STOP_NONE;
/* Initial status line */
bench_statusf("Autotune run %d/%d | preparing subset...", g_bench_outer_idx, g_bench_outer_total);
while (tier < tier_count) {
/* Tier header status */
bench_statusf("Autotune run %d/%d | tier %.2f | combos 0/%d",
g_bench_outer_idx, g_bench_outer_total, tier_frac[tier], current_n);
for (int i = 0; i < current_n; i++) {
if (!exhaustive && t_budget > 0.0 && (now_sec() - t_start) > t_budget) {
stop_reason = STOP_TIME; break;
}
if (!exhaustive && max_combos > 0 && (size_t)tested_total >= max_combos) {
stop_reason = STOP_MAX; break;
}
TuneCombo th = pool[i].theta;
char run_leaf[32], run_dir[PATH_MAX];
snprintf(run_leaf, sizeof run_leaf, "run%06d", global_trial_idx++);
path_join2(scratch, run_leaf, run_dir, sizeof run_dir);
int comb_err = 0;
PerfObs obs = measure_combo(&th, &subset, run_dir,
base, tier_frac[tier],
base.bench_ci_mibs_pct, base.bench_ci_files_pct,
&comb_err);
const double secs = predict_time_seconds(&obs, &WM);
pool[i].mibs = obs.mibs_mean;
pool[i].filesps = obs.filesps_mean;
pool[i].majflt_rate = obs.majflt_rate;
pool[i].pred_secs = secs;
pool[i].score = score_from_pred_seconds(secs);
pool[i].eval_frac = tier_frac[tier];
tested_total++;
/* Update per-tier status */
bench_statusf("Autotune run %d/%d | tier %.2f | combos %d/%d",
g_bench_outer_idx, g_bench_outer_total, tier_frac[tier], i + 1, current_n);
}
if (stop_reason != STOP_NONE) break;
/* Keep top K = ceil(n/eta) */
int keep = (current_n + eta - 1) / eta;
if (keep < 1) keep = 1;
/* rank by score desc (i.e., t_pred asc) */
for (int i = 0; i < keep; i++) {
int best = i;
for (int j = i + 1; j < current_n; j++) {
if (pool[j].score > pool[best].score) {
best = j;
}
}
if (best != i) {
Trial tmp = pool[i];
pool[i] = pool[best];
pool[best] = tmp;
}
}
current_n = keep;
tier++;
/* Endline after tier completes */
bench_status_endline();
if (current_n == 1) break;
}
/* -------- Final validation up-shift (re-measure top lower-tier configs at highest tier) -------- */
{
/* Find highest tier actually measured this run */
double max_frac = 0.0;
for (int i = 0; i < pool_n; i++) {
if (trial_measured(&pool[i]) && pool[i].eval_frac > max_frac) {
max_frac = pool[i].eval_frac;
}
}
if (max_frac > 0.0) {
/* Gather lower-tier candidates */
int cand_idx[MAX_COMBOS]; int cn = 0;
for (int i = 0; i < pool_n; i++) {
if (trial_measured(&pool[i]) && pool[i].eval_frac < max_frac) {
cand_idx[cn++] = i;
}
}
/* Sort candidates by current score desc */
for (int a = 0; a < cn; a++) {
int best = a;
for (int b = a + 1; b < cn; b++) {
if (pool[cand_idx[b]].score > pool[cand_idx[best]].score) {
best = b;
}
}
if (best != a) {
int t = cand_idx[a];
cand_idx[a] = cand_idx[best];
cand_idx[best] = t;
}
}
const int VALIDATE_TOP = 3;
const int take = (cn < VALIDATE_TOP ? cn : VALIDATE_TOP);
for (int k = 0; k < take; k++) {
const int i = cand_idx[k];
char vleaf[32], vdir[PATH_MAX];
snprintf(vleaf, sizeof vleaf, "validate%06d", global_trial_idx++);
path_join2(scratch, vleaf, vdir, sizeof vdir);
bench_statusf("Autotune run %d/%d | validating @%.2f: io=%d inflight=%zu buf=%zu rdadv=%zu %s",
g_bench_outer_idx, g_bench_outer_total, max_frac,
pool[i].theta.io_threads, pool[i].theta.inflight_mib,
pool[i].theta.buf_mib, pool[i].theta.rdadv_mib,
(pool[i].theta.dur == DUR_BATCH ? "batch" : "strict"));
int comb_err = 0;
PerfObs obs = measure_combo(&pool[i].theta, &subset, vdir,
base, max_frac,
base.bench_ci_mibs_pct, base.bench_ci_files_pct,
&comb_err);
const double secs = predict_time_seconds(&obs, &WM);
pool[i].mibs = obs.mibs_mean;
pool[i].filesps = obs.filesps_mean;
pool[i].majflt_rate = obs.majflt_rate;
pool[i].pred_secs = secs;
pool[i].score = score_from_pred_seconds(secs);
pool[i].eval_frac = max_frac;
bench_status_endline();
}
}
}
/* ------------------------------------ end validation up-shift ----------------------------------- */
/* Winner among highest tier (after validation) */
double best_frac = 0.0;
for (int i = 0; i < pool_n; i++) {
if (trial_measured(&pool[i]) && pool[i].eval_frac > best_frac) {
best_frac = pool[i].eval_frac;
}
}
Trial winner = (Trial){0};
double best_score = DCOPY_SCORE_NEG_INF;
for (int i = 0; i < pool_n; i++) {
if (!trial_measured(&pool[i])) continue;
if (fabs(pool[i].eval_frac - best_frac) > 1e-9) continue;
if (pool[i].score > best_score) {
best_score = pool[i].score;
winner = pool[i];
}
}
if (out_best_frac) *out_best_frac = best_frac;
/* Final status line for this run (winner) */
bench_statusf("Autotune run %d/%d | winner: io=%d inflight=%zu buf=%zu rdadv=%zu %s | t_pred=%.2fs",
g_bench_outer_idx, g_bench_outer_total,
winner.theta.io_threads, winner.theta.inflight_mib, winner.theta.buf_mib, winner.theta.rdadv_mib,
(winner.theta.dur == DUR_BATCH ? "batch" : "strict"),
winner.pred_secs);
bench_status_endline();
/* Optional full table & legend for this run */
if (print_table) {
/* Winner summary */
char rate_buf[48];
const double bytes_per_sec = winner.mibs * 1024.0 * 1024.0;
human_rate(bytes_per_sec, rate_buf, sizeof(rate_buf));
pmsg("\n=== Autotune Result ===");
pmsg("Recommended flags:");
pmsg(" --io-threads %d --inflight %zu --buf-size %zu --rdadvise %zu --durability %s%s",
winner.theta.io_threads,
winner.theta.inflight_mib,
winner.theta.buf_mib,
winner.theta.rdadv_mib,
(winner.theta.dur == DUR_BATCH ? "batch" : "strict"),
(winner.theta.pathmode == 1 ? " --kernel-copy" : ""));
pmsg("Estimated throughput on sample: %s (small files: %.1f files/s)", rate_buf, winner.filesps);
pmsg("Predicted full-tree time: %.1f s (small<=%.0f KiB files counted: %llu)",
winner.pred_secs,
WM.small_thresh_bytes / 1024.0,
(unsigned long long)WM.files_small);
/* Ranked table (measured rows only) */
{
Trial rows[MAX_COMBOS]; int rn = 0;
for (int i = 0; i < pool_n; i++) {
if (trial_measured(&pool[i])) {
rows[rn++] = pool[i];
}
}
/* Sort by score desc (i.e., t_pred asc) */
for (int i = 0; i < rn; i++) {
int b = i;
for (int j = i + 1; j < rn; j++) {
if (rows[j].score > rows[b].score) {
b = j;
}
}
if (b != i) {
Trial t = rows[i];
rows[i] = rows[b];
rows[b] = t;
}
}
pmsg("\n--- Autotune Results (ranked) ---");
pmsg("%-3s %-9s %-4s %-7s %-11s %-9s %-9s %-10s %-18s %-14s %-8s",
"#", "mode", "tier", "io", "inflight", "buf", "rdadv", "dur",
"throughput", "t_pred(s)", "score");
for (int i = 0; i < rn; i++) {
char rb[48];
const double bps = rows[i].mibs * 1024.0 * 1024.0;
human_rate(bps, rb, sizeof(rb));
pmsg("%-3d %-9s %-4.2f %-7d %-11zu %-9zu %-9zu %-10s %-18s %-14.1f %-8.2f",
i + 1,
(rows[i].theta.pathmode == 1 ? "kernel" : "streaming"),
rows[i].eval_frac,
rows[i].theta.io_threads,
rows[i].theta.inflight_mib,
rows[i].theta.buf_mib,
rows[i].theta.rdadv_mib,
(rows[i].theta.dur == DUR_BATCH ? "batch" : "strict"),
rb,
rows[i].pred_secs,
rows[i].score);
}
}
/* Legend aligned to the table above */
print_autotune_legend_single(&WM, best_frac);
}
/* Cleanup & restore */
remove_tree_recursive(scratch);
ve_free(&subset);
if (!print_table) {
g_quiet = saved_quiet;
g_progress_enabled = saved_prog;
}
return winner;
}
/* --------------------------------------------------------------------------
* Orchestrator: run autotune K times and aggregate statistically
* Policy:
* - Run single-run tuner K = opt.bench_runs times.
* - For each winning config, store predicted seconds (t_pred) in AggRow.
* - Choose the best configuration by lowest median(t_pred),
* tie-breaking by MAD, then mean.
* - If K == 1, defer to single-run tuner with full output.
* -------------------------------------------------------------------------- */
static void
run_autotune(VecEntry *all, const char *dst_root, Options opt)
{
if (opt.bench_runs <= 1) {
double best_frac = 0.0;
(void)run_autotune_once(all, dst_root, opt, /*print_table=*/1, &best_frac);
return;
}
const int K = opt.bench_runs;
AggRow agg[64];
int rn = 0;
double highest_tier = 0.0;
for (int r = 0; r < K; r++) {
/* Expose outer-run context for the status line */
g_bench_outer_idx = r + 1; /* 1-based */
g_bench_outer_total = K;
const int print_table = (r == K - 1) ? 1 : 0;
double run_best_frac = 0.0;
Trial win = run_autotune_once(all, dst_root, opt, print_table, &run_best_frac);
if (run_best_frac > highest_tier) highest_tier = run_best_frac;
int idx = agg_find_or_add(agg, &rn, (int)(sizeof(agg) / sizeof(agg[0])), &win.theta);
if (idx >= 0 && agg[idx].n < (int)(sizeof(agg[idx].secs) / sizeof(agg[idx].secs[0]))) {
agg[idx].secs[ agg[idx].n++ ] = win.pred_secs;
}
/* Outer-run progress with best-so-far median */
double best_so_far = agg_best_median_so_far(agg, rn);
if (best_so_far < DBL_MAX/2) {
bench_statusf("Autotune runs: %d/%d complete | best median so far: %.2fs",
r + 1, K, best_so_far);
bench_status_endline();
} else {
bench_statusf("Autotune runs: %d/%d complete", r + 1, K);
bench_status_endline();
}
}
/* Aggregate and report */
AggStatRow rows[64]; int m = 0;
for (int i = 0; i < rn; i++) {
if (agg[i].n <= 0) continue;
rows[m] = agg_compute_stats(&agg[i]);
rows[m].idx = i;
m++;
}
if (m == 0) {
pmsg("\n=== Autotune Result (aggregated over %d runs) ===", K);
pmsg("No valid measurements collected.");
return;
}
agg_sort_rows(rows, m);
const AggStatRow *best = &rows[0];
const TuneCombo *th = &agg[ best->idx ].theta;
pmsg("\n=== Autotune Result (aggregated over %d runs) ===", K);
pmsg("Recommended flags (robust median t_pred):");
pmsg(" --io-threads %d --inflight %zu --buf-size %zu --rdadvise %zu --durability %s%s",
th->io_threads, th->inflight_mib, th->buf_mib, th->rdadv_mib,
(th->dur == DUR_BATCH ? "batch" : "strict"),
(th->pathmode == 1 ? " --kernel-copy" : ""));
pmsg("Predicted full-tree time (median): %.2f s [MAD: %.2f s, mean: %.2f s] (over %d runs)",
best->med, best->mad, best->mean, best->n);
pmsg("Highest evaluated tier across runs: %.2f", highest_tier);
if (opt.bench_show_table) {
agg_print_table(agg, rows, m, K);
}
WorkloadMix WM = compute_workload_mix(all, 1.0 * (1024.0 * 1024.0));
print_autotune_legend_agg(&WM, opt.bench_runs, highest_tier);
}
// ============================ main ============================
static bool is_directory_path(const char *p) {
struct stat st;
if (lstat(p, &st) == 0) {
return S_ISDIR(st.st_mode);
}
return false;
}
int main(int argc, char **argv)
{
/* ----------------------------- Defaults ----------------------------- */
Options opt = {0};
/* Core behavior */
opt.dry_run = false;
opt.follow_symlinks = false;
opt.preserve_hardlinks = true;
opt.progress = 1;
opt.include_icloud = false;
opt.one_file_system = false;
opt.use_kernel_copy = false;
opt.sparse_copy = true;
/* Deletion defaults */
opt.delete_source = false;
opt.delete_source_existing = false;
opt.delete_verify = VERIFY_HASH;
/* Tunables */
opt.jobs_hash = 0;
opt.jobs_io = 0;
opt.clobber = CLOBBER_NO;
opt.meta_mode = META_SAFE;
opt.dur_mode = DUR_STRICT;
opt.enum_mode = ENUM_BULK;
opt.buf_size = READ_BUFSZ_DEFAULT;
opt.rdadvise_window = (size_t)DEFAULT_RDADVISE_MB << 20;
opt.inflight_cap = (size_t)DEFAULT_INFLIGHT_MB << 20;
opt.fsync_batch_files = 128;
opt.fsync_batch_bytes = 128 << 20;
/* Autotune defaults */
opt.autotune = false;
opt.bench_seconds = 35;
opt.bench_byte_budget = 512ull << 20; /* 512 MiB per combo */
opt.bench_large_cap = 12;
opt.bench_small_cap = 1024;
opt.bench_show_table = false;
opt.bench_exhaustive = false;
opt.bench_max_combos = 0; /* 0 = unlimited unless limited by time */
opt.force_streaming = false;
opt.force_kernel_only = false;
/* Autotune noise/search control */
opt.bench_ci_mibs_pct = 3.0;
opt.bench_ci_files_pct = 10.0;
opt.bench_fast = false;
opt.bench_eta = 3;
opt.bench_runs = 1;
/* --------------------------- Parse options -------------------------- */
int i = 1;
while (i < argc) {
/* basic */
if (strcmp(argv[i], "-n") == 0) {
opt.dry_run = true; i++; continue;
}
if (strcmp(argv[i], "-v") == 0) {
g_verbose++; i++; continue;
}
if (strcmp(argv[i], "-q") == 0) {
g_quiet = 1; i++; continue;
}
/* threads */
if (strcmp(argv[i], "-j") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 1 || v > 256) die("invalid -j");
opt.jobs_hash = (int)v; i += 2; continue;
}
if (strcmp(argv[i], "--io-threads") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 1 || v > 256) die("invalid --io-threads");
opt.jobs_io = (int)v; i += 2; continue;
}
/* clobber/update */
if (strcmp(argv[i], "--overwrite") == 0) {
opt.clobber = CLOBBER_OVERWRITE; i++; continue;
}
if (strcmp(argv[i], "--update") == 0) {
opt.clobber = CLOBBER_UPDATE; i++; continue;
}
/* deletion */
if (strcmp(argv[i], "--delete-source") == 0) {
opt.delete_source = true; i++; continue;
}
if (strcmp(argv[i], "--delete-source-existing") == 0) {
opt.delete_source_existing = true; i++; continue;
}
if (strcmp(argv[i], "--delete-verify") == 0 && i + 1 < argc) {
const char *m = argv[i+1];
if (strcmp(m, "size") == 0) opt.delete_verify = VERIFY_SIZE;
else if (strcmp(m, "sample") == 0) opt.delete_verify = VERIFY_SAMPLE;
else if (strcmp(m, "hash") == 0) opt.delete_verify = VERIFY_HASH;
else die("invalid --delete-verify (use size|sample|hash)");
i += 2; continue;
}
/* traversal flags */
if (strcmp(argv[i], "--follow-symlinks") == 0) {
opt.follow_symlinks = true; i++; continue;
}
if (strcmp(argv[i], "--no-hardlinks") == 0) {
opt.preserve_hardlinks = false; i++; continue;
}
if (strcmp(argv[i], "--no-progress") == 0) {
opt.progress = 0; i++; continue;
}
if (strcmp(argv[i], "--no-sparse") == 0) {
opt.sparse_copy = false; i++; continue;
}
if (strcmp(argv[i], "--one-file-system") == 0) {
opt.one_file_system = true; i++; continue;
}
if (strcmp(argv[i], "--include-icloud") == 0) {
opt.include_icloud = true; i++; continue;
}
if (strcmp(argv[i], "--kernel-copy") == 0) {
opt.use_kernel_copy = true; i++; continue;
}
/* policy */
if (strcmp(argv[i], "--metadata") == 0 && i + 1 < argc) {
const char *m = argv[i+1];
if (strcmp(m, "full") == 0) opt.meta_mode = META_FULL;
else if (strcmp(m, "safe") == 0) opt.meta_mode = META_SAFE;
else if (strcmp(m, "minimal") == 0) opt.meta_mode = META_MINIMAL;
else die("invalid --metadata");
i += 2; continue;
}
if (strcmp(argv[i], "--durability") == 0 && i + 1 < argc) {
const char *m = argv[i+1];
if (strcmp(m, "strict") == 0) opt.dur_mode = DUR_STRICT;
else if (strcmp(m, "batch") == 0) opt.dur_mode = DUR_BATCH;
else die("invalid --durability");
i += 2; continue;
}
if (strcmp(argv[i], "--enum") == 0 && i + 1 < argc) {
const char *m = argv[i+1];
if (strcmp(m, "bulk") == 0) opt.enum_mode = ENUM_BULK;
else if (strcmp(m, "fts") == 0) opt.enum_mode = ENUM_FTS;
else die("invalid --enum (use bulk|fts)");
i += 2; continue;
}
/* buffers & inflight */
if (strcmp(argv[i], "--buf-size") == 0 && i + 1 < argc) {
uint64_t mb; if (!parse_u64(argv[i+1], &mb) || mb < 1 || mb > 1024) die("invalid --buf-size");
opt.buf_size = (size_t)mb << 20; i += 2; continue;
}
if (strcmp(argv[i], "--rdadvise") == 0 && i + 1 < argc) {
uint64_t mb; if (!parse_u64(argv[i+1], &mb) || mb < 1 || mb > 4096) die("invalid --rdadvise");
opt.rdadvise_window = (size_t)mb << 20; i += 2; continue;
}
if (strcmp(argv[i], "--inflight") == 0 && i + 1 < argc) {
uint64_t mb; if (!parse_u64(argv[i+1], &mb) || mb < 16 || mb > 16384) die("invalid --inflight");
opt.inflight_cap = (size_t)mb << 20; i += 2; continue;
}
/* batching for DUR_BATCH */
if (strcmp(argv[i], "--fsync-batch") == 0 && i + 1 < argc) {
uint64_t n; if (!parse_u64(argv[i+1], &n) || n < 1 || n > 1000000) die("invalid --fsync-batch");
opt.fsync_batch_files = (size_t)n; i += 2; continue;
}
if (strcmp(argv[i], "--fsync-bytes") == 0 && i + 1 < argc) {
uint64_t mb; if (!parse_u64(argv[i+1], &mb) || mb < 1 || mb > 1048576) die("invalid --fsync-bytes");
opt.fsync_batch_bytes = (size_t)mb << 20; i += 2; continue;
}
/* help */
if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
usage(stdout); return 0;
}
/* autotune/bench */
if (strcmp(argv[i], "--autotune") == 0) {
opt.autotune = true; i++; continue;
}
if (strcmp(argv[i], "--bench-seconds") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 5 || v > 600) die("invalid --bench-seconds");
opt.bench_seconds = (int)v; i += 2; continue;
}
if (strcmp(argv[i], "--bench-max") == 0 && i + 1 < argc) {
uint64_t v;
if (!parse_u64(argv[i + 1], &v) || v > 1000000ull) die("invalid --bench-max");
opt.bench_max_combos = (size_t)v; i += 2; continue;
}
if (strcmp(argv[i], "--bench-mib") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 64 || v > 16384) die("invalid --bench-mib");
opt.bench_byte_budget = v << 20; i += 2; continue;
}
if (strcmp(argv[i], "--bench-large") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 1 || v > 256) die("invalid --bench-large");
opt.bench_large_cap = (size_t)v; i += 2; continue;
}
if (strcmp(argv[i], "--bench-small") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 1 || v > 32768) die("invalid --bench-small");
opt.bench_small_cap = (size_t)v; i += 2; continue;
}
if (strcmp(argv[i], "--bench-table") == 0) {
opt.bench_show_table = true; i++; continue;
}
if (strcmp(argv[i], "--bench-exhaustive") == 0) {
opt.bench_exhaustive = true; i++; continue;
}
if (strcmp(argv[i], "--bench-ci-mibs") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 1 || v > 100) die("invalid --bench-ci-mibs");
opt.bench_ci_mibs_pct = (double)v; i += 2; continue;
}
if (strcmp(argv[i], "--bench-ci-files") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 1 || v > 100) die("invalid --bench-ci-files");
opt.bench_ci_files_pct = (double)v; i += 2; continue;
}
if (strcmp(argv[i], "--bench-fast") == 0) {
opt.bench_fast = true; i++; continue;
}
if (strcmp(argv[i], "--bench-eta") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 2 || v > 8) die("invalid --bench-eta");
opt.bench_eta = (int)v; i += 2; continue;
}
if (strcmp(argv[i], "--bench-runs") == 0 && i + 1 < argc) {
uint64_t v; if (!parse_u64(argv[i+1], &v) || v < 1 || v > 50) die("invalid --bench-runs (1..50)");
opt.bench_runs = (int)v; i += 2; continue;
}
/* first non-option */
break;
}
/* ------------------------------ Args ------------------------------- */
g_progress_enabled = opt.progress && !g_quiet;
const int n_paths = argc - i;
if (n_paths < 2) {
usage(stderr);
return 2;
}
char *dst_root = argv[argc - 1];
const int n_srcs = n_paths - 1;
struct stat st_dst;
const bool dst_exists = (lstat(dst_root, &st_dst) == 0);
const bool dst_is_dir = dst_exists
? S_ISDIR(st_dst.st_mode)
: (n_srcs > 1 || is_directory_path(argv[i]));
if (!dst_exists && (n_srcs > 1 || is_directory_path(argv[i]))) {
if (!opt.dry_run) {
int rc = ensure_dir_exists_recursive(dst_root);
if (rc != 0) {
int e = errno;
if (is_perm_error(e) || rc == -2) {
warnx("mkdir: %s: %s (blocked; proceeding, paths under this will be skipped)", dst_root, strerror(e));
} else {
warnx("mkdir: %s: %s", dst_root, strerror(e));
}
}
} else {
pmsg("PLAN MKDIR %s", dst_root);
}
} else if (dst_exists && !dst_is_dir && n_srcs > 1) {
die("destination must be a directory with multiple sources");
}
/* -------------------------- Initialization ------------------------- */
dirfd_cache_init();
hcache_load(dst_root);
g_inflight_cap = opt.inflight_cap;
const int cpus = cpu_count();
int n_hash = opt.jobs_hash ? opt.jobs_hash : cpus;
int n_io = opt.jobs_io ? opt.jobs_io : (cpus < 4 ? cpus : 4);
if (n_hash < 1) n_hash = 1; if (n_hash > MAX_THREADS) n_hash = MAX_THREADS;
if (n_io < 1) n_io = 1; if (n_io > MAX_THREADS) n_io = MAX_THREADS;
bp_init(opt.buf_size, n_io);
RootPlan *rp = (RootPlan *)calloc((size_t)n_srcs, sizeof(RootPlan));
if (!rp) die("OOM");
if (n_srcs == 1) {
struct stat st_src;
if (lstat(argv[i], &st_src) != 0) die("stat src: %s: %s", argv[i], strerror(errno));
rp[0].src_root = xstrdup(argv[i]);
rp[0].is_dir = S_ISDIR(st_src.st_mode);
rp[0].inject_base = xstrdup(rp[0].is_dir ? "" : path_basename(argv[i]));
} else {
for (int k = 0; k < n_srcs; k++) {
struct stat st_src;
if (lstat(argv[i + k], &st_src) != 0) die("stat src: %s: %s", argv[i + k], strerror(errno));
rp[k].src_root = xstrdup(argv[i + k]);
rp[k].is_dir = S_ISDIR(st_src.st_mode);
rp[k].inject_base = xstrdup(path_basename(argv[i + k]));
}
}
/* --------------------------- Enumeration --------------------------- */
pmsg("Scanning paths and collecting file information...");
VecEntry ents = (VecEntry){0};
for (int k = 0; k < n_srcs; k++) {
if (opt.enum_mode == ENUM_BULK) {
collect_entries_bulk(&ents, &rp[k], &opt);
} else {
collect_entries_fts(&ents, &rp[k], &opt);
}
}
/* Filter iCloud container prefixes unless explicitly included */
{
size_t w = 0;
for (size_t z = 0; z < ents.n; z++) {
const char *p = ents.v[z].src_path;
if (!opt.include_icloud &&
(strstr(p, "/Library/Mobile Documents/") ||
strstr(p, "/com~apple~CloudDocs/")))
{
if (g_verbose) vmsg("skip iCloud path prefix: %s", p);
continue;
}
ents.v[w++] = ents.v[z];
}
ents.n = w;
}
pmsg("Collected %zu files and directories to process.", ents.n);
/* ----------------------------- Autotune ---------------------------- */
if (opt.autotune) {
pmsg("Autotuning on representative samples (non-destructive)...");
run_autotune(&ents, dst_root, opt);
ve_free(&ents);
for (int k = 0; k < n_srcs; k++) {
free(rp[k].src_root);
free(rp[k].inject_base);
}
free(rp);
dirfd_cache_close_all();
return 0;
}
/* -------------------- Pre-analysis (sampling/hash) ----------------- */
const size_t N = ents.n;
size_t *idx_by_size = (size_t *)malloc(N * sizeof(size_t));
if (!idx_by_size) die("OOM");
for (size_t z = 0; z < N; z++) idx_by_size[z] = z;
g_sort_ents = &ents;
qsort(idx_by_size, N, sizeof(size_t), cmp_size_then_rel_idx_asc);
size_t *sample_indices = NULL; size_t sn = 0, scap = 0;
size_t *hash_indices = NULL; size_t hn = 0, hcap = 0;
uint64_t total_bytes = 0;
/* Sample pass for 3-point fingerprints and total bytes */
size_t i0 = 0;
while (i0 < N) {
size_t j = i0 + 1;
off_t sz = ents.v[idx_by_size[i0]].size;
while (j < N && ents.v[idx_by_size[j]].size == sz) j++;
const size_t cnt = j - i0;
for (size_t k = i0; k < j; k++) {
const size_t ix = idx_by_size[k];
if (ents.v[ix].type != T_FILE) continue;
total_bytes += (uint64_t)ents.v[ix].size;
if (cnt > 1) {
if (sn == scap) {
scap = scap ? (scap << 1) : 4096;
sample_indices = (size_t *)realloc(sample_indices, scap * sizeof(size_t));
if (!sample_indices) die("OOM");
}
sample_indices[sn++] = ix;
}
}
i0 = j;
}
if (sn > 0) {
WorkQueue sw = {
.ents = &ents,
.indices = sample_indices,
.count = sn,
.next = 0,
.done = 0
};
pthread_mutex_init(&sw.mu, NULL);
pthread_t *tids = (pthread_t *)calloc((size_t)opt.jobs_hash ? (size_t)opt.jobs_hash : (size_t)cpu_count(),
sizeof(pthread_t));
const int nth = (int)((tids) ? ((opt.jobs_hash) ? opt.jobs_hash : cpu_count()) : 0);
if (!tids) {
die("OOM");
}
for (int t = 0; t < nth; t++) {
if (pthread_create(&tids[t], NULL, sample_worker, &sw) != 0) {
die("pthread_create(sample)");
}
}
while (true) {
uint64_t done = __atomic_load_n(&sw.done, __ATOMIC_RELAXED);
update_sample_progress(done, sw.count);
if (done >= sw.count) {
break;
}
struct timespec ts = {
.tv_sec = 0,
.tv_nsec = 100000000
};
(void)nanosleep(&ts, NULL);
}
for (int t = 0; t < nth; t++) {
pthread_join(tids[t], NULL);
}
free(tids);
pthread_mutex_destroy(&sw.mu);
}
free(sample_indices);
/* Physical-fingerprint candidates (equal-size groups >=3, size >= threshold) */
size_t *phys_indices = NULL;
size_t pn = 0, pcap = 0;
i0 = 0;
while (i0 < N) {
size_t j = i0 + 1;
off_t sz = ents.v[idx_by_size[i0]].size;
while (j < N && ents.v[idx_by_size[j]].size == sz) {
j++;
}
const size_t cnt = j - i0;
if (cnt >= 3 && sz >= PHYS_FP_MIN_SIZE) {
for (size_t k = i0; k < j; k++) {
const size_t ix = idx_by_size[k];
if (ents.v[ix].type != T_FILE) {
continue;
}
if (pn == pcap) {
pcap = pcap ? (pcap << 1) : 4096;
phys_indices = (size_t *)realloc(phys_indices, pcap * sizeof(size_t));
if (!phys_indices) {
die("OOM");
}
}
phys_indices[pn++] = ix;
}
}
i0 = j;
}
if (pn > 0) {
WorkQueue pw = {
.ents = &ents,
.indices = phys_indices,
.count = pn,
.next = 0,
.done = 0
};
pthread_mutex_init(&pw.mu, NULL);
const int nth = opt.jobs_hash ? opt.jobs_hash : cpu_count();
pthread_t *ptids = (pthread_t *)calloc((size_t)nth, sizeof(pthread_t));
if (!ptids) {
die("OOM");
}
for (int t = 0; t < nth; t++) {
if (pthread_create(&ptids[t], NULL, phys_worker, &pw) != 0) {
die("pthread_create(phys)");
}
}
while (true) {
uint64_t done = __atomic_load_n(&pw.done, __ATOMIC_RELAXED);
update_sample_progress(done, pw.count);
if (done >= pw.count) {
break;
}
struct timespec ts = {
.tv_sec = 0,
.tv_nsec = 100000000
};
(void)nanosleep(&ts, NULL);
}
for (int t = 0; t < nth; t++) {
pthread_join(ptids[t], NULL);
}
free(ptids);
pthread_mutex_destroy(&pw.mu);
}
free(phys_indices);
/* Sort each equal-size group by sample64 to cluster identicals (stable small sort) */
pmsg("Analyzing file content (sorting samples)...");
size_t sort_jobs_count = 0;
SortWork *sort_jobs = (SortWork *)malloc(N * sizeof(SortWork));
if (!sort_jobs) {
die("OOM");
}
i0 = 0;
while (i0 < N) {
size_t j = i0 + 1;
while (j < N && ents.v[idx_by_size[j]].size == ents.v[idx_by_size[i0]].size) {
j++;
}
if (j - i0 > 1) {
sort_jobs[sort_jobs_count++] = (SortWork){
.indices = idx_by_size,
.start = i0,
.end = j,
.ents = &ents
};
}
i0 = j;
}
if (sort_jobs_count > 0) {
const int nth = opt.jobs_hash ? opt.jobs_hash : cpu_count();
pthread_t *sort_tids = (pthread_t *)calloc((size_t)nth, sizeof(pthread_t));
if (!sort_tids) {
die("OOM");
}
for (size_t k = 0; k < sort_jobs_count; k++) {
int thread_idx = (int)(k % (size_t)nth);
if (k >= (size_t)nth) {
pthread_join(sort_tids[thread_idx], NULL);
}
if (pthread_create(&sort_tids[thread_idx], NULL, sort_worker, &sort_jobs[k]) != 0) {
die("pthread_create(sort)");
}
}
for (int t = 0; t < nth; t++) {
pthread_join(sort_tids[t], NULL);
}
free(sort_tids);
}
free(sort_jobs);
/* Build list of files to hash fully (groups with same size+sample64) */
i0 = 0;
while (i0 < N) {
size_t j = i0 + 1;
while (j < N &&
ents.v[idx_by_size[j]].size == ents.v[idx_by_size[i0]].size &&
ents.v[idx_by_size[j]].sample64 == ents.v[idx_by_size[i0]].sample64) {
j++;
}
if (j - i0 > 1) {
for (size_t k = i0; k < j; k++) {
const size_t ix = idx_by_size[k];
if (ents.v[ix].type != T_FILE) {
continue;
}
if (hn == hcap) {
hcap = hcap ? (hcap << 1) : 4096;
hash_indices = (size_t *)realloc(hash_indices, hcap * sizeof(size_t));
if (!hash_indices) {
die("OOM");
}
}
hash_indices[hn++] = ix;
}
}
i0 = j;
}
if (hn > 0) {
WorkQueue hw = {
.ents = &ents,
.indices = hash_indices,
.count = hn,
.next = 0,
.done = 0,
.bufsize = (int)opt.buf_size
};
pthread_mutex_init(&hw.mu, NULL);
const int nth = opt.jobs_hash ? opt.jobs_hash : cpu_count();
pthread_t *tids = (pthread_t *)calloc((size_t)nth, sizeof(pthread_t));
if (!tids) {
die("OOM");
}
for (int t = 0; t < nth; t++) {
if (pthread_create(&tids[t], NULL, hash_worker, &hw) != 0) {
die("pthread_create(hash)");
}
}
while (true) {
uint64_t done = __atomic_load_n(&hw.done, __ATOMIC_RELAXED);
update_hash_progress(done, hw.count);
if (done >= hw.count) {
break;
}
struct timespec ts = { .tv_sec = 0, .tv_nsec = 100000000 };
(void)nanosleep(&ts, NULL);
}
for (int t = 0; t < nth; t++) {
pthread_join(tids[t], NULL);
}
free(tids);
pthread_mutex_destroy(&hw.mu);
}
free(hash_indices);
/* ---------------------------- IO Pipeline --------------------------- */
Stats stats = {0};
stats.bytes_total = total_bytes;
/* Count totals for summary/progress (files contribute to bytes_total) */
stats.files_total = 0;
stats.dirs_total_jobs = 0;
stats.symlinks_total = 0;
for (size_t z = 0; z < ents.n; z++) {
switch (ents.v[z].type) {
case T_FILE:
stats.files_total++;
break;
case T_DIR:
stats.dirs_total_jobs++;
break;
case T_SYMLINK:
stats.symlinks_total++;
break;
default:
break;
}
}
__atomic_store_n(&stats.copy_phase_started, 0, __ATOMIC_RELAXED);
gettimeofday(&stats.start_time, NULL);
DigestMap dmap; dmap_init(&dmap);
InoMap imap; imap_init(&imap);
PhysMap pmap; pmap_init(&pmap);
IOJobQueue io_q;
io_queue_init(&io_q, ents.n > 4096 ? ents.n : 4096);
IOContext io_ctx = { .opt = &opt, .dmap = &dmap, .imap = &imap, .pmap = &pmap, .stats = &stats };
IOWorkerCtx wctx = { .q = &io_q, .ents = &ents, .ctx = &io_ctx };
pthread_t *io_tids = (pthread_t *)calloc((size_t)n_io, sizeof(pthread_t));
if (!io_tids) {
die("OOM");
}
for (int t = 0; t < n_io; t++) {
if (pthread_create(&io_tids[t], NULL, io_worker, &wctx) != 0) {
die("pthread_create(io_worker)");
}
}
pthread_t progress_tid;
ProgressCtx progress_ctx = { .stats = &stats, .done = 0 };
if (g_progress_enabled) {
if (pthread_create(&progress_tid, NULL, progress_updater_thread, &progress_ctx) != 0)
die("failed to create progress thread");
}
/* Enqueue directories first */
for (size_t zz = 0; zz < ents.n; zz++) {
Entry *e = &ents.v[zz];
if (e->type != T_DIR) {
continue;
}
char dst_path[PATH_MAX];
if (n_srcs == 1) {
struct stat st_src0; lstat(argv[i], &st_src0);
if (S_ISDIR(st_src0.st_mode)) {
if (e->rel_path[0] == '\0') {
snprintf(dst_path, sizeof(dst_path), "%s", dst_root);
} else {
path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
}
} else {
if (dst_is_dir) {
path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
} else {
snprintf(dst_path, sizeof(dst_path), "%s", dst_root);
}
}
} else {
path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
}
IOJob job = { .entry_idx = zz };
snprintf(job.dst_path, sizeof(job.dst_path), "%s", dst_path);
io_queue_push(&io_q, job);
}
/* Enqueue files (size-desc) */
size_t n_files = 0;
for (size_t zz = 0; zz < ents.n; zz++) {
if (ents.v[zz].type == T_FILE) {
n_files++;
}
}
if (n_files > 0) {
size_t *file_idx = (size_t *)malloc(n_files * sizeof(size_t));
if (!file_idx) {
die("OOM");
}
size_t pos = 0;
for (size_t zz = 0; zz < ents.n; zz++) {
if (ents.v[zz].type == T_FILE) {
file_idx[pos++] = zz;
}
}
g_sort_ents = &ents;
qsort(file_idx, n_files, sizeof(size_t), cmp_size_desc_then_rel);
for (size_t kf = 0; kf < n_files; kf++) {
if (kf == 0) __atomic_store_n(&stats.copy_phase_started, 1, __ATOMIC_RELAXED);
const size_t zz_idx = file_idx[kf];
Entry *e = &ents.v[zz_idx];
char dst_path[PATH_MAX];
if (n_srcs == 1) {
struct stat st_src0; lstat(argv[i], &st_src0);
if (S_ISDIR(st_src0.st_mode)) {
if (e->rel_path[0] == '\0') snprintf(dst_path, sizeof(dst_path), "%s", dst_root);
else path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
} else {
if (dst_is_dir) path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
else snprintf(dst_path, sizeof(dst_path), "%s", dst_root);
}
} else {
path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
}
IOJob job = { .entry_idx = zz_idx };
snprintf(job.dst_path, sizeof(job.dst_path), "%s", dst_path);
io_queue_push(&io_q, job);
}
free(file_idx);
}
/* Enqueue others (symlinks/special) */
for (size_t zz = 0; zz < ents.n; zz++) {
Entry *e = &ents.v[zz];
if (e->type == T_FILE || e->type == T_DIR) continue;
char dst_path[PATH_MAX];
if (n_srcs == 1) {
struct stat st_src0; lstat(argv[i], &st_src0);
if (S_ISDIR(st_src0.st_mode)) {
if (e->rel_path[0] == '\0') snprintf(dst_path, sizeof(dst_path), "%s", dst_root);
else path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
} else {
if (dst_is_dir) path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
else snprintf(dst_path, sizeof(dst_path), "%s", dst_root);
}
} else {
path_join2(dst_root, e->rel_path, dst_path, sizeof(dst_path));
}
IOJob job = { .entry_idx = zz };
snprintf(job.dst_path, sizeof(job.dst_path), "%s", dst_path);
io_queue_push(&io_q, job);
}
/* Finish queue and join workers */
io_queue_finish(&io_q);
for (int t = 0; t < n_io; t++) {
pthread_join(io_tids[t], NULL);
}
free(io_tids);
prune_empty_source_dirs(&opt, &ents);
if (opt.dur_mode == DUR_BATCH) {
dirfd_cache_fsync_all();
}
if (g_progress_enabled) {
progress_ctx.done = 1;
pthread_join(progress_tid, NULL);
}
/* ------------------------------ Summary ---------------------------- */
print_summary(&stats, &opt);
/* ------------------------------ Cleanup ---------------------------- */
dmap_free(&dmap);
imap_free(&imap);
pmap_free(&pmap);
ve_free(&ents);
for (int k = 0; k < n_srcs; k++) {
free(rp[k].src_root);
free(rp[k].inject_base);
}
free(rp);
free(idx_by_size);
dirfd_cache_close_all();
return 0;
}
/*
* xxHash - Extremely Fast Hash algorithm
* Header File
* Copyright (C) 2012-2023 Yann Collet
*
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
/*!
* @mainpage xxHash
*
* xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
* limits.
*
* It is proposed in four flavors, in three families:
* 1. @ref XXH32_family
* - Classic 32-bit hash function. Simple, compact, and runs on almost all
* 32-bit and 64-bit systems.
* 2. @ref XXH64_family
* - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
* 64-bit systems (but _not_ 32-bit systems).
* 3. @ref XXH3_family
* - Modern 64-bit and 128-bit hash function family which features improved
* strength and performance across the board, especially on smaller data.
* It benefits greatly from SIMD and 64-bit without requiring it.
*
* Benchmarks
* ---
* The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
* The open source benchmark program is compiled with clang v10.0 using -O3 flag.
*
* | Hash Name | ISA ext | Width | Large Data Speed | Small Data Velocity |
* | -------------------- | ------- | ----: | ---------------: | ------------------: |
* | XXH3_64bits() | @b AVX2 | 64 | 59.4 GB/s | 133.1 |
* | MeowHash | AES-NI | 128 | 58.2 GB/s | 52.5 |
* | XXH3_128bits() | @b AVX2 | 128 | 57.9 GB/s | 118.1 |
* | CLHash | PCLMUL | 64 | 37.1 GB/s | 58.1 |
* | XXH3_64bits() | @b SSE2 | 64 | 31.5 GB/s | 133.1 |
* | XXH3_128bits() | @b SSE2 | 128 | 29.6 GB/s | 118.1 |
* | RAM sequential read | | N/A | 28.0 GB/s | N/A |
* | ahash | AES-NI | 64 | 22.5 GB/s | 107.2 |
* | City64 | | 64 | 22.0 GB/s | 76.6 |
* | T1ha2 | | 64 | 22.0 GB/s | 99.0 |
* | City128 | | 128 | 21.7 GB/s | 57.7 |
* | FarmHash | AES-NI | 64 | 21.3 GB/s | 71.9 |
* | XXH64() | | 64 | 19.4 GB/s | 71.0 |
* | SpookyHash | | 64 | 19.3 GB/s | 53.2 |
* | Mum | | 64 | 18.0 GB/s | 67.0 |
* | CRC32C | SSE4.2 | 32 | 13.0 GB/s | 57.9 |
* | XXH32() | | 32 | 9.7 GB/s | 71.9 |
* | City32 | | 32 | 9.1 GB/s | 66.0 |
* | Blake3* | @b AVX2 | 256 | 4.4 GB/s | 8.1 |
* | Murmur3 | | 32 | 3.9 GB/s | 56.1 |
* | SipHash* | | 64 | 3.0 GB/s | 43.2 |
* | Blake3* | @b SSE2 | 256 | 2.4 GB/s | 8.1 |
* | HighwayHash | | 64 | 1.4 GB/s | 6.0 |
* | FNV64 | | 64 | 1.2 GB/s | 62.7 |
* | Blake2* | | 256 | 1.1 GB/s | 5.1 |
* | SHA1* | | 160 | 0.8 GB/s | 5.6 |
* | MD5* | | 128 | 0.6 GB/s | 7.8 |
* @note
* - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
* even though it is mandatory on x64.
* - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
* by modern standards.
* - Small data velocity is a rough average of algorithm's efficiency for small
* data. For more accurate information, see the wiki.
* - More benchmarks and strength tests are found on the wiki:
* https://github.com/Cyan4973/xxHash/wiki
*
* Usage
* ------
* All xxHash variants use a similar API. Changing the algorithm is a trivial
* substitution.
*
* @pre
* For functions which take an input and length parameter, the following
* requirements are assumed:
* - The range from [`input`, `input + length`) is valid, readable memory.
* - The only exception is if the `length` is `0`, `input` may be `NULL`.
* - For C++, the objects must have the *TriviallyCopyable* property, as the
* functions access bytes directly as if it was an array of `unsigned char`.
*
* @anchor single_shot_example
* **Single Shot**
*
* These functions are stateless functions which hash a contiguous block of memory,
* immediately returning the result. They are the easiest and usually the fastest
* option.
*
* XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
*
* @code{.c}
* #include <string.h>
* #include "xxhash.h"
*
* // Example for a function which hashes a null terminated string with XXH32().
* XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
* {
* // NULL pointers are only valid if the length is zero
* size_t length = (string == NULL) ? 0 : strlen(string);
* return XXH32(string, length, seed);
* }
* @endcode
*
*
* @anchor streaming_example
* **Streaming**
*
* These groups of functions allow incremental hashing of unknown size, even
* more than what would fit in a size_t.
*
* XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
*
* @code{.c}
* #include <stdio.h>
* #include <assert.h>
* #include "xxhash.h"
* // Example for a function which hashes a FILE incrementally with XXH3_64bits().
* XXH64_hash_t hashFile(FILE* f)
* {
* // Allocate a state struct. Do not just use malloc() or new.
* XXH3_state_t* state = XXH3_createState();
* assert(state != NULL && "Out of memory!");
* // Reset the state to start a new hashing session.
* XXH3_64bits_reset(state);
* char buffer[4096];
* size_t count;
* // Read the file in chunks
* while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
* // Run update() as many times as necessary to process the data
* XXH3_64bits_update(state, buffer, count);
* }
* // Retrieve the finalized hash. This will not change the state.
* XXH64_hash_t result = XXH3_64bits_digest(state);
* // Free the state. Do not use free().
* XXH3_freeState(state);
* return result;
* }
* @endcode
*
* Streaming functions generate the xxHash value from an incremental input.
* This method is slower than single-call functions, due to state management.
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
*
* An XXH state must first be allocated using `XXH*_createState()`.
*
* Start a new hash by initializing the state with a seed using `XXH*_reset()`.
*
* Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
*
* The function returns an error code, with 0 meaning OK, and any other value
* meaning there is an error.
*
* Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
* This function returns the nn-bits hash as an int or long long.
*
* It's still possible to continue inserting input into the hash state after a
* digest, and generate new hash values later on by invoking `XXH*_digest()`.
*
* When done, release the state using `XXH*_freeState()`.
*
*
* @anchor canonical_representation_example
* **Canonical Representation**
*
* The default return values from XXH functions are unsigned 32, 64 and 128 bit
* integers.
* This the simplest and fastest format for further post-processing.
*
* However, this leaves open the question of what is the order on the byte level,
* since little and big endian conventions will store the same number differently.
*
* The canonical representation settles this issue by mandating big-endian
* convention, the same convention as human-readable numbers (large digits first).
*
* When writing hash values to storage, sending them over a network, or printing
* them, it's highly recommended to use the canonical representation to ensure
* portability across a wider range of systems, present and future.
*
* The following functions allow transformation of hash values to and from
* canonical format.
*
* XXH32_canonicalFromHash(), XXH32_hashFromCanonical(),
* XXH64_canonicalFromHash(), XXH64_hashFromCanonical(),
* XXH128_canonicalFromHash(), XXH128_hashFromCanonical(),
*
* @code{.c}
* #include <stdio.h>
* #include "xxhash.h"
*
* // Example for a function which prints XXH32_hash_t in human readable format
* void printXxh32(XXH32_hash_t hash)
* {
* XXH32_canonical_t cano;
* XXH32_canonicalFromHash(&cano, hash);
* size_t i;
* for(i = 0; i < sizeof(cano.digest); ++i) {
* printf("%02x", cano.digest[i]);
* }
* printf("\n");
* }
*
* // Example for a function which converts XXH32_canonical_t to XXH32_hash_t
* XXH32_hash_t convertCanonicalToXxh32(XXH32_canonical_t cano)
* {
* XXH32_hash_t hash = XXH32_hashFromCanonical(&cano);
* return hash;
* }
* @endcode
*
*
* @file xxhash.h
* xxHash prototypes and implementation
*/
#if defined(__cplusplus) && !defined(XXH_NO_EXTERNC_GUARD)
extern "C" {
#endif
/* ****************************
* INLINE mode
******************************/
/*!
* @defgroup public Public API
* Contains details on the public xxHash functions.
* @{
*/
#ifdef XXH_DOXYGEN
/*!
* @brief Gives access to internal state declaration, required for static allocation.
*
* Incompatible with dynamic linking, due to risks of ABI changes.
*
* Usage:
* @code{.c}
* #define XXH_STATIC_LINKING_ONLY
* #include "xxhash.h"
* @endcode
*/
# define XXH_STATIC_LINKING_ONLY
/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */
/*!
* @brief Gives access to internal definitions.
*
* Usage:
* @code{.c}
* #define XXH_STATIC_LINKING_ONLY
* #define XXH_IMPLEMENTATION
* #include "xxhash.h"
* @endcode
*/
# define XXH_IMPLEMENTATION
/* Do not undef XXH_IMPLEMENTATION for Doxygen */
/*!
* @brief Exposes the implementation and marks all functions as `inline`.
*
* Use these build macros to inline xxhash into the target unit.
* Inlining improves performance on small inputs, especially when the length is
* expressed as a compile-time constant:
*
* https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
*
* It also keeps xxHash symbols private to the unit, so they are not exported.
*
* Usage:
* @code{.c}
* #define XXH_INLINE_ALL
* #include "xxhash.h"
* @endcode
* Do not compile and link xxhash.o as a separate object, as it is not useful.
*/
# define XXH_INLINE_ALL
# undef XXH_INLINE_ALL
/*!
* @brief Exposes the implementation without marking functions as inline.
*/
# define XXH_PRIVATE_API
# undef XXH_PRIVATE_API
/*!
* @brief Emulate a namespace by transparently prefixing all symbols.
*
* If you want to include _and expose_ xxHash functions from within your own
* library, but also want to avoid symbol collisions with other libraries which
* may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
* any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
* (therefore, avoid empty or numeric values).
*
* Note that no change is required within the calling program as long as it
* includes `xxhash.h`: Regular symbol names will be automatically translated
* by this header.
*/
# define XXH_NAMESPACE /* YOUR NAME HERE */
# undef XXH_NAMESPACE
#endif
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
&& !defined(XXH_INLINE_ALL_31684351384)
/* this section should be traversed only once */
# define XXH_INLINE_ALL_31684351384
/* give access to the advanced API, required to compile implementations */
# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
# define XXH_STATIC_LINKING_ONLY
/* make all functions private */
# undef XXH_PUBLIC_API
# if defined(__GNUC__)
# define XXH_PUBLIC_API static __inline __attribute__((__unused__))
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define XXH_PUBLIC_API static inline
# elif defined(_MSC_VER)
# define XXH_PUBLIC_API static __inline
# else
/* note: this version may generate warnings for unused static functions */
# define XXH_PUBLIC_API static
# endif
/*
* This part deals with the special case where a unit wants to inline xxHash,
* but "xxhash.h" has previously been included without XXH_INLINE_ALL,
* such as part of some previously included *.h header file.
* Without further action, the new include would just be ignored,
* and functions would effectively _not_ be inlined (silent failure).
* The following macros solve this situation by prefixing all inlined names,
* avoiding naming collision with previous inclusions.
*/
/* Before that, we unconditionally #undef all symbols,
* in case they were already defined with XXH_NAMESPACE.
* They will then be redefined for XXH_INLINE_ALL
*/
# undef XXH_versionNumber
/* XXH32 */
# undef XXH32
# undef XXH32_createState
# undef XXH32_freeState
# undef XXH32_reset
# undef XXH32_update
# undef XXH32_digest
# undef XXH32_copyState
# undef XXH32_canonicalFromHash
# undef XXH32_hashFromCanonical
/* XXH64 */
# undef XXH64
# undef XXH64_createState
# undef XXH64_freeState
# undef XXH64_reset
# undef XXH64_update
# undef XXH64_digest
# undef XXH64_copyState
# undef XXH64_canonicalFromHash
# undef XXH64_hashFromCanonical
/* XXH3_64bits */
# undef XXH3_64bits
# undef XXH3_64bits_withSecret
# undef XXH3_64bits_withSeed
# undef XXH3_64bits_withSecretandSeed
# undef XXH3_createState
# undef XXH3_freeState
# undef XXH3_copyState
# undef XXH3_64bits_reset
# undef XXH3_64bits_reset_withSeed
# undef XXH3_64bits_reset_withSecret
# undef XXH3_64bits_update
# undef XXH3_64bits_digest
# undef XXH3_generateSecret
/* XXH3_128bits */
# undef XXH128
# undef XXH3_128bits
# undef XXH3_128bits_withSeed
# undef XXH3_128bits_withSecret
# undef XXH3_128bits_reset
# undef XXH3_128bits_reset_withSeed
# undef XXH3_128bits_reset_withSecret
# undef XXH3_128bits_reset_withSecretandSeed
# undef XXH3_128bits_update
# undef XXH3_128bits_digest
# undef XXH128_isEqual
# undef XXH128_cmp
# undef XXH128_canonicalFromHash
# undef XXH128_hashFromCanonical
/* Finally, free the namespace itself */
# undef XXH_NAMESPACE
/* employ the namespace for XXH_INLINE_ALL */
# define XXH_NAMESPACE XXH_INLINE_
/*
* Some identifiers (enums, type names) are not symbols,
* but they must nonetheless be renamed to avoid redeclaration.
* Alternative solution: do not redeclare them.
* However, this requires some #ifdefs, and has a more dispersed impact.
* Meanwhile, renaming can be achieved in a single place.
*/
# define XXH_IPREF(Id) XXH_NAMESPACE ## Id
# define XXH_OK XXH_IPREF(XXH_OK)
# define XXH_ERROR XXH_IPREF(XXH_ERROR)
# define XXH_errorcode XXH_IPREF(XXH_errorcode)
# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
# define XXH32_state_s XXH_IPREF(XXH32_state_s)
# define XXH32_state_t XXH_IPREF(XXH32_state_t)
# define XXH64_state_s XXH_IPREF(XXH64_state_s)
# define XXH64_state_t XXH_IPREF(XXH64_state_t)
# define XXH3_state_s XXH_IPREF(XXH3_state_s)
# define XXH3_state_t XXH_IPREF(XXH3_state_t)
# define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
/* Ensure the header is parsed again, even if it was previously included */
# undef XXHASH_H_5627135585666179
# undef XXHASH_H_STATIC_13879238742
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
/* ****************************************************************
* Stable API
*****************************************************************/
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1
/*! @brief Marks a global symbol. */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
# if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
# ifdef XXH_EXPORT
# define XXH_PUBLIC_API __declspec(dllexport)
# elif XXH_IMPORT
# define XXH_PUBLIC_API __declspec(dllimport)
# endif
# else
# define XXH_PUBLIC_API /* do nothing */
# endif
#endif
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
/* XXH32 */
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
/* XXH64 */
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
/* XXH3_64bits */
# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
# define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
# define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
# define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
/* XXH3_128bits */
# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
# define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
# define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
#endif
/* *************************************
* Compiler specifics
***************************************/
/* specific declaration modes for Windows */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
# if defined(_WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
# ifdef XXH_EXPORT
# define XXH_PUBLIC_API __declspec(dllexport)
# elif XXH_IMPORT
# define XXH_PUBLIC_API __declspec(dllimport)
# endif
# else
# define XXH_PUBLIC_API /* do nothing */
# endif
#endif
#if defined (__GNUC__)
# define XXH_CONSTF __attribute__((__const__))
# define XXH_PUREF __attribute__((__pure__))
# define XXH_MALLOCF __attribute__((__malloc__))
#else
# define XXH_CONSTF /* disable */
# define XXH_PUREF
# define XXH_MALLOCF
#endif
/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
#define XXH_VERSION_MINOR 8
#define XXH_VERSION_RELEASE 3
/*! @brief Version number, encoded as two digits each */
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
/*!
* @brief Obtains the xxHash version.
*
* This is mostly useful when xxHash is compiled as a shared library,
* since the returned value comes from the library, as opposed to header file.
*
* @return @ref XXH_VERSION_NUMBER of the invoked library.
*/
XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);
/* ****************************
* Common basic types
******************************/
#include <stddef.h> /* size_t */
/*!
* @brief Exit code for the streaming API.
*/
typedef enum {
XXH_OK = 0, /*!< OK */
XXH_ERROR /*!< Error */
} XXH_errorcode;
/*-**********************************************************************
* 32-bit hash
************************************************************************/
#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
/*!
* @brief An unsigned 32-bit integer.
*
* Not necessarily defined to `uint32_t` but functionally equivalent.
*/
typedef uint32_t XXH32_hash_t;
#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# ifdef _AIX
# include <inttypes.h>
# else
# include <stdint.h>
# endif
typedef uint32_t XXH32_hash_t;
#else
# include <limits.h>
# if UINT_MAX == 0xFFFFFFFFUL
typedef unsigned int XXH32_hash_t;
# elif ULONG_MAX == 0xFFFFFFFFUL
typedef unsigned long XXH32_hash_t;
# else
# error "unsupported platform: need a 32-bit type"
# endif
#endif
/*!
* @}
*
* @defgroup XXH32_family XXH32 family
* @ingroup public
* Contains functions used in the classic 32-bit xxHash algorithm.
*
* @note
* XXH32 is useful for older platforms, with no or poor 64-bit performance.
* Note that the @ref XXH3_family provides competitive speed for both 32-bit
* and 64-bit systems, and offers true 64/128 bit hash results.
*
* @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
* @see @ref XXH32_impl for implementation details
* @{
*/
/*!
* @brief Calculates the 32-bit hash of @p input using xxHash32.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 32-bit seed to alter the hash's output predictably.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 32-bit xxHash32 value.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
#ifndef XXH_NO_STREAM
/*!
* @typedef struct XXH32_state_s XXH32_state_t
* @brief The opaque state struct for the XXH32 streaming API.
*
* @see XXH32_state_s for details.
* @see @ref streaming_example "Streaming Example"
*/
typedef struct XXH32_state_s XXH32_state_t;
/*!
* @brief Allocates an @ref XXH32_state_t.
*
* @return An allocated pointer of @ref XXH32_state_t on success.
* @return `NULL` on failure.
*
* @note Must be freed with XXH32_freeState().
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
/*!
* @brief Frees an @ref XXH32_state_t.
*
* @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
*
* @return @ref XXH_OK.
*
* @note @p statePtr must be allocated with XXH32_createState().
*
* @see @ref streaming_example "Streaming Example"
*
*/
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
/*!
* @brief Copies one @ref XXH32_state_t to another.
*
* @param dst_state The state to copy to.
* @param src_state The state to copy from.
* @pre
* @p dst_state and @p src_state must not be `NULL` and must not overlap.
*/
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
/*!
* @brief Resets an @ref XXH32_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 32-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note This function resets and seeds a state. Call it before @ref XXH32_update().
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
/*!
* @brief Consumes a block of @p input to an @ref XXH32_state_t.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note Call this to incrementally consume blocks of data.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
/*!
* @brief Returns the calculated hash value from an @ref XXH32_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated 32-bit xxHash32 value from that state.
*
* @note
* Calling XXH32_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*!
* @brief Canonical (big endian) representation of @ref XXH32_hash_t.
*/
typedef struct {
unsigned char digest[4]; /*!< Hash bytes, big endian */
} XXH32_canonical_t;
/*!
* @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
*
* @param dst The @ref XXH32_canonical_t pointer to be stored to.
* @param hash The @ref XXH32_hash_t to be converted.
*
* @pre
* @p dst must not be `NULL`.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
/*!
* @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
*
* @param src The @ref XXH32_canonical_t to convert.
*
* @pre
* @p src must not be `NULL`.
*
* @return The converted hash.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
/*! @cond Doxygen ignores this part */
#ifdef __has_attribute
# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
#else
# define XXH_HAS_ATTRIBUTE(x) 0
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
/* C-language Attributes are added in C23. */
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 202311L) && defined(__has_c_attribute)
# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
#else
# define XXH_HAS_C_ATTRIBUTE(x) 0
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
#if defined(__cplusplus) && defined(__has_cpp_attribute)
# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define XXH_HAS_CPP_ATTRIBUTE(x) 0
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
/*
* Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
* introduced in CPP17 and C23.
* CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
* C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
*/
#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
# define XXH_FALLTHROUGH [[fallthrough]]
#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
#else
# define XXH_FALLTHROUGH /* fallthrough */
#endif
/*! @endcond */
/*! @cond Doxygen ignores this part */
/*
* Define XXH_NOESCAPE for annotated pointers in public API.
* https://clang.llvm.org/docs/AttributeReference.html#noescape
* As of writing this, only supported by clang.
*/
#if XXH_HAS_ATTRIBUTE(noescape)
# define XXH_NOESCAPE __attribute__((__noescape__))
#else
# define XXH_NOESCAPE
#endif
/*! @endcond */
/*!
* @}
* @ingroup public
* @{
*/
#ifndef XXH_NO_LONG_LONG
/*-**********************************************************************
* 64-bit hash
************************************************************************/
#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
/*!
* @brief An unsigned 64-bit integer.
*
* Not necessarily defined to `uint64_t` but functionally equivalent.
*/
typedef uint64_t XXH64_hash_t;
#elif !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# ifdef _AIX
# include <inttypes.h>
# else
# include <stdint.h>
# endif
typedef uint64_t XXH64_hash_t;
#else
# include <limits.h>
# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
/* LP64 ABI says uint64_t is unsigned long */
typedef unsigned long XXH64_hash_t;
# else
/* the following type must have a width of 64-bit */
typedef unsigned long long XXH64_hash_t;
# endif
#endif
/*!
* @}
*
* @defgroup XXH64_family XXH64 family
* @ingroup public
* @{
* Contains functions used in the classic 64-bit xxHash algorithm.
*
* @note
* XXH3 provides competitive speed for both 32-bit and 64-bit systems,
* and offers true 64/128 bit hash results.
* It provides better speed for systems with vector processing capabilities.
*/
/*!
* @brief Calculates the 64-bit hash of @p input using xxHash64.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 64-bit seed to alter the hash's output predictably.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 64-bit xxHash64 value.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
/******* Streaming *******/
#ifndef XXH_NO_STREAM
/*!
* @brief The opaque state struct for the XXH64 streaming API.
*
* @see XXH64_state_s for details.
* @see @ref streaming_example "Streaming Example"
*/
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
/*!
* @brief Allocates an @ref XXH64_state_t.
*
* @return An allocated pointer of @ref XXH64_state_t on success.
* @return `NULL` on failure.
*
* @note Must be freed with XXH64_freeState().
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);
/*!
* @brief Frees an @ref XXH64_state_t.
*
* @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
*
* @return @ref XXH_OK.
*
* @note @p statePtr must be allocated with XXH64_createState().
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
/*!
* @brief Copies one @ref XXH64_state_t to another.
*
* @param dst_state The state to copy to.
* @param src_state The state to copy from.
* @pre
* @p dst_state and @p src_state must not be `NULL` and must not overlap.
*/
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);
/*!
* @brief Resets an @ref XXH64_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note This function resets and seeds a state. Call it before @ref XXH64_update().
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);
/*!
* @brief Consumes a block of @p input to an @ref XXH64_state_t.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note Call this to incrementally consume blocks of data.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Returns the calculated hash value from an @ref XXH64_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated 64-bit xxHash64 value from that state.
*
* @note
* Calling XXH64_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*!
* @brief Canonical (big endian) representation of @ref XXH64_hash_t.
*/
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
/*!
* @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
*
* @param dst The @ref XXH64_canonical_t pointer to be stored to.
* @param hash The @ref XXH64_hash_t to be converted.
*
* @pre
* @p dst must not be `NULL`.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);
/*!
* @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
*
* @param src The @ref XXH64_canonical_t to convert.
*
* @pre
* @p src must not be `NULL`.
*
* @return The converted hash.
*
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);
#ifndef XXH_NO_XXH3
/*!
* @}
* ************************************************************************
* @defgroup XXH3_family XXH3 family
* @ingroup public
* @{
*
* XXH3 is a more recent hash algorithm featuring:
* - Improved speed for both small and large inputs
* - True 64-bit and 128-bit outputs
* - SIMD acceleration
* - Improved 32-bit viability
*
* Speed analysis methodology is explained here:
*
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
*
* Compared to XXH64, expect XXH3 to run approximately
* ~2x faster on large inputs and >3x faster on small ones,
* exact differences vary depending on platform.
*
* XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
* but does not require it.
* Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
* at competitive speeds, even without vector support. Further details are
* explained in the implementation.
*
* XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
* implementations for many common platforms:
* - AVX512
* - AVX2
* - SSE2
* - ARM NEON
* - WebAssembly SIMD128
* - POWER8 VSX
* - s390x ZVector
* This can be controlled via the @ref XXH_VECTOR macro, but it automatically
* selects the best version according to predefined macros. For the x86 family, an
* automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
*
* XXH3 implementation is portable:
* it has a generic C90 formulation that can be compiled on any platform,
* all implementations generate exactly the same hash value on all platforms.
* Starting from v0.8.0, it's also labelled "stable", meaning that
* any future version will also generate the same hash value.
*
* XXH3 offers 2 variants, _64bits and _128bits.
*
* When only 64 bits are needed, prefer invoking the _64bits variant, as it
* reduces the amount of mixing, resulting in faster speed on small inputs.
* It's also generally simpler to manipulate a scalar return type than a struct.
*
* The API supports one-shot hashing, streaming mode, and custom secrets.
*/
/*!
* @ingroup tuning
* @brief Possible values for @ref XXH_VECTOR.
*
* Unless set explicitly, determined automatically.
*/
# define XXH_SCALAR 0 /*!< Portable scalar version */
# define XXH_SSE2 1 /*!< SSE2 for Pentium 4, Opteron, all x86_64. */
# define XXH_AVX2 2 /*!< AVX2 for Haswell and Bulldozer */
# define XXH_AVX512 3 /*!< AVX512 for Skylake and Icelake */
# define XXH_NEON 4 /*!< NEON for most ARMv7-A, all AArch64, and WASM SIMD128 */
# define XXH_VSX 5 /*!< VSX and ZVector for POWER8/z13 (64-bit) */
# define XXH_SVE 6 /*!< SVE for some ARMv8-A and ARMv9-A */
# define XXH_LSX 7 /*!< LSX (128-bit SIMD) for LoongArch64 */
# define XXH_LASX 8 /*!< LASX (256-bit SIMD) for LoongArch64 */
# define XXH_RVV 9 /*!< RVV (RISC-V Vector) for RISC-V */
/*-**********************************************************************
* XXH3 64-bit variant
************************************************************************/
/*!
* @brief Calculates 64-bit unseeded variant of XXH3 hash of @p input.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 64-bit XXH3 hash value.
*
* @note
* This is equivalent to @ref XXH3_64bits_withSeed() with a seed of `0`, however
* it may have slightly better performance due to constant propagation of the
* defaults.
*
* @see
* XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Calculates 64-bit seeded variant of XXH3 hash of @p input.
*
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 64-bit XXH3 hash value.
*
* @note
* seed == 0 produces the same results as @ref XXH3_64bits().
*
* This variant generates a custom secret on the fly based on default secret
* altered using the @p seed value.
*
* While this operation is decently fast, note that it's not completely free.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);
/*!
* The bare minimum size for a custom secret.
*
* @see
* XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
* XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
*/
#define XXH3_SECRET_SIZE_MIN 136
/*!
* @brief Calculates 64-bit variant of XXH3 with a custom "secret".
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @return The calculated 64-bit XXH3 hash value.
*
* @pre
* The memory between @p data and @p data + @p len must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p data may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
* This makes it more difficult for an external actor to prepare an intentional collision.
* The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
* However, the quality of the secret impacts the dispersion of the hash algorithm.
* Therefore, the secret _must_ look like a bunch of random bytes.
* Avoid "trivial" or structured data such as repeated sequences or a text document.
* Whenever in doubt about the "randomness" of the blob of bytes,
* consider employing @ref XXH3_generateSecret() instead (see below).
* It will generate a proper high entropy secret derived from the blob of bytes.
* Another advantage of using XXH3_generateSecret() is that
* it guarantees that all bits within the initial blob of bytes
* will impact every bit of the output.
* This is not necessarily the case when using the blob of bytes directly
* because, when hashing _small_ inputs, only a portion of the secret is employed.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
/******* Streaming *******/
#ifndef XXH_NO_STREAM
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
* As a consequence, streaming is slower than one-shot hashing.
* For better performance, prefer one-shot functions whenever applicable.
*/
/*!
* @brief The opaque state struct for the XXH3 streaming API.
*
* @see XXH3_state_s for details.
* @see @ref streaming_example "Streaming Example"
*/
typedef struct XXH3_state_s XXH3_state_t;
XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
/*!
* @brief Copies one @ref XXH3_state_t to another.
*
* @param dst_state The state to copy to.
* @param src_state The state to copy from.
* @pre
* @p dst_state and @p src_state must not be `NULL` and must not overlap.
*/
XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);
/*!
* @brief Resets an @ref XXH3_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret with default parameters.
* - Call this function before @ref XXH3_64bits_update().
* - Digest will be equivalent to `XXH3_64bits()`.
*
* @see @ref streaming_example "Streaming Example"
*
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
/*!
* @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret from `seed`.
* - Call this function before @ref XXH3_64bits_update().
* - Digest will be equivalent to `XXH3_64bits_withSeed()`.
*
* @see @ref streaming_example "Streaming Example"
*
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* `secret` is referenced, it _must outlive_ the hash streaming session.
*
* Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
* and the quality of produced hash values depends on secret's entropy
* (secret's content should look like a bunch of random bytes).
* When in doubt about the randomness of a candidate `secret`,
* consider employing `XXH3_generateSecret()` instead (see below).
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
/*!
* @brief Consumes a block of @p input to an @ref XXH3_state_t.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
* @pre
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note Call this to incrementally consume blocks of data.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated XXH3 64-bit hash value from that state.
*
* @note
* Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/* note : canonical representation of XXH3 is the same as XXH64
* since they both produce XXH64_hash_t values */
/*-**********************************************************************
* XXH3 128-bit variant
************************************************************************/
/*!
* @brief The return value from 128-bit hashes.
*
* Stored in little endian order, although the fields themselves are in native
* endianness.
*/
typedef struct {
XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
XXH64_hash_t high64; /*!< `value >> 64` */
} XXH128_hash_t;
/*!
* @brief Calculates 128-bit unseeded variant of XXH3 of @p data.
*
* @param data The block of data to be hashed, at least @p length bytes in size.
* @param len The length of @p data, in bytes.
*
* @return The calculated 128-bit variant of XXH3 value.
*
* The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
* for shorter inputs.
*
* This is equivalent to @ref XXH3_128bits_withSeed() with a seed of `0`, however
* it may have slightly better performance due to constant propagation of the
* defaults.
*
* @see XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
/*! @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
*
* @param data The block of data to be hashed, at least @p length bytes in size.
* @param len The length of @p data, in bytes.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @return The calculated 128-bit variant of XXH3 value.
*
* @note
* seed == 0 produces the same results as @ref XXH3_64bits().
*
* This variant generates a custom secret on the fly based on default secret
* altered using the @p seed value.
*
* While this operation is decently fast, note that it's not completely free.
*
* @see XXH3_128bits(), XXH3_128bits_withSecret(): other seeding variants
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
/*!
* @brief Calculates 128-bit variant of XXH3 with a custom "secret".
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @return The calculated 128-bit variant of XXH3 value.
*
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
* This makes it more difficult for an external actor to prepare an intentional collision.
* The main condition is that @p secretSize *must* be large enough (>= @ref XXH3_SECRET_SIZE_MIN).
* However, the quality of the secret impacts the dispersion of the hash algorithm.
* Therefore, the secret _must_ look like a bunch of random bytes.
* Avoid "trivial" or structured data such as repeated sequences or a text document.
* Whenever in doubt about the "randomness" of the blob of bytes,
* consider employing @ref XXH3_generateSecret() instead (see below).
* It will generate a proper high entropy secret derived from the blob of bytes.
* Another advantage of using XXH3_generateSecret() is that
* it guarantees that all bits within the initial blob of bytes
* will impact every bit of the output.
* This is not necessarily the case when using the blob of bytes directly
* because, when hashing _small_ inputs, only a portion of the secret is employed.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);
/******* Streaming *******/
#ifndef XXH_NO_STREAM
/*
* Streaming requires state maintenance.
* This operation costs memory and CPU.
* As a consequence, streaming is slower than one-shot hashing.
* For better performance, prefer one-shot functions whenever applicable.
*
* XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
* Use already declared XXH3_createState() and XXH3_freeState().
*
* All reset and streaming functions have same meaning as their 64-bit counterpart.
*/
/*!
* @brief Resets an @ref XXH3_state_t to begin a new hash.
*
* @param statePtr The state struct to reset.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret with default parameters.
* - Call it before @ref XXH3_128bits_update().
* - Digest will be equivalent to `XXH3_128bits()`.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);
/*!
* @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* - This function resets `statePtr` and generate a secret from `seed`.
* - Call it before @ref XXH3_128bits_update().
* - Digest will be equivalent to `XXH3_128bits_withSeed()`.
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr The state struct to reset.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* `secret` is referenced, it _must outlive_ the hash streaming session.
* Similar to one-shot API, `secretSize` must be >= @ref XXH3_SECRET_SIZE_MIN,
* and the quality of produced hash values depends on secret's entropy
* (secret's content should look like a bunch of random bytes).
* When in doubt about the randomness of a candidate `secret`,
* consider employing `XXH3_generateSecret()` instead (see below).
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);
/*!
* @brief Consumes a block of @p input to an @ref XXH3_state_t.
*
* Call this to incrementally consume blocks of data.
*
* @param statePtr The state struct to update.
* @param input The block of data to be hashed, at least @p length bytes in size.
* @param length The length of @p input, in bytes.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @note
* The memory between @p input and @p input + @p length must be valid,
* readable, contiguous memory. However, if @p length is `0`, @p input may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
*/
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);
/*!
* @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
*
* @param statePtr The state struct to calculate the hash from.
*
* @pre
* @p statePtr must not be `NULL`.
*
* @return The calculated XXH3 128-bit hash value from that state.
*
* @note
* Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
* digest, and update again.
*
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/* Following helper functions make it possible to compare XXH128_hast_t values.
* Since XXH128_hash_t is a structure, this capability is not offered by the language.
* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
/*!
* @brief Check equality of two XXH128_hash_t values
*
* @param h1 The 128-bit hash value.
* @param h2 Another 128-bit hash value.
*
* @return `1` if `h1` and `h2` are equal.
* @return `0` if they are not.
*/
XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
/*!
* @brief Compares two @ref XXH128_hash_t
*
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
*
* @param h128_1 Left-hand side value
* @param h128_2 Right-hand side value
*
* @return >0 if @p h128_1 > @p h128_2
* @return =0 if @p h128_1 == @p h128_2
* @return <0 if @p h128_1 < @p h128_2
*/
XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);
/******* Canonical representation *******/
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
/*!
* @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
*
* @param dst The @ref XXH128_canonical_t pointer to be stored to.
* @param hash The @ref XXH128_hash_t to be converted.
*
* @pre
* @p dst must not be `NULL`.
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);
/*!
* @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
*
* @param src The @ref XXH128_canonical_t to convert.
*
* @pre
* @p src must not be `NULL`.
*
* @return The converted hash.
* @see @ref canonical_representation_example "Canonical Representation Example"
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);
#endif /* !XXH_NO_XXH3 */
#endif /* XXH_NO_LONG_LONG */
/*!
* @}
*/
#endif /* XXHASH_H_5627135585666179 */
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
#define XXHASH_H_STATIC_13879238742
/* ****************************************************************************
* This section contains declarations which are not guaranteed to remain stable.
* They may change in future versions, becoming incompatible with a different
* version of the library.
* These declarations should only be used with static linking.
* Never use them in association with dynamic linking!
***************************************************************************** */
/*
* These definitions are only present to allow static allocation
* of XXH states, on stack or in a struct, for example.
* Never **ever** access their members directly.
*/
/*!
* @internal
* @brief Structure for XXH32 streaming API.
*
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
* an opaque type. This allows fields to safely be changed.
*
* Typedef'd to @ref XXH32_state_t.
* Do not access the members of this struct directly.
* @see XXH64_state_s, XXH3_state_s
*/
struct XXH32_state_s {
XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
XXH32_hash_t acc[4]; /*!< Accumulator lanes */
unsigned char buffer[16]; /*!< Internal buffer for partial reads. */
XXH32_hash_t bufferedSize; /*!< Amount of data in @ref buffer */
XXH32_hash_t reserved; /*!< Reserved field. Do not read nor write to it. */
}; /* typedef'd to XXH32_state_t */
#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
/*!
* @internal
* @brief Structure for XXH64 streaming API.
*
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
* an opaque type. This allows fields to safely be changed.
*
* Typedef'd to @ref XXH64_state_t.
* Do not access the members of this struct directly.
* @see XXH32_state_s, XXH3_state_s
*/
struct XXH64_state_s {
XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
XXH64_hash_t acc[4]; /*!< Accumulator lanes */
unsigned char buffer[32]; /*!< Internal buffer for partial reads.. */
XXH32_hash_t bufferedSize; /*!< Amount of data in @ref buffer */
XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it. */
}; /* typedef'd to XXH64_state_t */
#ifndef XXH_NO_XXH3
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
# define XXH_ALIGN(n) _Alignas(n)
#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
/* In C++ alignas() is a keyword */
# define XXH_ALIGN(n) alignas(n)
#elif defined(__GNUC__)
# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
#elif defined(_MSC_VER)
# define XXH_ALIGN(n) __declspec(align(n))
#else
# define XXH_ALIGN(n) /* disabled */
#endif
/* Old GCC versions only accept the attribute after the type in structures. */
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
&& ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
&& defined(__GNUC__)
# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
#else
# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
#endif
/*!
* @internal
* @brief The size of the internal XXH3 buffer.
*
* This is the optimal update size for incremental hashing.
*
* @see XXH3_64b_update(), XXH3_128b_update().
*/
#define XXH3_INTERNALBUFFER_SIZE 256
/*!
* @def XXH3_SECRET_DEFAULT_SIZE
* @brief Default Secret's size
*
* This is the size of internal XXH3_kSecret
* and is needed by XXH3_generateSecret_fromSeed().
*
* Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
*/
#define XXH3_SECRET_DEFAULT_SIZE 192
/*!
* @internal
* @brief Structure for XXH3 streaming API.
*
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
* Otherwise it is an opaque type.
* Never use this definition in combination with dynamic library.
* This allows fields to safely be changed in the future.
*
* @note ** This structure has a strict alignment requirement of 64 bytes!! **
* Do not allocate this with `malloc()` or `new`,
* it will not be sufficiently aligned.
* Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
*
* Typedef'd to @ref XXH3_state_t.
* Do never access the members of this struct directly.
*
* @see XXH3_INITSTATE() for stack initialization.
* @see XXH3_createState(), XXH3_freeState().
* @see XXH32_state_s, XXH64_state_s
*/
struct XXH3_state_s {
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
/*!< The 8 accumulators. See @ref XXH32_state_s::acc and @ref XXH64_state_s::acc */
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
/*!< Used to store a custom secret generated from a seed. */
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
/*!< The internal buffer. @see XXH32_state_s::mem32 */
XXH32_hash_t bufferedSize;
/*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
XXH32_hash_t useSeed;
/*!< Reserved field. Needed for padding on 64-bit. */
size_t nbStripesSoFar;
/*!< Number or stripes processed. */
XXH64_hash_t totalLen;
/*!< Total length hashed. 64-bit even on 32-bit targets. */
size_t nbStripesPerBlock;
/*!< Number of stripes per block. */
size_t secretLimit;
/*!< Size of @ref customSecret or @ref extSecret */
XXH64_hash_t seed;
/*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
XXH64_hash_t reserved64;
/*!< Reserved field. */
const unsigned char* extSecret;
/*!< Reference to an external secret for the _withSecret variants, NULL
* for other variants. */
/* note: there may be some padding at the end due to alignment on 64 bytes */
}; /* typedef'd to XXH3_state_t */
#undef XXH_ALIGN_MEMBER
/*!
* @brief Initializes a stack-allocated `XXH3_state_s`.
*
* When the @ref XXH3_state_t structure is merely emplaced on stack,
* it should be initialized with XXH3_INITSTATE() or a memset()
* in case its first reset uses XXH3_NNbits_reset_withSeed().
* This init can be omitted if the first reset uses default or _withSecret mode.
* This operation isn't necessary when the state is created with XXH3_createState().
* Note that this doesn't prepare the state for a streaming operation,
* it's still necessary to use XXH3_NNbits_reset*() afterwards.
*/
#define XXH3_INITSTATE(XXH3_state_ptr) \
do { \
XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
tmp_xxh3_state_ptr->seed = 0; \
tmp_xxh3_state_ptr->extSecret = NULL; \
} while(0)
/*!
* @brief Calculates the 128-bit hash of @p data using XXH3.
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param seed The 64-bit seed to alter the hash's output predictably.
*
* @pre
* The memory between @p data and @p data + @p len must be valid,
* readable, contiguous memory. However, if @p len is `0`, @p data may be
* `NULL`. In C++, this also must be *TriviallyCopyable*.
*
* @return The calculated 128-bit XXH3 value.
*
* @see @ref single_shot_example "Single Shot Example" for an example.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
/* === Experimental API === */
/* Symbols defined below must be considered tied to a specific library version. */
/*!
* @brief Derive a high-entropy secret from any user-defined content, named customSeed.
*
* @param secretBuffer A writable buffer for derived high-entropy secret data.
* @param secretSize Size of secretBuffer, in bytes. Must be >= XXH3_SECRET_SIZE_MIN.
* @param customSeed A user-defined content.
* @param customSeedSize Size of customSeed, in bytes.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* The generated secret can be used in combination with `*_withSecret()` functions.
* The `_withSecret()` variants are useful to provide a higher level of protection
* than 64-bit seed, as it becomes much more difficult for an external actor to
* guess how to impact the calculation logic.
*
* The function accepts as input a custom seed of any length and any content,
* and derives from it a high-entropy secret of length @p secretSize into an
* already allocated buffer @p secretBuffer.
*
* The generated secret can then be used with any `*_withSecret()` variant.
* The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
* @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
* are part of this list. They all accept a `secret` parameter
* which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
* _and_ feature very high entropy (consist of random-looking bytes).
* These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
* be employed to ensure proper quality.
*
* @p customSeed can be anything. It can have any size, even small ones,
* and its content can be anything, even "poor entropy" sources such as a bunch
* of zeroes. The resulting `secret` will nonetheless provide all required qualities.
*
* @pre
* - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
* - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
*
* Example code:
* @code{.c}
* #include <stdio.h>
* #include <stdlib.h>
* #include <string.h>
* #define XXH_STATIC_LINKING_ONLY // expose unstable API
* #include "xxhash.h"
* // Hashes argv[2] using the entropy from argv[1].
* int main(int argc, char* argv[])
* {
* char secret[XXH3_SECRET_SIZE_MIN];
* if (argv != 3) { return 1; }
* XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
* XXH64_hash_t h = XXH3_64bits_withSecret(
* argv[2], strlen(argv[2]),
* secret, sizeof(secret)
* );
* printf("%016llx\n", (unsigned long long) h);
* }
* @endcode
*/
XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);
/*!
* @brief Generate the same secret as the _withSeed() variants.
*
* @param secretBuffer A writable buffer of @ref XXH3_SECRET_DEFAULT_SIZE bytes
* @param seed The 64-bit seed to alter the hash result predictably.
*
* The generated secret can be used in combination with
*`*_withSecret()` and `_withSecretandSeed()` variants.
*
* Example C++ `std::string` hash class:
* @code{.cpp}
* #include <string>
* #define XXH_STATIC_LINKING_ONLY // expose unstable API
* #include "xxhash.h"
* // Slow, seeds each time
* class HashSlow {
* XXH64_hash_t seed;
* public:
* HashSlow(XXH64_hash_t s) : seed{s} {}
* size_t operator()(const std::string& x) const {
* return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
* }
* };
* // Fast, caches the seeded secret for future uses.
* class HashFast {
* unsigned char secret[XXH3_SECRET_DEFAULT_SIZE];
* public:
* HashFast(XXH64_hash_t s) {
* XXH3_generateSecret_fromSeed(secret, seed);
* }
* size_t operator()(const std::string& x) const {
* return size_t{
* XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
* };
* }
* };
* @endcode
*/
XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);
/*!
* @brief Maximum size of "short" key in bytes.
*/
#define XXH3_MIDSIZE_MAX 240
/*!
* @brief Calculates 64/128-bit seeded variant of XXH3 hash of @p data.
*
* @param data The block of data to be hashed, at least @p len bytes in size.
* @param len The length of @p data, in bytes.
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
* @param seed The 64-bit seed to alter the hash result predictably.
*
* These variants generate hash values using either:
* - @p seed for "short" keys (< @ref XXH3_MIDSIZE_MAX = 240 bytes)
* - @p secret for "large" keys (>= @ref XXH3_MIDSIZE_MAX).
*
* This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
* `_withSeed()` has to generate the secret on the fly for "large" keys.
* It's fast, but can be perceptible for "not so large" keys (< 1 KB).
* `_withSecret()` has to generate the masks on the fly for "small" keys,
* which requires more instructions than _withSeed() variants.
* Therefore, _withSecretandSeed variant combines the best of both worlds.
*
* When @p secret has been generated by XXH3_generateSecret_fromSeed(),
* this variant produces *exactly* the same results as `_withSeed()` variant,
* hence offering only a pure speed benefit on "large" input,
* by skipping the need to regenerate the secret for every large input.
*
* Another usage scenario is to hash the secret to a 64-bit hash value,
* for example with XXH3_64bits(), which then becomes the seed,
* and then employ both the seed and the secret in _withSecretandSeed().
* On top of speed, an added benefit is that each bit in the secret
* has a 50% chance to swap each bit in the output, via its impact to the seed.
*
* This is not guaranteed when using the secret directly in "small data" scenarios,
* because only portions of the secret are employed for small data.
*/
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed);
/*!
* @brief Calculates 128-bit seeded variant of XXH3 hash of @p data.
*
* @param input The memory segment to be hashed, at least @p len bytes in size.
* @param length The length of @p data, in bytes.
* @param secret The secret used to alter hash result predictably.
* @param secretSize The length of @p secret, in bytes (must be >= XXH3_SECRET_SIZE_MIN)
* @param seed64 The 64-bit seed to alter the hash result predictably.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @see XXH3_64bits_withSecretandSeed(): contract is the same.
*/
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
#ifndef XXH_NO_STREAM
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
* @param seed64 The 64-bit seed to alter the hash result predictably.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @see XXH3_64bits_withSecretandSeed(). Contract is identical.
*/
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
/*!
* @brief Resets an @ref XXH3_state_t with secret data to begin a new hash.
*
* @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
* @param secret The secret data.
* @param secretSize The length of @p secret, in bytes.
* @param seed64 The 64-bit seed to alter the hash result predictably.
*
* @return @ref XXH_OK on success.
* @return @ref XXH_ERROR on failure.
*
* @see XXH3_64bits_withSecretandSeed(). Contract is identical.
*
* Note: there was a bug in an earlier version of this function (<= v0.8.2)
* that would make it generate an incorrect hash value
* when @p seed == 0 and @p length < XXH3_MIDSIZE_MAX
* and @p secret is different from XXH3_generateSecret_fromSeed().
* As stated in the contract, the correct hash result must be
* the same as XXH3_128bits_withSeed() when @p length <= XXH3_MIDSIZE_MAX.
* Results generated by this older version are wrong, hence not comparable.
*/
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
XXH_NOESCAPE const void* secret, size_t secretSize,
XXH64_hash_t seed64);
#endif /* !XXH_NO_STREAM */
#endif /* !XXH_NO_XXH3 */
#endif /* XXH_NO_LONG_LONG */
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
# define XXH_IMPLEMENTATION
#endif
#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
/* ======================================================================== */
/* ======================================================================== */
/* ======================================================================== */
/*-**********************************************************************
* xxHash implementation
*-**********************************************************************
* xxHash's implementation used to be hosted inside xxhash.c.
*
* However, inlining requires implementation to be visible to the compiler,
* hence be included alongside the header.
* Previously, implementation was hosted inside xxhash.c,
* which was then #included when inlining was activated.
* This construction created issues with a few build and install systems,
* as it required xxhash.c to be stored in /include directory.
*
* xxHash implementation is now directly integrated within xxhash.h.
* As a consequence, xxhash.c is no longer needed in /include.
*
* xxhash.c is still available and is still useful.
* In a "normal" setup, when xxhash is not inlined,
* xxhash.h only exposes the prototypes and public symbols,
* while xxhash.c can be built into an object file xxhash.o
* which can then be linked into the final binary.
************************************************************************/
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
|| defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
# define XXH_IMPLEM_13a8737387
/* *************************************
* Tuning parameters
***************************************/
/*!
* @defgroup tuning Tuning parameters
* @{
*
* Various macros to control xxHash's behavior.
*/
#ifdef XXH_DOXYGEN
/*!
* @brief Define this to disable 64-bit code.
*
* Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
*/
# define XXH_NO_LONG_LONG
# undef XXH_NO_LONG_LONG /* don't actually */
/*!
* @brief Controls how unaligned memory is accessed.
*
* By default, access to unaligned memory is controlled by `memcpy()`, which is
* safe and portable.
*
* Unfortunately, on some target/compiler combinations, the generated assembly
* is sub-optimal.
*
* The below switch allow selection of a different access method
* in the search for improved performance.
*
* @par Possible options:
*
* - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
* @par
* Use `memcpy()`. Safe and portable. Note that most modern compilers will
* eliminate the function call and treat it as an unaligned access.
*
* - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
* @par
* Depends on compiler extensions and is therefore not portable.
* This method is safe _if_ your compiler supports it,
* and *generally* as fast or faster than `memcpy`.
*
* - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
* @par
* Casts directly and dereferences. This method doesn't depend on the
* compiler, but it violates the C standard as it directly dereferences an
* unaligned pointer. It can generate buggy code on targets which do not
* support unaligned memory accesses, but in some circumstances, it's the
* only known way to get the most performance.
*
* - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
* @par
* Also portable. This can generate the best code on old compilers which don't
* inline small `memcpy()` calls, and it might also be faster on big-endian
* systems which lack a native byteswap instruction. However, some compilers
* will emit literal byteshifts even if the target supports unaligned access.
*
*
* @warning
* Methods 1 and 2 rely on implementation-defined behavior. Use these with
* care, as what works on one compiler/platform/optimization level may cause
* another to read garbage data or even crash.
*
* See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
*
* Prefer these methods in priority order (0 > 3 > 1 > 2)
*/
# define XXH_FORCE_MEMORY_ACCESS 0
/*!
* @def XXH_SIZE_OPT
* @brief Controls how much xxHash optimizes for size.
*
* xxHash, when compiled, tends to result in a rather large binary size. This
* is mostly due to heavy usage to forced inlining and constant folding of the
* @ref XXH3_family to increase performance.
*
* However, some developers prefer size over speed. This option can
* significantly reduce the size of the generated code. When using the `-Os`
* or `-Oz` options on GCC or Clang, this is defined to 1 by default,
* otherwise it is defined to 0.
*
* Most of these size optimizations can be controlled manually.
*
* This is a number from 0-2.
* - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
* comes first.
* - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
* conservative and disables hacks that increase code size. It implies the
* options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
* and @ref XXH3_NEON_LANES == 8 if they are not already defined.
* - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
* Performance may cry. For example, the single shot functions just use the
* streaming API.
*/
# define XXH_SIZE_OPT 0
/*!
* @def XXH_FORCE_ALIGN_CHECK
* @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
* and XXH64() only).
*
* This is an important performance trick for architectures without decent
* unaligned memory access performance.
*
* It checks for input alignment, and when conditions are met, uses a "fast
* path" employing direct 32-bit/64-bit reads, resulting in _dramatically
* faster_ read speed.
*
* The check costs one initial branch per hash, which is generally negligible,
* but not zero.
*
* Moreover, it's not useful to generate an additional code path if memory
* access uses the same instruction for both aligned and unaligned
* addresses (e.g. x86 and aarch64).
*
* In these cases, the alignment check can be removed by setting this macro to 0.
* Then the code will always use unaligned memory access.
* Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
* which are platforms known to offer good unaligned memory accesses performance.
*
* It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
*
* This option does not affect XXH3 (only XXH32 and XXH64).
*/
# define XXH_FORCE_ALIGN_CHECK 0
/*!
* @def XXH_NO_INLINE_HINTS
* @brief When non-zero, sets all functions to `static`.
*
* By default, xxHash tries to force the compiler to inline almost all internal
* functions.
*
* This can usually improve performance due to reduced jumping and improved
* constant folding, but significantly increases the size of the binary which
* might not be favorable.
*
* Additionally, sometimes the forced inlining can be detrimental to performance,
* depending on the architecture.
*
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
* compiler full control on whether to inline or not.
*
* When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
* @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
*/
# define XXH_NO_INLINE_HINTS 0
/*!
* @def XXH3_INLINE_SECRET
* @brief Determines whether to inline the XXH3 withSecret code.
*
* When the secret size is known, the compiler can improve the performance
* of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
*
* However, if the secret size is not known, it doesn't have any benefit. This
* happens when xxHash is compiled into a global symbol. Therefore, if
* @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
*
* Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
* that are *sometimes* force inline on -Og, and it is impossible to automatically
* detect this optimization level.
*/
# define XXH3_INLINE_SECRET 0
/*!
* @def XXH32_ENDJMP
* @brief Whether to use a jump for `XXH32_finalize`.
*
* For performance, `XXH32_finalize` uses multiple branches in the finalizer.
* This is generally preferable for performance,
* but depending on exact architecture, a jmp may be preferable.
*
* This setting is only possibly making a difference for very small inputs.
*/
# define XXH32_ENDJMP 0
/*!
* @internal
* @brief Redefines old internal names.
*
* For compatibility with code that uses xxHash's internals before the names
* were changed to improve namespacing. There is no other reason to use this.
*/
# define XXH_OLD_NAMES
# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
/*!
* @def XXH_NO_STREAM
* @brief Disables the streaming API.
*
* When xxHash is not inlined and the streaming functions are not used, disabling
* the streaming functions can improve code size significantly, especially with
* the @ref XXH3_family which tends to make constant folded copies of itself.
*/
# define XXH_NO_STREAM
# undef XXH_NO_STREAM /* don't actually */
#endif /* XXH_DOXYGEN */
/*!
* @}
*/
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
/* prefer __packed__ structures (method 1) for GCC
* < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
* which for some reason does unaligned loads. */
# if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
#ifndef XXH_SIZE_OPT
/* default to 1 for -Os or -Oz */
# if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
# define XXH_SIZE_OPT 1
# else
# define XXH_SIZE_OPT 0
# endif
#endif
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
/* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
# if XXH_SIZE_OPT >= 1 || \
defined(__i386) || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
|| defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) || defined(_M_ARM) /* visual */
# define XXH_FORCE_ALIGN_CHECK 0
# else
# define XXH_FORCE_ALIGN_CHECK 1
# endif
#endif
#ifndef XXH_NO_INLINE_HINTS
# if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__) /* -O0, -fno-inline */
# define XXH_NO_INLINE_HINTS 1
# else
# define XXH_NO_INLINE_HINTS 0
# endif
#endif
#ifndef XXH3_INLINE_SECRET
# if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
|| !defined(XXH_INLINE_ALL)
# define XXH3_INLINE_SECRET 0
# else
# define XXH3_INLINE_SECRET 1
# endif
#endif
#ifndef XXH32_ENDJMP
/* generally preferable for performance */
# define XXH32_ENDJMP 0
#endif
/*!
* @defgroup impl Implementation
* @{
*/
/* *************************************
* Includes & Memory related functions
***************************************/
#if defined(XXH_NO_STREAM)
/* nothing */
#elif defined(XXH_NO_STDLIB)
/* When requesting to disable any mention of stdlib,
* the library loses the ability to invoked malloc / free.
* In practice, it means that functions like `XXH*_createState()`
* will always fail, and return NULL.
* This flag is useful in situations where
* xxhash.h is integrated into some kernel, embedded or limited environment
* without access to dynamic allocation.
*/
static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
static void XXH_free(void* p) { (void)p; }
#else
/*
* Modify the local functions below should you wish to use
* different memory routines for malloc() and free()
*/
#include <stdlib.h>
/*!
* @internal
* @brief Modify this function to use a different routine than malloc().
*/
static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }
/*!
* @internal
* @brief Modify this function to use a different routine than free().
*/
static void XXH_free(void* p) { free(p); }
#endif /* XXH_NO_STDLIB */
#ifndef XXH_memcpy
/*!
* @internal
* @brief XXH_memcpy() macro can be redirected at compile time
*/
# include <string.h>
# define XXH_memcpy memcpy
#endif
#ifndef XXH_memset
/*!
* @internal
* @brief XXH_memset() macro can be redirected at compile time
*/
# include <string.h>
# define XXH_memset memset
#endif
#ifndef XXH_memcmp
/*!
* @internal
* @brief XXH_memcmp() macro can be redirected at compile time
* Note: only needed by XXH128.
*/
# include <string.h>
# define XXH_memcmp memcmp
#endif
#include <limits.h> /* ULLONG_MAX */
/* *************************************
* Compiler Specific Options
***************************************/
#ifdef _MSC_VER /* Visual Studio warning fix */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
#if XXH_NO_INLINE_HINTS /* disable inlining hints */
# if defined(__GNUC__) || defined(__clang__)
# define XXH_FORCE_INLINE static __attribute__((__unused__))
# else
# define XXH_FORCE_INLINE static
# endif
# define XXH_NO_INLINE static
/* enable inlining hints */
#elif defined(__GNUC__) || defined(__clang__)
# define XXH_FORCE_INLINE static __inline__ __attribute__((__always_inline__, __unused__))
# define XXH_NO_INLINE static __attribute__((__noinline__))
#elif defined(_MSC_VER) /* Visual Studio */
# define XXH_FORCE_INLINE static __forceinline
# define XXH_NO_INLINE static __declspec(noinline)
#elif defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
# define XXH_FORCE_INLINE static inline
# define XXH_NO_INLINE static
#else
# define XXH_FORCE_INLINE static
# define XXH_NO_INLINE static
#endif
#if defined(XXH_INLINE_ALL)
# define XXH_STATIC XXH_FORCE_INLINE
#else
# define XXH_STATIC static
#endif
#if XXH3_INLINE_SECRET
# define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
#else
# define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
#endif
#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
# define XXH_RESTRICT /* disable */
#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
# define XXH_RESTRICT restrict
#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
|| (defined (__clang__)) \
|| (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
|| (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
/*
* There are a LOT more compilers that recognize __restrict but this
* covers the major ones.
*/
# define XXH_RESTRICT __restrict
#else
# define XXH_RESTRICT /* disable */
#endif
/* *************************************
* Debug
***************************************/
/*!
* @ingroup tuning
* @def XXH_DEBUGLEVEL
* @brief Sets the debugging level.
*
* XXH_DEBUGLEVEL is expected to be defined externally, typically via the
* compiler's command line options. The value must be a number.
*/
#ifndef XXH_DEBUGLEVEL
# ifdef DEBUGLEVEL /* backwards compat */
# define XXH_DEBUGLEVEL DEBUGLEVEL
# else
# define XXH_DEBUGLEVEL 0
# endif
#endif
#if (XXH_DEBUGLEVEL>=1)
# include <assert.h> /* note: can still be disabled with NDEBUG */
# define XXH_ASSERT(c) assert(c)
#else
# if defined(__INTEL_COMPILER)
# define XXH_ASSERT(c) XXH_ASSUME((unsigned char) (c))
# else
# define XXH_ASSERT(c) XXH_ASSUME(c)
# endif
#endif
/* note: use after variable declarations */
#ifndef XXH_STATIC_ASSERT
# if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
# elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
# else
# define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
# endif
# define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
#endif
/*!
* @internal
* @def XXH_COMPILER_GUARD(var)
* @brief Used to prevent unwanted optimizations for @p var.
*
* It uses an empty GCC inline assembly statement with a register constraint
* which forces @p var into a general purpose register (eg eax, ebx, ecx
* on x86) and marks it as modified.
*
* This is used in a few places to avoid unwanted autovectorization (e.g.
* XXH32_round()). All vectorization we want is explicit via intrinsics,
* and _usually_ isn't wanted elsewhere.
*
* We also use it to prevent unwanted constant folding for AArch64 in
* XXH3_initCustomSecret_scalar().
*/
#if defined(__GNUC__) || defined(__clang__)
# define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
#else
# define XXH_COMPILER_GUARD(var) ((void)0)
#endif
/* Specifically for NEON vectors which use the "w" constraint, on
* Clang. */
#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
# define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
#else
# define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
#endif
/* *************************************
* Basic Types
***************************************/
#if !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# ifdef _AIX
# include <inttypes.h>
# else
# include <stdint.h>
# endif
typedef uint8_t xxh_u8;
#else
typedef unsigned char xxh_u8;
#endif
typedef XXH32_hash_t xxh_u32;
#ifdef XXH_OLD_NAMES
# warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
# define BYTE xxh_u8
# define U8 xxh_u8
# define U32 xxh_u32
#endif
/* *** Memory access *** */
/*!
* @internal
* @fn xxh_u32 XXH_read32(const void* ptr)
* @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
*
* @param ptr The pointer to read from.
* @return The 32-bit native endian integer from the bytes at @p ptr.
*/
/*!
* @internal
* @fn xxh_u32 XXH_readLE32(const void* ptr)
* @brief Reads an unaligned 32-bit little endian integer from @p ptr.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
*
* @param ptr The pointer to read from.
* @return The 32-bit little endian integer from the bytes at @p ptr.
*/
/*!
* @internal
* @fn xxh_u32 XXH_readBE32(const void* ptr)
* @brief Reads an unaligned 32-bit big endian integer from @p ptr.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
*
* @param ptr The pointer to read from.
* @return The 32-bit big endian integer from the bytes at @p ptr.
*/
/*!
* @internal
* @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
* @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
*
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
* Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
* always @ref XXH_alignment::XXH_unaligned.
*
* @param ptr The pointer to read from.
* @param align Whether @p ptr is aligned.
* @pre
* If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
* aligned.
* @return The 32-bit little endian integer from the bytes at @p ptr.
*/
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
* Manual byteshift. Best for old compilers which don't inline memcpy.
* We actually directly use XXH_readLE32 and XXH_readBE32.
*/
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/*
* Force direct memory access. Only works on CPU which support unaligned memory
* access in hardware.
*/
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/*
* __attribute__((aligned(1))) is supported by gcc and clang. Originally the
* documentation claimed that it only increased the alignment, but actually it
* can decrease it on gcc, clang, and icc:
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
* https://gcc.godbolt.org/z/xYez1j67Y.
*/
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; } __attribute__((__packed__)) unalign;
#endif
static xxh_u32 XXH_read32(const void* ptr)
{
typedef __attribute__((__aligned__(1))) __attribute__((__may_alias__)) xxh_u32 xxh_unalign32;
return *((const xxh_unalign32*)ptr);
}
#else
/*
* Portable and safe solution. Generally efficient.
* see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
*/
static xxh_u32 XXH_read32(const void* memPtr)
{
xxh_u32 val;
XXH_memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
/* *** Endianness *** */
/*!
* @ingroup tuning
* @def XXH_CPU_LITTLE_ENDIAN
* @brief Whether the target is little endian.
*
* Defined to 1 if the target is little endian, or 0 if it is big endian.
* It can be defined externally, for example on the compiler command line.
*
* If it is not defined,
* a runtime check (which is usually constant folded) is used instead.
*
* @note
* This is not necessarily defined to an integer constant.
*
* @see XXH_isLittleEndian() for the runtime check.
*/
#ifndef XXH_CPU_LITTLE_ENDIAN
/*
* Try to detect endianness automatically, to avoid the nonstandard behavior
* in `XXH_isLittleEndian()`
*/
# if defined(_WIN32) /* Windows is always little endian */ \
|| defined(__LITTLE_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
# define XXH_CPU_LITTLE_ENDIAN 1
# elif defined(__BIG_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
# define XXH_CPU_LITTLE_ENDIAN 0
# else
/*!
* @internal
* @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
*
* Most compilers will constant fold this.
*/
static int XXH_isLittleEndian(void)
{
/*
* Portable and well-defined behavior.
* Don't use static: it is detrimental to performance.
*/
const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
return one.c[0];
}
# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
# endif
#endif
/* ****************************************
* Compiler-specific Functions and Macros
******************************************/
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#ifdef __has_builtin
# define XXH_HAS_BUILTIN(x) __has_builtin(x)
#else
# define XXH_HAS_BUILTIN(x) 0
#endif
/*
* C23 and future versions have standard "unreachable()".
* Once it has been implemented reliably we can add it as an
* additional case:
*
* ```
* #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 202311L)
* # include <stddef.h>
* # ifdef unreachable
* # define XXH_UNREACHABLE() unreachable()
* # endif
* #endif
* ```
*
* Note C++23 also has std::unreachable() which can be detected
* as follows:
* ```
* #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
* # include <utility>
* # define XXH_UNREACHABLE() std::unreachable()
* #endif
* ```
* NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
* We don't use that as including `<utility>` in `extern "C"` blocks
* doesn't work on GCC12
*/
#if XXH_HAS_BUILTIN(__builtin_unreachable)
# define XXH_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
# define XXH_UNREACHABLE() __assume(0)
#else
# define XXH_UNREACHABLE()
#endif
#if XXH_HAS_BUILTIN(__builtin_assume)
# define XXH_ASSUME(c) __builtin_assume(c)
#else
# define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
#endif
/*!
* @internal
* @def XXH_rotl32(x,r)
* @brief 32-bit rotate left.
*
* @param x The 32-bit integer to be rotated.
* @param r The number of bits to rotate.
* @pre
* @p r > 0 && @p r < 32
* @note
* @p x and @p r may be evaluated multiple times.
* @return The rotated result.
*/
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
&& XXH_HAS_BUILTIN(__builtin_rotateleft64)
# define XXH_rotl32 __builtin_rotateleft32
# define XXH_rotl64 __builtin_rotateleft64
#elif XXH_HAS_BUILTIN(__builtin_stdc_rotate_left)
# define XXH_rotl32 __builtin_stdc_rotate_left
# define XXH_rotl64 __builtin_stdc_rotate_left
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
#elif defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
#endif
/*!
* @internal
* @fn xxh_u32 XXH_swap32(xxh_u32 x)
* @brief A 32-bit byteswap.
*
* @param x The 32-bit integer to byteswap.
* @return @p x, byteswapped.
*/
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap32 _byteswap_ulong
#elif XXH_GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
#else
static xxh_u32 XXH_swap32 (xxh_u32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
#endif
/* ***************************
* Memory reads
*****************************/
/*!
* @internal
* @brief Enum to indicate whether a pointer is aligned.
*/
typedef enum {
XXH_aligned, /*!< Aligned */
XXH_unaligned /*!< Possibly unaligned */
} XXH_alignment;
/*
* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
*
* This is ideal for older compilers which don't inline memcpy.
*/
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[0]
| ((xxh_u32)bytePtr[1] << 8)
| ((xxh_u32)bytePtr[2] << 16)
| ((xxh_u32)bytePtr[3] << 24);
}
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[3]
| ((xxh_u32)bytePtr[2] << 8)
| ((xxh_u32)bytePtr[1] << 16)
| ((xxh_u32)bytePtr[0] << 24);
}
#else
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
}
static xxh_u32 XXH_readBE32(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}
#endif
XXH_FORCE_INLINE xxh_u32
XXH_readLE32_align(const void* ptr, XXH_alignment align)
{
if (align==XXH_unaligned) {
return XXH_readLE32(ptr);
} else {
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
}
}
/* *************************************
* Misc
***************************************/
/*! @ingroup public */
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
/* *******************************************************************
* 32-bit hash functions
*********************************************************************/
/*!
* @}
* @defgroup XXH32_impl XXH32 implementation
* @ingroup impl
*
* Details on the XXH32 implementation.
* @{
*/
/* #define instead of static const, to be used as initializers */
#define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */
#define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */
#define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */
#define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */
#define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */
#ifdef XXH_OLD_NAMES
# define PRIME32_1 XXH_PRIME32_1
# define PRIME32_2 XXH_PRIME32_2
# define PRIME32_3 XXH_PRIME32_3
# define PRIME32_4 XXH_PRIME32_4
# define PRIME32_5 XXH_PRIME32_5
#endif
/*!
* @internal
* @brief Normal stripe processing routine.
*
* This shuffles the bits so that any bit from @p input impacts several bits in
* @p acc.
*
* @param acc The accumulator lane.
* @param input The stripe of input to mix.
* @return The mixed accumulator lane.
*/
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
{
acc += input * XXH_PRIME32_2;
acc = XXH_rotl32(acc, 13);
acc *= XXH_PRIME32_1;
#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
/*
* UGLY HACK:
* A compiler fence is used to prevent GCC and Clang from
* autovectorizing the XXH32 loop (pragmas and attributes don't work for some
* reason) without globally disabling SSE4.1.
*
* The reason we want to avoid vectorization is because despite working on
* 4 integers at a time, there are multiple factors slowing XXH32 down on
* SSE4:
* - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
* newer chips!) making it slightly slower to multiply four integers at
* once compared to four integers independently. Even when pmulld was
* fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
* just to multiply unless doing a long operation.
*
* - Four instructions are required to rotate,
* movqda tmp, v // not required with VEX encoding
* pslld tmp, 13 // tmp <<= 13
* psrld v, 19 // x >>= 19
* por v, tmp // x |= tmp
* compared to one for scalar:
* roll v, 13 // reliably fast across the board
* shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
*
* - Instruction level parallelism is actually more beneficial here because
* the SIMD actually serializes this operation: While v1 is rotating, v2
* can load data, while v3 can multiply. SSE forces them to operate
* together.
*
* This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
* the loop. NEON is only faster on the A53, and with the newer cores, it is less
* than half the speed.
*
* Additionally, this is used on WASM SIMD128 because it JITs to the same
* SIMD instructions and has the same issue.
*/
XXH_COMPILER_GUARD(acc);
#endif
return acc;
}
/*!
* @internal
* @brief Mixes all bits to finalize the hash.
*
* The final mix ensures that all input bits have a chance to impact any bit in
* the output digest, resulting in an unbiased distribution.
*
* @param hash The hash to avalanche.
* @return The avalanched hash.
*/
static xxh_u32 XXH32_avalanche(xxh_u32 hash)
{
hash ^= hash >> 15;
hash *= XXH_PRIME32_2;
hash ^= hash >> 13;
hash *= XXH_PRIME32_3;
hash ^= hash >> 16;
return hash;
}
#define XXH_get32bits(p) XXH_readLE32_align(p, align)
/*!
* @internal
* @brief Sets up the initial accumulator state for XXH32().
*/
XXH_FORCE_INLINE void
XXH32_initAccs(xxh_u32 *acc, xxh_u32 seed)
{
XXH_ASSERT(acc != NULL);
acc[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
acc[1] = seed + XXH_PRIME32_2;
acc[2] = seed + 0;
acc[3] = seed - XXH_PRIME32_1;
}
/*!
* @internal
* @brief Consumes a block of data for XXH32().
*
* @return the end input pointer.
*/
XXH_FORCE_INLINE const xxh_u8 *
XXH32_consumeLong(
xxh_u32 *XXH_RESTRICT acc,
xxh_u8 const *XXH_RESTRICT input,
size_t len,
XXH_alignment align
)
{
const xxh_u8* const bEnd = input + len;
const xxh_u8* const limit = bEnd - 15;
XXH_ASSERT(acc != NULL);
XXH_ASSERT(input != NULL);
XXH_ASSERT(len >= 16);
do {
acc[0] = XXH32_round(acc[0], XXH_get32bits(input)); input += 4;
acc[1] = XXH32_round(acc[1], XXH_get32bits(input)); input += 4;
acc[2] = XXH32_round(acc[2], XXH_get32bits(input)); input += 4;
acc[3] = XXH32_round(acc[3], XXH_get32bits(input)); input += 4;
} while (input < limit);
return input;
}
/*!
* @internal
* @brief Merges the accumulator lanes together for XXH32()
*/
XXH_FORCE_INLINE XXH_PUREF xxh_u32
XXH32_mergeAccs(const xxh_u32 *acc)
{
XXH_ASSERT(acc != NULL);
return XXH_rotl32(acc[0], 1) + XXH_rotl32(acc[1], 7)
+ XXH_rotl32(acc[2], 12) + XXH_rotl32(acc[3], 18);
}
/*!
* @internal
* @brief Processes the last 0-15 bytes of @p ptr.
*
* There may be up to 15 bytes remaining to consume from the input.
* This final stage will digest them to ensure that all input bytes are present
* in the final mix.
*
* @param hash The hash to finalize.
* @param ptr The pointer to the remaining input.
* @param len The remaining length, modulo 16.
* @param align Whether @p ptr is aligned.
* @return The finalized hash.
* @see XXH64_finalize().
*/
static XXH_PUREF xxh_u32
XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
#define XXH_PROCESS1 do { \
hash += (*ptr++) * XXH_PRIME32_5; \
hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1; \
} while (0)
#define XXH_PROCESS4 do { \
hash += XXH_get32bits(ptr) * XXH_PRIME32_3; \
ptr += 4; \
hash = XXH_rotl32(hash, 17) * XXH_PRIME32_4; \
} while (0)
if (ptr==NULL) XXH_ASSERT(len == 0);
/* Compact rerolled version; generally faster */
if (!XXH32_ENDJMP) {
len &= 15;
while (len >= 4) {
XXH_PROCESS4;
len -= 4;
}
while (len > 0) {
XXH_PROCESS1;
--len;
}
return XXH32_avalanche(hash);
} else {
switch(len&15) /* or switch(bEnd - p) */ {
case 12: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 8: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 4: XXH_PROCESS4;
return XXH32_avalanche(hash);
case 13: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 9: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 5: XXH_PROCESS4;
XXH_PROCESS1;
return XXH32_avalanche(hash);
case 14: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 10: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 6: XXH_PROCESS4;
XXH_PROCESS1;
XXH_PROCESS1;
return XXH32_avalanche(hash);
case 15: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 11: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 7: XXH_PROCESS4;
XXH_FALLTHROUGH; /* fallthrough */
case 3: XXH_PROCESS1;
XXH_FALLTHROUGH; /* fallthrough */
case 2: XXH_PROCESS1;
XXH_FALLTHROUGH; /* fallthrough */
case 1: XXH_PROCESS1;
XXH_FALLTHROUGH; /* fallthrough */
case 0: return XXH32_avalanche(hash);
}
XXH_ASSERT(0);
return hash; /* reaching this point is deemed impossible */
}
}
#ifdef XXH_OLD_NAMES
# define PROCESS1 XXH_PROCESS1
# define PROCESS4 XXH_PROCESS4
#else
# undef XXH_PROCESS1
# undef XXH_PROCESS4
#endif
/*!
* @internal
* @brief The implementation for @ref XXH32().
*
* @param input , len , seed Directly passed from @ref XXH32().
* @param align Whether @p input is aligned.
* @return The calculated hash.
*/
XXH_FORCE_INLINE XXH_PUREF xxh_u32
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
{
xxh_u32 h32;
if (input==NULL) XXH_ASSERT(len == 0);
if (len>=16) {
xxh_u32 acc[4];
XXH32_initAccs(acc, seed);
input = XXH32_consumeLong(acc, input, len, align);
h32 = XXH32_mergeAccs(acc);
} else {
h32 = seed + XXH_PRIME32_5;
}
h32 += (xxh_u32)len;
return XXH32_finalize(h32, input, len&15, align);
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
{
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH32_state_t state;
XXH32_reset(&state, seed);
XXH32_update(&state, (const xxh_u8*)input, len);
return XXH32_digest(&state);
#else
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
} }
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
#endif
}
/******* Hash streaming *******/
#ifndef XXH_NO_STREAM
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
{
XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
{
XXH_ASSERT(statePtr != NULL);
XXH_memset(statePtr, 0, sizeof(*statePtr));
XXH32_initAccs(statePtr->acc, seed);
return XXH_OK;
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
{
if (input==NULL) {
XXH_ASSERT(len == 0);
return XXH_OK;
}
state->total_len_32 += (XXH32_hash_t)len;
state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
XXH_ASSERT(state->bufferedSize < sizeof(state->buffer));
if (len < sizeof(state->buffer) - state->bufferedSize) { /* fill in tmp buffer */
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
state->bufferedSize += (XXH32_hash_t)len;
return XXH_OK;
}
{ const xxh_u8* xinput = (const xxh_u8*)input;
const xxh_u8* const bEnd = xinput + len;
if (state->bufferedSize) { /* non-empty buffer: complete first */
XXH_memcpy(state->buffer + state->bufferedSize, xinput, sizeof(state->buffer) - state->bufferedSize);
xinput += sizeof(state->buffer) - state->bufferedSize;
/* then process one round */
(void)XXH32_consumeLong(state->acc, state->buffer, sizeof(state->buffer), XXH_aligned);
state->bufferedSize = 0;
}
XXH_ASSERT(xinput <= bEnd);
if ((size_t)(bEnd - xinput) >= sizeof(state->buffer)) {
/* Process the remaining data */
xinput = XXH32_consumeLong(state->acc, xinput, (size_t)(bEnd - xinput), XXH_unaligned);
}
if (xinput < bEnd) {
/* Copy the leftover to the tmp buffer */
XXH_memcpy(state->buffer, xinput, (size_t)(bEnd-xinput));
state->bufferedSize = (unsigned)(bEnd-xinput);
}
}
return XXH_OK;
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
{
xxh_u32 h32;
if (state->large_len) {
h32 = XXH32_mergeAccs(state->acc);
} else {
h32 = state->acc[2] /* == seed */ + XXH_PRIME32_5;
}
h32 += state->total_len_32;
return XXH32_finalize(h32, state->buffer, state->bufferedSize, XXH_aligned);
}
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*! @ingroup XXH32_family */
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
XXH_memcpy(dst, &hash, sizeof(*dst));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
return XXH_readBE32(src);
}
#ifndef XXH_NO_LONG_LONG
/* *******************************************************************
* 64-bit hash functions
*********************************************************************/
/*!
* @}
* @ingroup impl
* @{
*/
/******* Memory access *******/
typedef XXH64_hash_t xxh_u64;
#ifdef XXH_OLD_NAMES
# define U64 xxh_u64
#endif
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
* Manual byteshift. Best for old compilers which don't inline memcpy.
* We actually directly use XXH_readLE64 and XXH_readBE64.
*/
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static xxh_u64 XXH_read64(const void* memPtr)
{
return *(const xxh_u64*) memPtr;
}
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
/*
* __attribute__((aligned(1))) is supported by gcc and clang. Originally the
* documentation claimed that it only increased the alignment, but actually it
* can decrease it on gcc, clang, and icc:
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
* https://gcc.godbolt.org/z/xYez1j67Y.
*/
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((__packed__)) unalign64;
#endif
static xxh_u64 XXH_read64(const void* ptr)
{
typedef __attribute__((__aligned__(1))) __attribute__((__may_alias__)) xxh_u64 xxh_unalign64;
return *((const xxh_unalign64*)ptr);
}
#else
/*
* Portable and safe solution. Generally efficient.
* see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
*/
static xxh_u64 XXH_read64(const void* memPtr)
{
xxh_u64 val;
XXH_memcpy(&val, memPtr, sizeof(val));
return val;
}
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
#if defined(_MSC_VER) /* Visual Studio */
# define XXH_swap64 _byteswap_uint64
#elif XXH_GCC_VERSION >= 403
# define XXH_swap64 __builtin_bswap64
#else
static xxh_u64 XXH_swap64(xxh_u64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[0]
| ((xxh_u64)bytePtr[1] << 8)
| ((xxh_u64)bytePtr[2] << 16)
| ((xxh_u64)bytePtr[3] << 24)
| ((xxh_u64)bytePtr[4] << 32)
| ((xxh_u64)bytePtr[5] << 40)
| ((xxh_u64)bytePtr[6] << 48)
| ((xxh_u64)bytePtr[7] << 56);
}
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
{
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
return bytePtr[7]
| ((xxh_u64)bytePtr[6] << 8)
| ((xxh_u64)bytePtr[5] << 16)
| ((xxh_u64)bytePtr[4] << 24)
| ((xxh_u64)bytePtr[3] << 32)
| ((xxh_u64)bytePtr[2] << 40)
| ((xxh_u64)bytePtr[1] << 48)
| ((xxh_u64)bytePtr[0] << 56);
}
#else
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
}
static xxh_u64 XXH_readBE64(const void* ptr)
{
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}
#endif
XXH_FORCE_INLINE xxh_u64
XXH_readLE64_align(const void* ptr, XXH_alignment align)
{
if (align==XXH_unaligned)
return XXH_readLE64(ptr);
else
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
}
/******* xxh64 *******/
/*!
* @}
* @defgroup XXH64_impl XXH64 implementation
* @ingroup impl
*
* Details on the XXH64 implementation.
* @{
*/
/* #define rather that static const, to be used as initializers */
#define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
#define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
#define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
#define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
#define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
#ifdef XXH_OLD_NAMES
# define PRIME64_1 XXH_PRIME64_1
# define PRIME64_2 XXH_PRIME64_2
# define PRIME64_3 XXH_PRIME64_3
# define PRIME64_4 XXH_PRIME64_4
# define PRIME64_5 XXH_PRIME64_5
#endif
/*! @copydoc XXH32_round */
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
{
acc += input * XXH_PRIME64_2;
acc = XXH_rotl64(acc, 31);
acc *= XXH_PRIME64_1;
#if (defined(__AVX512F__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
/*
* DISABLE AUTOVECTORIZATION:
* A compiler fence is used to prevent GCC and Clang from
* autovectorizing the XXH64 loop (pragmas and attributes don't work for some
* reason) without globally disabling AVX512.
*
* Autovectorization of XXH64 tends to be detrimental,
* though the exact outcome may change depending on exact cpu and compiler version.
* For information, it has been reported as detrimental for Skylake-X,
* but possibly beneficial for Zen4.
*
* The default is to disable auto-vectorization,
* but you can select to enable it instead using `XXH_ENABLE_AUTOVECTORIZE` build variable.
*/
XXH_COMPILER_GUARD(acc);
#endif
return acc;
}
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
{
val = XXH64_round(0, val);
acc ^= val;
acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
return acc;
}
/*! @copydoc XXH32_avalanche */
static xxh_u64 XXH64_avalanche(xxh_u64 hash)
{
hash ^= hash >> 33;
hash *= XXH_PRIME64_2;
hash ^= hash >> 29;
hash *= XXH_PRIME64_3;
hash ^= hash >> 32;
return hash;
}
#define XXH_get64bits(p) XXH_readLE64_align(p, align)
/*!
* @internal
* @brief Sets up the initial accumulator state for XXH64().
*/
XXH_FORCE_INLINE void
XXH64_initAccs(xxh_u64 *acc, xxh_u64 seed)
{
XXH_ASSERT(acc != NULL);
acc[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
acc[1] = seed + XXH_PRIME64_2;
acc[2] = seed + 0;
acc[3] = seed - XXH_PRIME64_1;
}
/*!
* @internal
* @brief Consumes a block of data for XXH64().
*
* @return the end input pointer.
*/
XXH_FORCE_INLINE const xxh_u8 *
XXH64_consumeLong(
xxh_u64 *XXH_RESTRICT acc,
xxh_u8 const *XXH_RESTRICT input,
size_t len,
XXH_alignment align
)
{
const xxh_u8* const bEnd = input + len;
const xxh_u8* const limit = bEnd - 31;
XXH_ASSERT(acc != NULL);
XXH_ASSERT(input != NULL);
XXH_ASSERT(len >= 32);
do {
/* reroll on 32-bit */
if (sizeof(void *) < sizeof(xxh_u64)) {
size_t i;
for (i = 0; i < 4; i++) {
acc[i] = XXH64_round(acc[i], XXH_get64bits(input));
input += 8;
}
} else {
acc[0] = XXH64_round(acc[0], XXH_get64bits(input)); input += 8;
acc[1] = XXH64_round(acc[1], XXH_get64bits(input)); input += 8;
acc[2] = XXH64_round(acc[2], XXH_get64bits(input)); input += 8;
acc[3] = XXH64_round(acc[3], XXH_get64bits(input)); input += 8;
}
} while (input < limit);
return input;
}
/*!
* @internal
* @brief Merges the accumulator lanes together for XXH64()
*/
XXH_FORCE_INLINE XXH_PUREF xxh_u64
XXH64_mergeAccs(const xxh_u64 *acc)
{
XXH_ASSERT(acc != NULL);
{
xxh_u64 h64 = XXH_rotl64(acc[0], 1) + XXH_rotl64(acc[1], 7)
+ XXH_rotl64(acc[2], 12) + XXH_rotl64(acc[3], 18);
/* reroll on 32-bit */
if (sizeof(void *) < sizeof(xxh_u64)) {
size_t i;
for (i = 0; i < 4; i++) {
h64 = XXH64_mergeRound(h64, acc[i]);
}
} else {
h64 = XXH64_mergeRound(h64, acc[0]);
h64 = XXH64_mergeRound(h64, acc[1]);
h64 = XXH64_mergeRound(h64, acc[2]);
h64 = XXH64_mergeRound(h64, acc[3]);
}
return h64;
}
}
/*!
* @internal
* @brief Processes the last 0-31 bytes of @p ptr.
*
* There may be up to 31 bytes remaining to consume from the input.
* This final stage will digest them to ensure that all input bytes are present
* in the final mix.
*
* @param hash The hash to finalize.
* @param ptr The pointer to the remaining input.
* @param len The remaining length, modulo 32.
* @param align Whether @p ptr is aligned.
* @return The finalized hash
* @see XXH32_finalize().
*/
XXH_STATIC XXH_PUREF xxh_u64
XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
if (ptr==NULL) XXH_ASSERT(len == 0);
len &= 31;
while (len >= 8) {
xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
ptr += 8;
hash ^= k1;
hash = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
len -= 8;
}
if (len >= 4) {
hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
ptr += 4;
hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
len -= 4;
}
while (len > 0) {
hash ^= (*ptr++) * XXH_PRIME64_5;
hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
--len;
}
return XXH64_avalanche(hash);
}
#ifdef XXH_OLD_NAMES
# define PROCESS1_64 XXH_PROCESS1_64
# define PROCESS4_64 XXH_PROCESS4_64
# define PROCESS8_64 XXH_PROCESS8_64
#else
# undef XXH_PROCESS1_64
# undef XXH_PROCESS4_64
# undef XXH_PROCESS8_64
#endif
/*!
* @internal
* @brief The implementation for @ref XXH64().
*
* @param input , len , seed Directly passed from @ref XXH64().
* @param align Whether @p input is aligned.
* @return The calculated hash.
*/
XXH_FORCE_INLINE XXH_PUREF xxh_u64
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
{
xxh_u64 h64;
if (input==NULL) XXH_ASSERT(len == 0);
if (len>=32) { /* Process a large block of data */
xxh_u64 acc[4];
XXH64_initAccs(acc, seed);
input = XXH64_consumeLong(acc, input, len, align);
h64 = XXH64_mergeAccs(acc);
} else {
h64 = seed + XXH_PRIME64_5;
}
h64 += (xxh_u64) len;
return XXH64_finalize(h64, input, len, align);
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
XXH64_state_t state;
XXH64_reset(&state, seed);
XXH64_update(&state, (const xxh_u8*)input, len);
return XXH64_digest(&state);
#else
if (XXH_FORCE_ALIGN_CHECK) {
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
} }
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
#endif
}
/******* Hash Streaming *******/
#ifndef XXH_NO_STREAM
/*! @ingroup XXH64_family*/
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
{
XXH_memcpy(dstState, srcState, sizeof(*dstState));
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
{
XXH_ASSERT(statePtr != NULL);
XXH_memset(statePtr, 0, sizeof(*statePtr));
XXH64_initAccs(statePtr->acc, seed);
return XXH_OK;
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode
XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
if (input==NULL) {
XXH_ASSERT(len == 0);
return XXH_OK;
}
state->total_len += len;
XXH_ASSERT(state->bufferedSize <= sizeof(state->buffer));
if (len < sizeof(state->buffer) - state->bufferedSize) { /* fill in tmp buffer */
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
state->bufferedSize += (XXH32_hash_t)len;
return XXH_OK;
}
{ const xxh_u8* xinput = (const xxh_u8*)input;
const xxh_u8* const bEnd = xinput + len;
if (state->bufferedSize) { /* non-empty buffer => complete first */
XXH_memcpy(state->buffer + state->bufferedSize, xinput, sizeof(state->buffer) - state->bufferedSize);
xinput += sizeof(state->buffer) - state->bufferedSize;
/* and process one round */
(void)XXH64_consumeLong(state->acc, state->buffer, sizeof(state->buffer), XXH_aligned);
state->bufferedSize = 0;
}
XXH_ASSERT(xinput <= bEnd);
if ((size_t)(bEnd - xinput) >= sizeof(state->buffer)) {
/* Process the remaining data */
xinput = XXH64_consumeLong(state->acc, xinput, (size_t)(bEnd - xinput), XXH_unaligned);
}
if (xinput < bEnd) {
/* Copy the leftover to the tmp buffer */
XXH_memcpy(state->buffer, xinput, (size_t)(bEnd-xinput));
state->bufferedSize = (unsigned)(bEnd-xinput);
}
}
return XXH_OK;
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
{
xxh_u64 h64;
if (state->total_len >= 32) {
h64 = XXH64_mergeAccs(state->acc);
} else {
h64 = state->acc[2] /*seed*/ + XXH_PRIME64_5;
}
h64 += (xxh_u64) state->total_len;
return XXH64_finalize(h64, state->buffer, (size_t)state->total_len, XXH_aligned);
}
#endif /* !XXH_NO_STREAM */
/******* Canonical representation *******/
/*! @ingroup XXH64_family */
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
XXH_memcpy(dst, &hash, sizeof(*dst));
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
{
return XXH_readBE64(src);
}
#ifndef XXH_NO_XXH3
/* *********************************************************************
* XXH3
* New generation hash designed for speed on small keys and vectorization
************************************************************************ */
/*!
* @}
* @defgroup XXH3_impl XXH3 implementation
* @ingroup impl
* @{
*/
/* === Compiler specifics === */
#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
|| (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
|| defined(__clang__)
# define XXH_likely(x) __builtin_expect(x, 1)
# define XXH_unlikely(x) __builtin_expect(x, 0)
#else
# define XXH_likely(x) (x)
# define XXH_unlikely(x) (x)
#endif
#ifndef XXH_HAS_INCLUDE
# ifdef __has_include
/*
* Not defined as XXH_HAS_INCLUDE(x) (function-like) because
* this causes segfaults in Apple Clang 4.2 (on Mac OS X 10.7 Lion)
*/
# define XXH_HAS_INCLUDE __has_include
# else
# define XXH_HAS_INCLUDE(x) 0
# endif
#endif
#if defined(__GNUC__) || defined(__clang__)
# if defined(__ARM_FEATURE_SVE)
# include <arm_sve.h>
# endif
# if defined(__ARM_NEON__) || defined(__ARM_NEON) \
|| (defined(_M_ARM) && _M_ARM >= 7) \
|| defined(_M_ARM64) || defined(_M_ARM64EC) \
|| (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
# define inline __inline__ /* circumvent a clang bug */
# include <arm_neon.h>
# undef inline
# elif defined(__AVX2__)
# include <immintrin.h>
# elif defined(__SSE2__)
# include <emmintrin.h>
# elif defined(__loongarch_asx)
# include <lasxintrin.h>
# include <lsxintrin.h>
# elif defined(__loongarch_sx)
# include <lsxintrin.h>
# elif defined(__riscv_vector)
# include <riscv_vector.h>
# endif
#endif
#if defined(_MSC_VER)
# include <intrin.h>
#endif
/*
* One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
* remaining a true 64-bit/128-bit hash function.
*
* This is done by prioritizing a subset of 64-bit operations that can be
* emulated without too many steps on the average 32-bit machine.
*
* For example, these two lines seem similar, and run equally fast on 64-bit:
*
* xxh_u64 x;
* x ^= (x >> 47); // good
* x ^= (x >> 13); // bad
*
* However, to a 32-bit machine, there is a major difference.
*
* x ^= (x >> 47) looks like this:
*
* x.lo ^= (x.hi >> (47 - 32));
*
* while x ^= (x >> 13) looks like this:
*
* // note: funnel shifts are not usually cheap.
* x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
* x.hi ^= (x.hi >> 13);
*
* The first one is significantly faster than the second, simply because the
* shift is larger than 32. This means:
* - All the bits we need are in the upper 32 bits, so we can ignore the lower
* 32 bits in the shift.
* - The shift result will always fit in the lower 32 bits, and therefore,
* we can ignore the upper 32 bits in the xor.
*
* Thanks to this optimization, XXH3 only requires these features to be efficient:
*
* - Usable unaligned access
* - A 32-bit or 64-bit ALU
* - If 32-bit, a decent ADC instruction
* - A 32 or 64-bit multiply with a 64-bit result
* - For the 128-bit variant, a decent byteswap helps short inputs.
*
* The first two are already required by XXH32, and almost all 32-bit and 64-bit
* platforms which can run XXH32 can run XXH3 efficiently.
*
* Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
* notable exception.
*
* First of all, Thumb-1 lacks support for the UMULL instruction which
* performs the important long multiply. This means numerous __aeabi_lmul
* calls.
*
* Second of all, the 8 functional registers are just not enough.
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
* Lo registers, and this shuffling results in thousands more MOVs than A32.
*
* A32 and T32 don't have this limitation. They can access all 14 registers,
* do a 32->64 multiply with UMULL, and the flexible operand allowing free
* shifts is helpful, too.
*
* Therefore, we do a quick sanity check.
*
* If compiling Thumb-1 for a target which supports ARM instructions, we will
* emit a warning, as it is not a "sane" platform to compile for.
*
* Usually, if this happens, it is because of an accident and you probably need
* to specify -march, as you likely meant to compile for a newer architecture.
*
* Credit: large sections of the vectorial and asm source code paths
* have been contributed by @easyaspi314
*/
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
# warning "XXH3 is highly inefficient without ARM or Thumb-2."
#endif
/* ==========================================
* Vectorization detection
* ========================================== */
#ifdef XXH_DOXYGEN
/*!
* @ingroup tuning
* @brief Overrides the vectorization implementation chosen for XXH3.
*
* Can be defined to 0 to disable SIMD,
* or any other authorized value of @ref XXH_VECTOR.
*
* If this is not defined, it uses predefined macros to determine the best
* implementation.
*/
# define XXH_VECTOR XXH_SCALAR
/*!
* @ingroup tuning
* @brief Selects the minimum alignment for XXH3's accumulators.
*
* When using SIMD, this should match the alignment required for said vector
* type, so, for example, 32 for AVX2.
*
* Default: Auto detected.
*/
# define XXH_ACC_ALIGN 8
#endif
/* Actual definition */
#ifndef XXH_DOXYGEN
#endif
#ifndef XXH_VECTOR /* can be defined on command line */
# if ( \
defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
|| defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
|| (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
) && ( \
defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
)
# define XXH_VECTOR XXH_NEON
# elif defined(__ARM_FEATURE_SVE)
# define XXH_VECTOR XXH_SVE
# elif defined(__AVX512F__)
# define XXH_VECTOR XXH_AVX512
# elif defined(__AVX2__)
# define XXH_VECTOR XXH_AVX2
# elif defined(__SSE2__) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
# define XXH_VECTOR XXH_SSE2
# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
|| (defined(__s390x__) && defined(__VEC__)) \
&& defined(__GNUC__) /* TODO: IBM XL */
# define XXH_VECTOR XXH_VSX
# elif defined(__loongarch_asx)
# define XXH_VECTOR XXH_LASX
# elif defined(__loongarch_sx)
# define XXH_VECTOR XXH_LSX
# elif defined(__riscv_vector)
# define XXH_VECTOR XXH_RVV
# else
# define XXH_VECTOR XXH_SCALAR
# endif
#endif
/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
# ifdef _MSC_VER
# pragma warning(once : 4606)
# else
# warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
# endif
# undef XXH_VECTOR
# define XXH_VECTOR XXH_SCALAR
#endif
/*
* Controls the alignment of the accumulator,
* for compatibility with aligned vector loads, which are usually faster.
*/
#ifndef XXH_ACC_ALIGN
# if defined(XXH_X86DISPATCH)
# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
# elif XXH_VECTOR == XXH_SCALAR /* scalar */
# define XXH_ACC_ALIGN 8
# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
# define XXH_ACC_ALIGN 32
# elif XXH_VECTOR == XXH_NEON /* neon */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == XXH_VSX /* vsx */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
# define XXH_ACC_ALIGN 64
# elif XXH_VECTOR == XXH_SVE /* sve */
# define XXH_ACC_ALIGN 64
# elif XXH_VECTOR == XXH_LASX /* lasx */
# define XXH_ACC_ALIGN 64
# elif XXH_VECTOR == XXH_LSX /* lsx */
# define XXH_ACC_ALIGN 64
# elif XXH_VECTOR == XXH_RVV /* rvv */
# define XXH_ACC_ALIGN 64 /* could be 8, but 64 may be faster */
# endif
#endif
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
|| XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
# define XXH_SEC_ALIGN XXH_ACC_ALIGN
#elif XXH_VECTOR == XXH_SVE
# define XXH_SEC_ALIGN XXH_ACC_ALIGN
#elif XXH_VECTOR == XXH_RVV
# define XXH_SEC_ALIGN XXH_ACC_ALIGN
#else
# define XXH_SEC_ALIGN 8
#endif
#if defined(__GNUC__) || defined(__clang__)
# define XXH_ALIASING __attribute__((__may_alias__))
#else
# define XXH_ALIASING /* nothing */
#endif
/*
* UGLY HACK:
* GCC usually generates the best code with -O3 for xxHash.
*
* However, when targeting AVX2, it is overzealous in its unrolling resulting
* in code roughly 3/4 the speed of Clang.
*
* There are other issues, such as GCC splitting _mm256_loadu_si256 into
* _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
* only applies to Sandy and Ivy Bridge... which don't even support AVX2.
*
* That is why when compiling the AVX2 version, it is recommended to use either
* -O2 -mavx2 -march=haswell
* or
* -O2 -mavx2 -mno-avx256-split-unaligned-load
* for decent performance, or to use Clang instead.
*
* Fortunately, we can control the first one with a pragma that forces GCC into
* -O2, but the other one we can't control without "failed to inline always
* inline function due to target mismatch" warnings.
*/
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
# pragma GCC push_options
# pragma GCC optimize("-O2")
#endif
#if XXH_VECTOR == XXH_NEON
/*
* UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
* optimizes out the entire hashLong loop because of the aliasing violation.
*
* However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
* so the only option is to mark it as aliasing.
*/
typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
/*!
* @internal
* @brief `vld1q_u64` but faster and alignment-safe.
*
* On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
* *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
*
* GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
* prohibits load-store optimizations. Therefore, a direct dereference is used.
*
* Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
* unaligned load.
*/
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
{
return *(xxh_aliasing_uint64x2_t const *)ptr;
}
#else
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
{
return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
}
#endif
/*!
* @internal
* @brief `vmlal_u32` on low and high halves of a vector.
*
* This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
* inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
* with `vmlal_u32`.
*/
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
/* Inline assembly is the only way */
__asm__("umlal %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
return acc;
}
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
/* This intrinsic works as expected */
return vmlal_high_u32(acc, lhs, rhs);
}
#else
/* Portable intrinsic versions */
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
}
/*! @copydoc XXH_vmlal_low_u32
* Assume the compiler converts this to vmlal_high_u32 on aarch64 */
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
}
#endif
/*!
* @ingroup tuning
* @brief Controls the NEON to scalar ratio for XXH3
*
* This can be set to 2, 4, 6, or 8.
*
* ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
*
* For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
* can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
* bandwidth.
*
* This is even more noticeable on the more advanced cores like the Cortex-A76 which
* can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
*
* Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
* and 2 scalar lanes, which is chosen by default.
*
* This does not apply to Apple processors or 32-bit processors, which run better with
* full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
*
* This change benefits CPUs with large micro-op buffers without negatively affecting
* most other CPUs:
*
* | Chipset | Dispatch type | NEON only | 6:2 hybrid | Diff. |
* |:----------------------|:--------------------|----------:|-----------:|------:|
* | Snapdragon 730 (A76) | 2 NEON/8 micro-ops | 8.8 GB/s | 10.1 GB/s | ~16% |
* | Snapdragon 835 (A73) | 2 NEON/3 micro-ops | 5.1 GB/s | 5.3 GB/s | ~5% |
* | Marvell PXA1928 (A53) | In-order dual-issue | 1.9 GB/s | 1.9 GB/s | 0% |
* | Apple M1 | 4 NEON/8 micro-ops | 37.3 GB/s | 36.1 GB/s | ~-3% |
*
* It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
*
* When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
* it effectively becomes worse 4.
*
* @see XXH3_accumulate_512_neon()
*/
# ifndef XXH3_NEON_LANES
# if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
&& !defined(__APPLE__) && XXH_SIZE_OPT <= 0
# define XXH3_NEON_LANES 6
# else
# define XXH3_NEON_LANES XXH_ACC_NB
# endif
# endif
#endif /* XXH_VECTOR == XXH_NEON */
/*
* VSX and Z Vector helpers.
*
* This is very messy, and any pull requests to clean this up are welcome.
*
* There are a lot of problems with supporting VSX and s390x, due to
* inconsistent intrinsics, spotty coverage, and multiple endiannesses.
*/
#if XXH_VECTOR == XXH_VSX
/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
* and `pixel`. This is a problem for obvious reasons.
*
* These keywords are unnecessary; the spec literally says they are
* equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
* after including the header.
*
* We use pragma push_macro/pop_macro to keep the namespace clean. */
# pragma push_macro("bool")
# pragma push_macro("vector")
# pragma push_macro("pixel")
/* silence potential macro redefined warnings */
# undef bool
# undef vector
# undef pixel
# if defined(__s390x__)
# include <s390intrin.h>
# else
# include <altivec.h>
# endif
/* Restore the original macro values, if applicable. */
# pragma pop_macro("pixel")
# pragma pop_macro("vector")
# pragma pop_macro("bool")
typedef __vector unsigned long long xxh_u64x2;
typedef __vector unsigned char xxh_u8x16;
typedef __vector unsigned xxh_u32x4;
/*
* UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
*/
typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;
# ifndef XXH_VSX_BE
# if defined(__BIG_ENDIAN__) \
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
# define XXH_VSX_BE 1
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
# warning "-maltivec=be is not recommended. Please use native endianness."
# define XXH_VSX_BE 1
# else
# define XXH_VSX_BE 0
# endif
# endif /* !defined(XXH_VSX_BE) */
# if XXH_VSX_BE
# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
# define XXH_vec_revb vec_revb
# else
/*!
* A polyfill for POWER9's vec_revb().
*/
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
{
xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
return vec_perm(val, val, vByteSwap);
}
# endif
# endif /* XXH_VSX_BE */
/*!
* Performs an unaligned vector load and byte swaps it on big endian.
*/
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
{
xxh_u64x2 ret;
XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
# if XXH_VSX_BE
ret = XXH_vec_revb(ret);
# endif
return ret;
}
/*
* vec_mulo and vec_mule are very problematic intrinsics on PowerPC
*
* These intrinsics weren't added until GCC 8, despite existing for a while,
* and they are endian dependent. Also, their meaning swap depending on version.
* */
# if defined(__s390x__)
/* s390x is always big endian, no issue on this platform */
# define XXH_vec_mulo vec_mulo
# define XXH_vec_mule vec_mule
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
/* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
# define XXH_vec_mulo __builtin_altivec_vmulouw
# define XXH_vec_mule __builtin_altivec_vmuleuw
# else
/* gcc needs inline assembly */
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
{
xxh_u64x2 result;
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
{
xxh_u64x2 result;
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
# endif /* XXH_vec_mulo, XXH_vec_mule */
#endif /* XXH_VECTOR == XXH_VSX */
#if XXH_VECTOR == XXH_SVE
#define ACCRND(acc, offset) \
do { \
svuint64_t input_vec = svld1_u64(mask, xinput + offset); \
svuint64_t secret_vec = svld1_u64(mask, xsecret + offset); \
svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec); \
svuint64_t swapped = svtbl_u64(input_vec, kSwap); \
svuint64_t mixed_lo = svextw_u64_x(mask, mixed); \
svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32); \
svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
acc = svadd_u64_x(mask, acc, mul); \
} while (0)
#endif /* XXH_VECTOR == XXH_SVE */
/* prefetch
* can be disabled, by declaring XXH_NO_PREFETCH build macro */
#if defined(XXH_NO_PREFETCH)
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
#else
# if XXH_SIZE_OPT >= 1
# define XXH_PREFETCH(ptr) (void)(ptr)
# elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
# else
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
# endif
#endif /* XXH_NO_PREFETCH */
/* ==========================================
* XXH3 default settings
* ========================================== */
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
# error "default keyset is not large enough"
#endif
/*!
* @internal
* @def XXH3_kSecret
* @brief Pseudorandom secret taken directly from FARSH. */
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL; /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL; /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */
#ifdef XXH_OLD_NAMES
# define kSecret XXH3_kSecret
#endif
#ifdef XXH_DOXYGEN
/*!
* @brief Calculates a 32-bit to 64-bit long multiply.
*
* Implemented as a macro.
*
* Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
* need to (but it shouldn't need to anyways, it is about 7 instructions to do
* a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
* use that instead of the normal method.
*
* If you are compiling for platforms like Thumb-1 and don't have a better option,
* you may also want to write your own long multiply routine here.
*
* @param x, y Numbers to be multiplied
* @return 64-bit product of the low 32 bits of @p x and @p y.
*/
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64(xxh_u64 x, xxh_u64 y)
{
return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
}
#elif defined(_MSC_VER) && defined(_M_IX86)
# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
#else
/*
* Downcast + upcast is usually better than masking on older compilers like
* GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
*
* The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
* and perform a full 64x64 multiply -- entirely redundant on 32-bit.
*/
# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
#endif
/*!
* @brief Calculates a 64->128-bit long multiply.
*
* Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
* version.
*
* @param lhs , rhs The 64-bit integers to be multiplied
* @return The 128-bit result represented in an @ref XXH128_hash_t.
*/
static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
{
/*
* GCC/Clang __uint128_t method.
*
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
* This is usually the best way as it usually uses a native long 64-bit
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
*
* Usually.
*
* Despite being a 32-bit platform, Clang (and emscripten) define this type
* despite not having the arithmetic for it. This results in a laggy
* compiler builtin call which calculates a full 128-bit multiply.
* In that case it is best to use the portable one.
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
*/
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
&& defined(__SIZEOF_INT128__) \
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
XXH128_hash_t r128;
r128.low64 = (xxh_u64)(product);
r128.high64 = (xxh_u64)(product >> 64);
return r128;
/*
* MSVC for x64's _umul128 method.
*
* xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
*
* This compiles to single operand MUL on x64.
*/
#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
#ifndef _MSC_VER
# pragma intrinsic(_umul128)
#endif
xxh_u64 product_high;
xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
XXH128_hash_t r128;
r128.low64 = product_low;
r128.high64 = product_high;
return r128;
/*
* MSVC for ARM64's __umulh method.
*
* This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
*/
#elif defined(_M_ARM64) || defined(_M_ARM64EC)
#ifndef _MSC_VER
# pragma intrinsic(__umulh)
#endif
XXH128_hash_t r128;
r128.low64 = lhs * rhs;
r128.high64 = __umulh(lhs, rhs);
return r128;
#else
/*
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
*
* This is a fast and simple grade school multiply, which is shown below
* with base 10 arithmetic instead of base 0x100000000.
*
* 9 3 // D2 lhs = 93
* x 7 5 // D2 rhs = 75
* ----------
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
* ---------
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
* ---------
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
*
* The reasons for adding the products like this are:
* 1. It avoids manual carry tracking. Just like how
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
* This avoids a lot of complexity.
*
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
* instruction available in ARM's Digital Signal Processing extension
* in 32-bit ARMv6 and later, which is shown below:
*
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
* {
* xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
* *RdHi = (xxh_u32)(product >> 32);
* }
*
* This instruction was designed for efficient long multiplication, and
* allows this to be calculated in only 4 instructions at speeds
* comparable to some 64-bit ALUs.
*
* 3. It isn't terrible on other platforms. Usually this will be a couple
* of 32-bit ADD/ADCs.
*/
/* First calculate all of the cross products. */
xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
/* Now add the products together. These will never overflow. */
xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
XXH128_hash_t r128;
r128.low64 = lower;
r128.high64 = upper;
return r128;
#endif
}
/*!
* @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
*
* The reason for the separate function is to prevent passing too many structs
* around by value. This will hopefully inline the multiply, but we don't force it.
*
* @param lhs , rhs The 64-bit integers to multiply
* @return The low 64 bits of the product XOR'd by the high 64 bits.
* @see XXH_mult64to128()
*/
static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
{
XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
return product.low64 ^ product.high64;
}
/*! Seems to produce slightly better code on GCC for some reason. */
XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
{
XXH_ASSERT(0 <= shift && shift < 64);
return v64 ^ (v64 >> shift);
}
/*
* This is a fast avalanche stage,
* suitable when input bits are already partially mixed
*/
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
{
h64 = XXH_xorshift64(h64, 37);
h64 *= PRIME_MX1;
h64 = XXH_xorshift64(h64, 32);
return h64;
}
/*
* This is a stronger avalanche,
* inspired by Pelle Evensen's rrmxmx
* preferable when input has not been previously mixed
*/
static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
{
/* this mix is inspired by Pelle Evensen's rrmxmx */
h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
h64 *= PRIME_MX2;
h64 ^= (h64 >> 35) + len ;
h64 *= PRIME_MX2;
return XXH_xorshift64(h64, 28);
}
/* ==========================================
* Short keys
* ==========================================
* One of the shortcomings of XXH32 and XXH64 was that their performance was
* sub-optimal on short lengths. It used an iterative algorithm which strongly
* favored lengths that were a multiple of 4 or 8.
*
* Instead of iterating over individual inputs, we use a set of single shot
* functions which piece together a range of lengths and operate in constant time.
*
* Additionally, the number of multiplies has been significantly reduced. This
* reduces latency, especially when emulating 64-bit multiplies on 32-bit.
*
* Depending on the platform, this may or may not be faster than XXH32, but it
* is almost guaranteed to be faster than XXH64.
*/
/*
* At very short lengths, there isn't enough input to fully hide secrets, or use
* the entire secret.
*
* There is also only a limited amount of mixing we can do before significantly
* impacting performance.
*
* Therefore, we use different sections of the secret and always mix two secret
* samples with an XOR. This should have no effect on performance on the
* seedless or withSeed variants because everything _should_ be constant folded
* by modern compilers.
*
* The XOR mixing hides individual parts of the secret and increases entropy.
*
* This adds an extra layer of strength for custom secrets.
*/
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(1 <= len && len <= 3);
XXH_ASSERT(secret != NULL);
/*
* len = 1: combined = { input[0], 0x01, input[0], input[0] }
* len = 2: combined = { input[1], 0x02, input[0], input[1] }
* len = 3: combined = { input[2], 0x03, input[0], input[1] }
*/
{ xxh_u8 const c1 = input[0];
xxh_u8 const c2 = input[len >> 1];
xxh_u8 const c3 = input[len - 1];
xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
return XXH64_avalanche(keyed);
}
}
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(4 <= len && len <= 8);
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
{ xxh_u32 const input1 = XXH_readLE32(input);
xxh_u32 const input2 = XXH_readLE32(input + len - 4);
xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
xxh_u64 const keyed = input64 ^ bitflip;
return XXH3_rrmxmx(keyed, len);
}
}
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(9 <= len && len <= 16);
{ xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
xxh_u64 const acc = len
+ XXH_swap64(input_lo) + input_hi
+ XXH3_mul128_fold64(input_lo, input_hi);
return XXH3_avalanche(acc);
}
}
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
{ if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
}
}
/*
* DISCLAIMER: There are known *seed-dependent* multicollisions here due to
* multiplication by zero, affecting hashes of lengths 17 to 240.
*
* However, they are very unlikely.
*
* Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
* unseeded non-cryptographic hashes, it does not attempt to defend itself
* against specially crafted inputs, only random inputs.
*
* Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
* cancelling out the secret is taken an arbitrary number of times (addressed
* in XXH3_accumulate_512), this collision is very unlikely with random inputs
* and/or proper seeding:
*
* This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
* function that is only called up to 16 times per hash with up to 240 bytes of
* input.
*
* This is not too bad for a non-cryptographic hash function, especially with
* only 64 bit outputs.
*
* The 128-bit variant (which trades some speed for strength) is NOT affected
* by this, although it is always a good idea to use a proper seed if you care
* about strength.
*/
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
{
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
/*
* UGLY HACK:
* GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
* slower code.
*
* By forcing seed64 into a register, we disrupt the cost model and
* cause it to scalarize. See `XXH32_round()`
*
* FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
* XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
* GCC 9.2, despite both emitting scalar code.
*
* GCC generates much better scalar code than Clang for the rest of XXH3,
* which is why finding a more optimal codepath is an interest.
*/
XXH_COMPILER_GUARD(seed64);
#endif
{ xxh_u64 const input_lo = XXH_readLE64(input);
xxh_u64 const input_hi = XXH_readLE64(input+8);
return XXH3_mul128_fold64(
input_lo ^ (XXH_readLE64(secret) + seed64),
input_hi ^ (XXH_readLE64(secret+8) - seed64)
);
}
}
/* For mid range keys, XXH3 uses a Mum-hash variant. */
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(16 < len && len <= 128);
{ xxh_u64 acc = len * XXH_PRIME64_1;
#if XXH_SIZE_OPT >= 1
/* Smaller and cleaner, but slightly slower. */
unsigned int i = (unsigned int)(len - 1) / 32;
do {
acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
} while (i-- != 0);
#else
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc += XXH3_mix16B(input+48, secret+96, seed);
acc += XXH3_mix16B(input+len-64, secret+112, seed);
}
acc += XXH3_mix16B(input+32, secret+64, seed);
acc += XXH3_mix16B(input+len-48, secret+80, seed);
}
acc += XXH3_mix16B(input+16, secret+32, seed);
acc += XXH3_mix16B(input+len-32, secret+48, seed);
}
acc += XXH3_mix16B(input+0, secret+0, seed);
acc += XXH3_mix16B(input+len-16, secret+16, seed);
#endif
return XXH3_avalanche(acc);
}
}
XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
#define XXH3_MIDSIZE_STARTOFFSET 3
#define XXH3_MIDSIZE_LASTOFFSET 17
{ xxh_u64 acc = len * XXH_PRIME64_1;
xxh_u64 acc_end;
unsigned int const nbRounds = (unsigned int)len / 16;
unsigned int i;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
for (i=0; i<8; i++) {
acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
}
/* last bytes */
acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
XXH_ASSERT(nbRounds >= 8);
acc = XXH3_avalanche(acc);
#if defined(__clang__) /* Clang */ \
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
/*
* UGLY HACK:
* Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
* In everywhere else, it uses scalar code.
*
* For 64->128-bit multiplies, even if the NEON was 100% optimal, it
* would still be slower than UMAAL (see XXH_mult64to128).
*
* Unfortunately, Clang doesn't handle the long multiplies properly and
* converts them to the nonexistent "vmulq_u64" intrinsic, which is then
* scalarized into an ugly mess of VMOV.32 instructions.
*
* This mess is difficult to avoid without turning autovectorization
* off completely, but they are usually relatively minor and/or not
* worth it to fix.
*
* This loop is the easiest to fix, as unlike XXH32, this pragma
* _actually works_ because it is a loop vectorization instead of an
* SLP vectorization.
*/
#pragma clang loop vectorize(disable)
#endif
for (i=8 ; i < nbRounds; i++) {
/*
* Prevents clang for unrolling the acc loop and interleaving with this one.
*/
XXH_COMPILER_GUARD(acc);
acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
return XXH3_avalanche(acc + acc_end);
}
}
/* ======= Long Keys ======= */
#define XXH_STRIPE_LEN 64
#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
#ifdef XXH_OLD_NAMES
# define STRIPE_LEN XXH_STRIPE_LEN
# define ACC_NB XXH_ACC_NB
#endif
#ifndef XXH_PREFETCH_DIST
# ifdef __clang__
# define XXH_PREFETCH_DIST 320
# else
# if (XXH_VECTOR == XXH_AVX512)
# define XXH_PREFETCH_DIST 512
# else
# define XXH_PREFETCH_DIST 384
# endif
# endif /* __clang__ */
#endif /* XXH_PREFETCH_DIST */
/*
* These macros are to generate an XXH3_accumulate() function.
* The two arguments select the name suffix and target attribute.
*
* The name of this symbol is XXH3_accumulate_<name>() and it calls
* XXH3_accumulate_512_<name>().
*
* It may be useful to hand implement this function if the compiler fails to
* optimize the inline function.
*/
#define XXH3_ACCUMULATE_TEMPLATE(name) \
void \
XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc, \
const xxh_u8* XXH_RESTRICT input, \
const xxh_u8* XXH_RESTRICT secret, \
size_t nbStripes) \
{ \
size_t n; \
for (n = 0; n < nbStripes; n++ ) { \
const xxh_u8* const in = input + n*XXH_STRIPE_LEN; \
XXH_PREFETCH(in + XXH_PREFETCH_DIST); \
XXH3_accumulate_512_##name( \
acc, \
in, \
secret + n*XXH_SECRET_CONSUME_RATE); \
} \
}
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
{
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
XXH_memcpy(dst, &v64, sizeof(v64));
}
/* Several intrinsic functions below are supposed to accept __int64 as argument,
* as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
* However, several environments do not define __int64 type,
* requiring a workaround.
*/
#if !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
typedef int64_t xxh_i64;
#else
/* the following type must have a width of 64-bit */
typedef long long xxh_i64;
#endif
/*
* XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
*
* It is a hardened version of UMAC, based off of FARSH's implementation.
*
* This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
* implementations, and it is ridiculously fast.
*
* We harden it by mixing the original input to the accumulators as well as the product.
*
* This means that in the (relatively likely) case of a multiply by zero, the
* original input is preserved.
*
* On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
* cross-pollination, as otherwise the upper and lower halves would be
* essentially independent.
*
* This doesn't matter on 64-bit hashes since they all get merged together in
* the end, so we skip the extra step.
*
* Both XXH3_64bits and XXH3_128bits use this subroutine.
*/
#if (XXH_VECTOR == XXH_AVX512) \
|| (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
#ifndef XXH_TARGET_AVX512
# define XXH_TARGET_AVX512 /* disable attribute target */
#endif
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
__m512i* const xacc = (__m512i *) acc;
XXH_ASSERT((((size_t)acc) & 63) == 0);
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
{
/* data_vec = input[0]; */
__m512i const data_vec = _mm512_loadu_si512 (input);
/* key_vec = secret[0]; */
__m512i const key_vec = _mm512_loadu_si512 (secret);
/* data_key = data_vec ^ key_vec; */
__m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
/* xacc[0] += swap(data_vec); */
__m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
__m512i const sum = _mm512_add_epi64(*xacc, data_swap);
/* xacc[0] += product; */
*xacc = _mm512_add_epi64(product, sum);
}
}
XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)
/*
* XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
*
* Multiplication isn't perfect, as explained by Google in HighwayHash:
*
* // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
* // varying degrees. In descending order of goodness, bytes
* // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
* // As expected, the upper and lower bytes are much worse.
*
* Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
*
* Since our algorithm uses a pseudorandom secret to add some variance into the
* mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
*
* This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
* extraction.
*
* Both XXH3_64bits and XXH3_128bits use this subroutine.
*/
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 63) == 0);
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
{ __m512i* const xacc = (__m512i*) acc;
const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
/* xacc[0] ^= (xacc[0] >> 47) */
__m512i const acc_vec = *xacc;
__m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
/* xacc[0] ^= secret; */
__m512i const key_vec = _mm512_loadu_si512 (secret);
__m512i const data_key = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);
/* xacc[0] *= XXH_PRIME32_1; */
__m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
__m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
__m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
*xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
}
}
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
XXH_ASSERT(((size_t)customSecret & 63) == 0);
(void)(&XXH_writeLE64);
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
__m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
__m512i const seed = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);
const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
__m512i* const dest = ( __m512i*) customSecret;
int i;
XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
XXH_ASSERT(((size_t)dest & 63) == 0);
for (i=0; i < nbRounds; ++i) {
dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
} }
}
#endif
#if (XXH_VECTOR == XXH_AVX2) \
|| (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
#ifndef XXH_TARGET_AVX2
# define XXH_TARGET_AVX2 /* disable attribute target */
#endif
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 31) == 0);
{ __m256i* const xacc = (__m256i *) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xinput = (const __m256i *) input;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xsecret = (const __m256i *) secret;
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
/* data_vec = xinput[i]; */
__m256i const data_vec = _mm256_loadu_si256 (xinput+i);
/* key_vec = xsecret[i]; */
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
/* data_key = data_vec ^ key_vec; */
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
/* xacc[i] += swap(data_vec); */
__m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
__m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = _mm256_add_epi64(product, sum);
} }
}
XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 31) == 0);
{ __m256i* const xacc = (__m256i*) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
const __m256i* const xsecret = (const __m256i *) secret;
const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m256i const acc_vec = xacc[i];
__m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
__m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
/* xacc[i] ^= xsecret; */
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1; */
__m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
__m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
__m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
}
}
}
XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
(void)(&XXH_writeLE64);
XXH_PREFETCH(customSecret);
{ __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret);
__m256i* dest = ( __m256i*) customSecret;
# if defined(__GNUC__) || defined(__clang__)
/*
* On GCC & Clang, marking 'dest' as modified will cause the compiler:
* - do not extract the secret from sse registers in the internal loop
* - use less common registers, and avoid pushing these reg into stack
*/
XXH_COMPILER_GUARD(dest);
# endif
XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
XXH_ASSERT(((size_t)dest & 31) == 0);
/* GCC -O2 need unroll loop manually */
dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
}
}
#endif
/* x86dispatch always generates SSE2 */
#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
#ifndef XXH_TARGET_SSE2
# define XXH_TARGET_SSE2 /* disable attribute target */
#endif
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
/* SSE2 is just a half-scale version of the AVX2 version. */
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ __m128i* const xacc = (__m128i *) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xinput = (const __m128i *) input;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xsecret = (const __m128i *) secret;
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
/* data_vec = xinput[i]; */
__m128i const data_vec = _mm_loadu_si128 (xinput+i);
/* key_vec = xsecret[i]; */
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
/* data_key = data_vec ^ key_vec; */
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
/* xacc[i] += swap(data_vec); */
__m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
__m128i const sum = _mm_add_epi64(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = _mm_add_epi64(product, sum);
} }
}
XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ __m128i* const xacc = (__m128i*) acc;
/* Unaligned. This is mainly for pointer arithmetic, and because
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
const __m128i* const xsecret = (const __m128i *) secret;
const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
size_t i;
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m128i const acc_vec = xacc[i];
__m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
__m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1; */
__m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
__m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
__m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
}
}
}
XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
(void)(&XXH_writeLE64);
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1900
/* MSVC 32bit mode does not support _mm_set_epi64x before 2015
* and some specific variants of 2015 may also lack it */
/* Cast to unsigned 64-bit first to avoid signed arithmetic issues */
xxh_u64 const seed64_unsigned = (xxh_u64)seed64;
xxh_u64 const neg_seed64 = (xxh_u64)(0ULL - seed64_unsigned);
__m128i const seed = _mm_set_epi32(
(int)(neg_seed64 >> 32), /* high 32 bits of negated seed */
(int)(neg_seed64), /* low 32 bits of negated seed */
(int)(seed64_unsigned >> 32), /* high 32 bits of original seed */
(int)(seed64_unsigned) /* low 32 bits of original seed */
);
# else
__m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
# endif
int i;
const void* const src16 = XXH3_kSecret;
__m128i* dst16 = (__m128i*) customSecret;
# if defined(__GNUC__) || defined(__clang__)
/*
* On GCC & Clang, marking 'dest' as modified will cause the compiler:
* - do not extract the secret from sse registers in the internal loop
* - use less common registers, and avoid pushing these reg into stack
*/
XXH_COMPILER_GUARD(dst16);
# endif
XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
XXH_ASSERT(((size_t)dst16 & 15) == 0);
for (i=0; i < nbRounds; ++i) {
dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
} }
}
#endif
#if (XXH_VECTOR == XXH_NEON)
/* forward declarations for the scalar routines */
XXH_FORCE_INLINE void
XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
void const* XXH_RESTRICT secret, size_t lane);
XXH_FORCE_INLINE void
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
void const* XXH_RESTRICT secret, size_t lane);
/*!
* @internal
* @brief The bulk processing loop for NEON and WASM SIMD128.
*
* The NEON code path is actually partially scalar when running on AArch64. This
* is to optimize the pipelining and can have up to 15% speedup depending on the
* CPU, and it also mitigates some GCC codegen issues.
*
* @see XXH3_NEON_LANES for configuring this and details about this optimization.
*
* NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
* integers instead of the other platforms which mask full 64-bit vectors,
* so the setup is more complicated than just shifting right.
*
* Additionally, there is an optimization for 4 lanes at once noted below.
*
* Since, as stated, the most optimal amount of lanes for Cortexes is 6,
* there needs to be *three* versions of the accumulate operation used
* for the remaining 2 lanes.
*
* WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
* nearly perfectly.
*/
XXH_FORCE_INLINE void
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
{ /* GCC for darwin arm64 does not like aliasing here */
xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
uint8_t const* xinput = (const uint8_t *) input;
uint8_t const* xsecret = (const uint8_t *) secret;
size_t i;
#ifdef __wasm_simd128__
/*
* On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
* is constant propagated, which results in it converting it to this
* inside the loop:
*
* a = v128.load(XXH3_kSecret + 0 + $secret_offset, offset = 0)
* b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
* ...
*
* This requires a full 32-bit address immediate (and therefore a 6 byte
* instruction) as well as an add for each offset.
*
* Putting an asm guard prevents it from folding (at the cost of losing
* the alignment hint), and uses the free offset in `v128.load` instead
* of adding secret_offset each time which overall reduces code size by
* about a kilobyte and improves performance.
*/
XXH_COMPILER_GUARD(xsecret);
#endif
/* Scalar lanes use the normal scalarRound routine */
for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
XXH3_scalarRound(acc, input, secret, i);
}
i = 0;
/* 4 NEON lanes at a time. */
for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
/* data_vec = xinput[i]; */
uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput + (i * 16));
uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput + ((i+1) * 16));
/* key_vec = xsecret[i]; */
uint64x2_t key_vec_1 = XXH_vld1q_u64(xsecret + (i * 16));
uint64x2_t key_vec_2 = XXH_vld1q_u64(xsecret + ((i+1) * 16));
/* data_swap = swap(data_vec) */
uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
/* data_key = data_vec ^ key_vec; */
uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
/*
* If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
* de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
* get one vector with the low 32 bits of each lane, and one vector
* with the high 32 bits of each lane.
*
* The intrinsic returns a double vector because the original ARMv7-a
* instruction modified both arguments in place. AArch64 and SIMD128 emit
* two instructions from this intrinsic.
*
* [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
* [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
*/
uint32x4x2_t unzipped = vuzpq_u32(
vreinterpretq_u32_u64(data_key_1),
vreinterpretq_u32_u64(data_key_2)
);
/* data_key_lo = data_key & 0xFFFFFFFF */
uint32x4_t data_key_lo = unzipped.val[0];
/* data_key_hi = data_key >> 32 */
uint32x4_t data_key_hi = unzipped.val[1];
/*
* Then, we can split the vectors horizontally and multiply which, as for most
* widening intrinsics, have a variant that works on both high half vectors
* for free on AArch64. A similar instruction is available on SIMD128.
*
* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
*/
uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
/*
* Clang reorders
* a += b * c; // umlal swap.2d, dkl.2s, dkh.2s
* c += a; // add acc.2d, acc.2d, swap.2d
* to
* c += a; // add acc.2d, acc.2d, swap.2d
* c += b * c; // umlal acc.2d, dkl.2s, dkh.2s
*
* While it would make sense in theory since the addition is faster,
* for reasons likely related to umlal being limited to certain NEON
* pipelines, this is worse. A compiler guard fixes this.
*/
XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
/* xacc[i] = acc_vec + sum; */
xacc[i] = vaddq_u64(xacc[i], sum_1);
xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
}
/* Operate on the remaining NEON lanes 2 at a time. */
for (; i < XXH3_NEON_LANES / 2; i++) {
/* data_vec = xinput[i]; */
uint64x2_t data_vec = XXH_vld1q_u64(xinput + (i * 16));
/* key_vec = xsecret[i]; */
uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
/* acc_vec_2 = swap(data_vec) */
uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
/* data_key = data_vec ^ key_vec; */
uint64x2_t data_key = veorq_u64(data_vec, key_vec);
/* For two lanes, just use VMOVN and VSHRN. */
/* data_key_lo = data_key & 0xFFFFFFFF; */
uint32x2_t data_key_lo = vmovn_u64(data_key);
/* data_key_hi = data_key >> 32; */
uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
/* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
/* Same Clang workaround as before */
XXH_COMPILER_GUARD_CLANG_NEON(sum);
/* xacc[i] = acc_vec + sum; */
xacc[i] = vaddq_u64 (xacc[i], sum);
}
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ xxh_aliasing_uint64x2_t* xacc = (xxh_aliasing_uint64x2_t*) acc;
uint8_t const* xsecret = (uint8_t const*) secret;
size_t i;
/* WASM uses operator overloads and doesn't need these. */
#ifndef __wasm_simd128__
/* { prime32_1, prime32_1 } */
uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
/* { 0, prime32_1, 0, prime32_1 } */
uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
#endif
/* AArch64 uses both scalar and neon at the same time */
for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
XXH3_scalarScrambleRound(acc, secret, i);
}
for (i=0; i < XXH3_NEON_LANES / 2; i++) {
/* xacc[i] ^= (xacc[i] >> 47); */
uint64x2_t acc_vec = xacc[i];
uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
uint64x2_t key_vec = XXH_vld1q_u64(xsecret + (i * 16));
uint64x2_t data_key = veorq_u64(data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1 */
#ifdef __wasm_simd128__
/* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
xacc[i] = data_key * XXH_PRIME32_1;
#else
/*
* Expanded version with portable NEON intrinsics
*
* lo(x) * lo(y) + (hi(x) * lo(y) << 32)
*
* prod_hi = hi(data_key) * lo(prime) << 32
*
* Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
* as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
* and avoid the shift.
*/
uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
/* Extract low bits for vmlal_u32 */
uint32x2_t data_key_lo = vmovn_u64(data_key);
/* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
#endif
}
}
}
#endif
#if (XXH_VECTOR == XXH_VSX)
XXH_FORCE_INLINE void
XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
/* presumed aligned */
xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
xxh_u8 const* const xinput = (xxh_u8 const*) input; /* no alignment restriction */
xxh_u8 const* const xsecret = (xxh_u8 const*) secret; /* no alignment restriction */
xxh_u64x2 const v32 = { 32, 32 };
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
/* data_vec = xinput[i]; */
xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
/* key_vec = xsecret[i]; */
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* shuffled = (data_key << 32) | (data_key >> 32); */
xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
/* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
/* acc_vec = xacc[i]; */
xxh_u64x2 acc_vec = xacc[i];
acc_vec += product;
/* swap high and low halves */
#ifdef __s390x__
acc_vec += vec_permi(data_vec, data_vec, 2);
#else
acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
#endif
xacc[i] = acc_vec;
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{ xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
const xxh_u8* const xsecret = (const xxh_u8*) secret;
/* constants */
xxh_u64x2 const v32 = { 32, 32 };
xxh_u64x2 const v47 = { 47, 47 };
xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
/* xacc[i] ^= (xacc[i] >> 47); */
xxh_u64x2 const acc_vec = xacc[i];
xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
/* xacc[i] ^= xsecret[i]; */
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + 16*i);
xxh_u64x2 const data_key = data_vec ^ key_vec;
/* xacc[i] *= XXH_PRIME32_1 */
/* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
/* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
xacc[i] = prod_odd + (prod_even << v32);
} }
}
#endif
#if (XXH_VECTOR == XXH_SVE)
XXH_FORCE_INLINE void
XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
uint64_t *xacc = (uint64_t *)acc;
const uint64_t *xinput = (const uint64_t *)(const void *)input;
const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
uint64_t element_count = svcntd();
if (element_count >= 8) {
svbool_t mask = svptrue_pat_b64(SV_VL8);
svuint64_t vacc = svld1_u64(mask, xacc);
ACCRND(vacc, 0);
svst1_u64(mask, xacc, vacc);
} else if (element_count == 2) { /* sve128 */
svbool_t mask = svptrue_pat_b64(SV_VL2);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 2);
svuint64_t acc2 = svld1_u64(mask, xacc + 4);
svuint64_t acc3 = svld1_u64(mask, xacc + 6);
ACCRND(acc0, 0);
ACCRND(acc1, 2);
ACCRND(acc2, 4);
ACCRND(acc3, 6);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 2, acc1);
svst1_u64(mask, xacc + 4, acc2);
svst1_u64(mask, xacc + 6, acc3);
} else {
svbool_t mask = svptrue_pat_b64(SV_VL4);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 4);
ACCRND(acc0, 0);
ACCRND(acc1, 4);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 4, acc1);
}
}
XXH_FORCE_INLINE void
XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
const xxh_u8* XXH_RESTRICT input,
const xxh_u8* XXH_RESTRICT secret,
size_t nbStripes)
{
if (nbStripes != 0) {
uint64_t *xacc = (uint64_t *)acc;
const uint64_t *xinput = (const uint64_t *)(const void *)input;
const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
uint64_t element_count = svcntd();
if (element_count >= 8) {
svbool_t mask = svptrue_pat_b64(SV_VL8);
svuint64_t vacc = svld1_u64(mask, xacc + 0);
do {
/* svprfd(svbool_t, void *, enum svfprop); */
svprfd(mask, xinput + 128, SV_PLDL1STRM);
ACCRND(vacc, 0);
xinput += 8;
xsecret += 1;
nbStripes--;
} while (nbStripes != 0);
svst1_u64(mask, xacc + 0, vacc);
} else if (element_count == 2) { /* sve128 */
svbool_t mask = svptrue_pat_b64(SV_VL2);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 2);
svuint64_t acc2 = svld1_u64(mask, xacc + 4);
svuint64_t acc3 = svld1_u64(mask, xacc + 6);
do {
svprfd(mask, xinput + 128, SV_PLDL1STRM);
ACCRND(acc0, 0);
ACCRND(acc1, 2);
ACCRND(acc2, 4);
ACCRND(acc3, 6);
xinput += 8;
xsecret += 1;
nbStripes--;
} while (nbStripes != 0);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 2, acc1);
svst1_u64(mask, xacc + 4, acc2);
svst1_u64(mask, xacc + 6, acc3);
} else {
svbool_t mask = svptrue_pat_b64(SV_VL4);
svuint64_t acc0 = svld1_u64(mask, xacc + 0);
svuint64_t acc1 = svld1_u64(mask, xacc + 4);
do {
svprfd(mask, xinput + 128, SV_PLDL1STRM);
ACCRND(acc0, 0);
ACCRND(acc1, 4);
xinput += 8;
xsecret += 1;
nbStripes--;
} while (nbStripes != 0);
svst1_u64(mask, xacc + 0, acc0);
svst1_u64(mask, xacc + 4, acc1);
}
}
}
#endif
#if (XXH_VECTOR == XXH_LSX)
#define _LSX_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
XXH_FORCE_INLINE void
XXH3_accumulate_512_lsx( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{
__m128i* const xacc = (__m128i *) acc;
const __m128i* const xinput = (const __m128i *) input;
const __m128i* const xsecret = (const __m128i *) secret;
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
/* data_vec = xinput[i]; */
__m128i const data_vec = __lsx_vld(xinput + i, 0);
/* key_vec = xsecret[i]; */
__m128i const key_vec = __lsx_vld(xsecret + i, 0);
/* data_key = data_vec ^ key_vec; */
__m128i const data_key = __lsx_vxor_v(data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m128i const data_key_lo = __lsx_vsrli_d(data_key, 32);
// __m128i const data_key_lo = __lsx_vsrli_d(data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m128i const product = __lsx_vmulwev_d_wu(data_key, data_key_lo);
/* xacc[i] += swap(data_vec); */
__m128i const data_swap = __lsx_vshuf4i_w(data_vec, _LSX_SHUFFLE(1, 0, 3, 2));
__m128i const sum = __lsx_vadd_d(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = __lsx_vadd_d(product, sum);
}
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(lsx)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_lsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{
__m128i* const xacc = (__m128i*) acc;
const __m128i* const xsecret = (const __m128i *) secret;
const __m128i prime32 = __lsx_vreplgr2vr_d(XXH_PRIME32_1);
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m128i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m128i const acc_vec = xacc[i];
__m128i const shifted = __lsx_vsrli_d(acc_vec, 47);
__m128i const data_vec = __lsx_vxor_v(acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
__m128i const key_vec = __lsx_vld(xsecret + i, 0);
__m128i const data_key = __lsx_vxor_v(data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1; */
xacc[i] = __lsx_vmul_d(data_key, prime32);
}
}
}
#endif
#if (XXH_VECTOR == XXH_LASX)
#define _LASX_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
XXH_FORCE_INLINE void
XXH3_accumulate_512_lasx( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 31) == 0);
{
size_t i;
__m256i* const xacc = (__m256i *) acc;
const __m256i* const xinput = (const __m256i *) input;
const __m256i* const xsecret = (const __m256i *) secret;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
/* data_vec = xinput[i]; */
__m256i const data_vec = __lasx_xvld(xinput + i, 0);
/* key_vec = xsecret[i]; */
__m256i const key_vec = __lasx_xvld(xsecret + i, 0);
/* data_key = data_vec ^ key_vec; */
__m256i const data_key = __lasx_xvxor_v(data_vec, key_vec);
/* data_key_lo = data_key >> 32; */
__m256i const data_key_lo = __lasx_xvsrli_d(data_key, 32);
// __m256i const data_key_lo = __lasx_xvsrli_d(data_key, 32);
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
__m256i const product = __lasx_xvmulwev_d_wu(data_key, data_key_lo);
/* xacc[i] += swap(data_vec); */
__m256i const data_swap = __lasx_xvshuf4i_w(data_vec, _LASX_SHUFFLE(1, 0, 3, 2));
__m256i const sum = __lasx_xvadd_d(xacc[i], data_swap);
/* xacc[i] += product; */
xacc[i] = __lasx_xvadd_d(product, sum);
}
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(lasx)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_lasx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 31) == 0);
{
__m256i* const xacc = (__m256i*) acc;
const __m256i* const xsecret = (const __m256i *) secret;
const __m256i prime32 = __lasx_xvreplgr2vr_d(XXH_PRIME32_1);
size_t i;
for (i = 0; i < XXH_STRIPE_LEN / sizeof(__m256i); i++) {
/* xacc[i] ^= (xacc[i] >> 47) */
__m256i const acc_vec = xacc[i];
__m256i const shifted = __lasx_xvsrli_d(acc_vec, 47);
__m256i const data_vec = __lasx_xvxor_v(acc_vec, shifted);
/* xacc[i] ^= xsecret[i]; */
__m256i const key_vec = __lasx_xvld(xsecret + i, 0);
__m256i const data_key = __lasx_xvxor_v(data_vec, key_vec);
/* xacc[i] *= XXH_PRIME32_1; */
xacc[i] = __lasx_xvmul_d(data_key, prime32);
}
}
}
#endif
#if (XXH_VECTOR == XXH_RVV)
#define XXH_CONCAT2(X, Y) X ## Y
#define XXH_CONCAT(X, Y) XXH_CONCAT2(X, Y)
#if ((defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 13) || \
(defined(__clang__) && __clang_major__ < 16))
#define XXH_RVOP(op) op
#define XXH_RVCAST(op) XXH_CONCAT(vreinterpret_v_, op)
#else
#define XXH_RVOP(op) XXH_CONCAT(__riscv_, op)
#define XXH_RVCAST(op) XXH_CONCAT(__riscv_vreinterpret_v_, op)
#endif
XXH_FORCE_INLINE void
XXH3_accumulate_512_rvv( void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 63) == 0);
{
// Try to set vector lenght to 512 bits.
// If this length is unavailable, then maximum available will be used
size_t vl = XXH_RVOP(vsetvl_e64m2)(8);
uint64_t* xacc = (uint64_t*) acc;
const uint64_t* xinput = (const uint64_t*) input;
const uint64_t* xsecret = (const uint64_t*) secret;
static const uint64_t swap_mask[16] = {1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14};
vuint64m2_t xswap_mask = XXH_RVOP(vle64_v_u64m2)(swap_mask, vl);
size_t i;
for (i = 0; i < XXH_STRIPE_LEN/8; i += vl) {
/* data_vec = xinput[i]; */
vuint64m2_t data_vec = XXH_RVCAST(u8m2_u64m2)(XXH_RVOP(vle8_v_u8m2)((const uint8_t*)(xinput + i), vl * 8));
/* key_vec = xsecret[i]; */
vuint64m2_t key_vec = XXH_RVCAST(u8m2_u64m2)(XXH_RVOP(vle8_v_u8m2)((const uint8_t*)(xsecret + i), vl * 8));
/* acc_vec = xacc[i]; */
vuint64m2_t acc_vec = XXH_RVOP(vle64_v_u64m2)(xacc + i, vl);
/* data_key = data_vec ^ key_vec; */
vuint64m2_t data_key = XXH_RVOP(vxor_vv_u64m2)(data_vec, key_vec, vl);
/* data_key_hi = data_key >> 32; */
vuint64m2_t data_key_hi = XXH_RVOP(vsrl_vx_u64m2)(data_key, 32, vl);
/* data_key_lo = data_key & 0xffffffff; */
vuint64m2_t data_key_lo = XXH_RVOP(vand_vx_u64m2)(data_key, 0xffffffff, vl);
/* swap high and low halves */
vuint64m2_t data_swap = XXH_RVOP(vrgather_vv_u64m2)(data_vec, xswap_mask, vl);
/* acc_vec += data_key_lo * data_key_hi; */
acc_vec = XXH_RVOP(vmacc_vv_u64m2)(acc_vec, data_key_lo, data_key_hi, vl);
/* acc_vec += data_swap; */
acc_vec = XXH_RVOP(vadd_vv_u64m2)(acc_vec, data_swap, vl);
/* xacc[i] = acc_vec; */
XXH_RVOP(vse64_v_u64m2)(xacc + i, acc_vec, vl);
}
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(rvv)
XXH_FORCE_INLINE void
XXH3_scrambleAcc_rvv(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
XXH_ASSERT((((size_t)acc) & 15) == 0);
{
size_t count = XXH_STRIPE_LEN/8;
uint64_t* xacc = (uint64_t*)acc;
const uint8_t* xsecret = (const uint8_t *)secret;
size_t vl;
for (; count > 0; count -= vl, xacc += vl, xsecret += vl*8) {
vl = XXH_RVOP(vsetvl_e64m2)(count);
{
/* key_vec = xsecret[i]; */
vuint64m2_t key_vec = XXH_RVCAST(u8m2_u64m2)(XXH_RVOP(vle8_v_u8m2)(xsecret, vl*8));
/* acc_vec = xacc[i]; */
vuint64m2_t acc_vec = XXH_RVOP(vle64_v_u64m2)(xacc, vl);
/* acc_vec ^= acc_vec >> 47; */
vuint64m2_t vsrl = XXH_RVOP(vsrl_vx_u64m2)(acc_vec, 47, vl);
acc_vec = XXH_RVOP(vxor_vv_u64m2)(acc_vec, vsrl, vl);
/* acc_vec ^= key_vec; */
acc_vec = XXH_RVOP(vxor_vv_u64m2)(acc_vec, key_vec, vl);
/* acc_vec *= XXH_PRIME32_1; */
acc_vec = XXH_RVOP(vmul_vx_u64m2)(acc_vec, XXH_PRIME32_1, vl);
/* xacc[i] *= acc_vec; */
XXH_RVOP(vse64_v_u64m2)(xacc, acc_vec, vl);
}
}
}
}
XXH_FORCE_INLINE void
XXH3_initCustomSecret_rvv(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
XXH_STATIC_ASSERT(XXH_SEC_ALIGN >= 8);
XXH_ASSERT(((size_t)customSecret & 7) == 0);
(void)(&XXH_writeLE64);
{
size_t count = XXH_SECRET_DEFAULT_SIZE/8;
size_t vl;
size_t VLMAX = XXH_RVOP(vsetvlmax_e64m2)();
int64_t* cSecret = (int64_t*)customSecret;
const int64_t* kSecret = (const int64_t*)(const void*)XXH3_kSecret;
#if __riscv_v_intrinsic >= 1000000
// ratified v1.0 intrinics version
vbool32_t mneg = XXH_RVCAST(u8m1_b32)(
XXH_RVOP(vmv_v_x_u8m1)(0xaa, XXH_RVOP(vsetvlmax_e8m1)()));
#else
// support pre-ratification intrinics, which lack mask to vector casts
size_t vlmax = XXH_RVOP(vsetvlmax_e8m1)();
vbool32_t mneg = XXH_RVOP(vmseq_vx_u8mf4_b32)(
XXH_RVOP(vand_vx_u8mf4)(
XXH_RVOP(vid_v_u8mf4)(vlmax), 1, vlmax), 1, vlmax);
#endif
vint64m2_t seed = XXH_RVOP(vmv_v_x_i64m2)((int64_t)seed64, VLMAX);
seed = XXH_RVOP(vneg_v_i64m2_mu)(mneg, seed, seed, VLMAX);
for (; count > 0; count -= vl, cSecret += vl, kSecret += vl) {
/* make sure vl=VLMAX until last iteration */
vl = XXH_RVOP(vsetvl_e64m2)(count < VLMAX ? count : VLMAX);
{
vint64m2_t src = XXH_RVOP(vle64_v_i64m2)(kSecret, vl);
vint64m2_t res = XXH_RVOP(vadd_vv_i64m2)(src, seed, vl);
XXH_RVOP(vse64_v_i64m2)(cSecret, res, vl);
}
}
}
}
#endif
/* scalar variants - universal */
#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
/*
* In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
* emit an excess mask and a full 64-bit multiply-add (MADD X-form).
*
* While this might not seem like much, as AArch64 is a 64-bit architecture, only
* big Cortex designs have a full 64-bit multiplier.
*
* On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
* multiplies expand to 2-3 multiplies in microcode. This has a major penalty
* of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
*
* Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
* not have this penalty and does the mask automatically.
*/
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
{
xxh_u64 ret;
/* note: %x = 64-bit register, %w = 32-bit register */
__asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
return ret;
}
#else
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
{
return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
}
#endif
/*!
* @internal
* @brief Scalar round for @ref XXH3_accumulate_512_scalar().
*
* This is extracted to its own function because the NEON path uses a combination
* of NEON and scalar.
*/
XXH_FORCE_INLINE void
XXH3_scalarRound(void* XXH_RESTRICT acc,
void const* XXH_RESTRICT input,
void const* XXH_RESTRICT secret,
size_t lane)
{
xxh_u64* xacc = (xxh_u64*) acc;
xxh_u8 const* xinput = (xxh_u8 const*) input;
xxh_u8 const* xsecret = (xxh_u8 const*) secret;
XXH_ASSERT(lane < XXH_ACC_NB);
XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
{
xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
}
}
/*!
* @internal
* @brief Processes a 64 byte block of data using the scalar path.
*/
XXH_FORCE_INLINE void
XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
const void* XXH_RESTRICT input,
const void* XXH_RESTRICT secret)
{
size_t i;
/* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
#if defined(__GNUC__) && !defined(__clang__) \
&& (defined(__arm__) || defined(__thumb2__)) \
&& defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
&& XXH_SIZE_OPT <= 0
# pragma GCC unroll 8
#endif
for (i=0; i < XXH_ACC_NB; i++) {
XXH3_scalarRound(acc, input, secret, i);
}
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)
/*!
* @internal
* @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
*
* This is extracted to its own function because the NEON path uses a combination
* of NEON and scalar.
*/
XXH_FORCE_INLINE void
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
void const* XXH_RESTRICT secret,
size_t lane)
{
xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
XXH_ASSERT(lane < XXH_ACC_NB);
{
xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
xxh_u64 acc64 = xacc[lane];
acc64 = XXH_xorshift64(acc64, 47);
acc64 ^= key64;
acc64 *= XXH_PRIME32_1;
xacc[lane] = acc64;
}
}
/*!
* @internal
* @brief Scrambles the accumulators after a large chunk has been read
*/
XXH_FORCE_INLINE void
XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
size_t i;
for (i=0; i < XXH_ACC_NB; i++) {
XXH3_scalarScrambleRound(acc, secret, i);
}
}
XXH_FORCE_INLINE void
XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
/*
* We need a separate pointer for the hack below,
* which requires a non-const pointer.
* Any decent compiler will optimize this out otherwise.
*/
const xxh_u8* kSecretPtr = XXH3_kSecret;
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
#if defined(__GNUC__) && defined(__aarch64__)
/*
* UGLY HACK:
* GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
* placed sequentially, in order, at the top of the unrolled loop.
*
* While MOVK is great for generating constants (2 cycles for a 64-bit
* constant compared to 4 cycles for LDR), it fights for bandwidth with
* the arithmetic instructions.
*
* I L S
* MOVK
* MOVK
* MOVK
* MOVK
* ADD
* SUB STR
* STR
* By forcing loads from memory (as the asm line causes the compiler to assume
* that XXH3_kSecretPtr has been changed), the pipelines are used more
* efficiently:
* I L S
* LDR
* ADD LDR
* SUB STR
* STR
*
* See XXH3_NEON_LANES for details on the pipeline.
*
* XXH3_64bits_withSeed, len == 256, Snapdragon 835
* without hack: 2654.4 MB/s
* with hack: 3202.9 MB/s
*/
XXH_COMPILER_GUARD(kSecretPtr);
#endif
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
int i;
for (i=0; i < nbRounds; i++) {
/*
* The asm hack causes the compiler to assume that kSecretPtr aliases with
* customSecret, and on aarch64, this prevented LDP from merging two
* loads together for free. Putting the loads together before the stores
* properly generates LDP.
*/
xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
} }
}
typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
#if (XXH_VECTOR == XXH_AVX512)
#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
#define XXH3_accumulate XXH3_accumulate_avx512
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
#elif (XXH_VECTOR == XXH_AVX2)
#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
#define XXH3_accumulate XXH3_accumulate_avx2
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
#elif (XXH_VECTOR == XXH_SSE2)
#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
#define XXH3_accumulate XXH3_accumulate_sse2
#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
#elif (XXH_VECTOR == XXH_NEON)
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
#define XXH3_accumulate XXH3_accumulate_neon
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_VSX)
#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
#define XXH3_accumulate XXH3_accumulate_vsx
#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_SVE)
#define XXH3_accumulate_512 XXH3_accumulate_512_sve
#define XXH3_accumulate XXH3_accumulate_sve
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_LASX)
#define XXH3_accumulate_512 XXH3_accumulate_512_lasx
#define XXH3_accumulate XXH3_accumulate_lasx
#define XXH3_scrambleAcc XXH3_scrambleAcc_lasx
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_LSX)
#define XXH3_accumulate_512 XXH3_accumulate_512_lsx
#define XXH3_accumulate XXH3_accumulate_lsx
#define XXH3_scrambleAcc XXH3_scrambleAcc_lsx
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#elif (XXH_VECTOR == XXH_RVV)
#define XXH3_accumulate_512 XXH3_accumulate_512_rvv
#define XXH3_accumulate XXH3_accumulate_rvv
#define XXH3_scrambleAcc XXH3_scrambleAcc_rvv
#define XXH3_initCustomSecret XXH3_initCustomSecret_rvv
#else /* scalar */
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
#define XXH3_accumulate XXH3_accumulate_scalar
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#endif
#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
# undef XXH3_initCustomSecret
# define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#endif
XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
size_t const nb_blocks = (len - 1) / block_len;
size_t n;
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
for (n = 0; n < nb_blocks; n++) {
f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
}
/* last partial block */
XXH_ASSERT(len > XXH_STRIPE_LEN);
{ size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);
/* last stripe */
{ const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
} }
}
XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
{
return XXH3_mul128_fold64(
acc[0] ^ XXH_readLE64(secret),
acc[1] ^ XXH_readLE64(secret+8) );
}
static XXH_PUREF XXH64_hash_t
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
{
xxh_u64 result64 = start;
size_t i = 0;
for (i = 0; i < 4; i++) {
result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
#if defined(__clang__) /* Clang */ \
&& (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
/*
* UGLY HACK:
* Prevent autovectorization on Clang ARMv7-a. Exact same problem as
* the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
* XXH3_64bits, len == 256, Snapdragon 835:
* without hack: 2063.7 MB/s
* with hack: 2560.7 MB/s
*/
XXH_COMPILER_GUARD(result64);
#endif
}
return XXH3_avalanche(result64);
}
/* do not align on 8, so that the secret is different from the accumulator */
#define XXH_SECRET_MERGEACCS_START 11
static XXH_PUREF XXH64_hash_t
XXH3_finalizeLong_64b(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 len)
{
return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, len * XXH_PRIME64_1);
}
#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
const void* XXH_RESTRICT secret, size_t secretSize,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
return XXH3_finalizeLong_64b(acc, (const xxh_u8*)secret, (xxh_u64)len);
}
/*
* It's important for performance to transmit secret's size (when it's static)
* so that the compiler can properly optimize the vectorized loop.
* This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
* When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
* breaks -Og, this is XXH_NO_INLINE.
*/
XXH3_WITH_SECRET_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64;
return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
}
/*
* It's preferable for performance that XXH3_hashLong is not inlined,
* as it results in a smaller function for small data, easier to the instruction cache.
* Note that inside this no_inline function, we do inline the internal loop,
* and provide a statically defined secret size to allow optimization of vector loop.
*/
XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
}
/*
* XXH3_hashLong_64b_withSeed():
* Generate a custom key based on alteration of default XXH3_kSecret with the seed,
* and then use this key for long mode hashing.
*
* This operation is decently fast but nonetheless costs a little bit of time.
* Try to avoid it whenever possible (typically when seed==0).
*
* It's important for performance that XXH3_hashLong is not inlined. Not sure
* why (uop cache maybe?), but the difference is large and easily measurable.
*/
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
XXH64_hash_t seed,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble,
XXH3_f_initCustomSecret f_initSec)
{
#if XXH_SIZE_OPT <= 0
if (seed == 0)
return XXH3_hashLong_64b_internal(input, len,
XXH3_kSecret, sizeof(XXH3_kSecret),
f_acc, f_scramble);
#endif
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
f_initSec(secret, seed);
return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
f_acc, f_scramble);
}
}
/*
* It's important for performance that XXH3_hashLong is not inlined.
*/
XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
(void)secret; (void)secretLen;
return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}
typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
XXH_FORCE_INLINE XXH64_hash_t
XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
XXH3_hashLong64_f f_hashLong)
{
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
/*
* If an action is to be taken if `secretLen` condition is not respected,
* it should be done here.
* For now, it's a contract pre-condition.
* Adding a check and a branch here would cost performance at every hash.
* Also, note that function signature doesn't offer room to return an error.
*/
if (len <= 16)
return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
if (len <= 128)
return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
}
/* === Public entry point === */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
{
return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
{
return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
}
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
if (length <= XXH3_MIDSIZE_MAX)
return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
}
/* === XXH3 streaming === */
#ifndef XXH_NO_STREAM
/*
* Malloc's a pointer that is always aligned to @align.
*
* This must be freed with `XXH_alignedFree()`.
*
* malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
* alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
* or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
*
* This underalignment previously caused a rather obvious crash which went
* completely unnoticed due to XXH3_createState() not actually being tested.
* Credit to RedSpah for noticing this bug.
*
* The alignment is done manually: Functions like posix_memalign or _mm_malloc
* are avoided: To maintain portability, we would have to write a fallback
* like this anyways, and besides, testing for the existence of library
* functions without relying on external build tools is impossible.
*
* The method is simple: Overallocate, manually align, and store the offset
* to the original behind the returned pointer.
*
* Align must be a power of 2 and 8 <= align <= 128.
*/
static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
{
XXH_ASSERT(align <= 128 && align >= 8); /* range check */
XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
{ /* Overallocate to make room for manual realignment and an offset byte */
xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
if (base != NULL) {
/*
* Get the offset needed to align this pointer.
*
* Even if the returned pointer is aligned, there will always be
* at least one byte to store the offset to the original pointer.
*/
size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
/* Add the offset for the now-aligned pointer */
xxh_u8* ptr = base + offset;
XXH_ASSERT((size_t)ptr % align == 0);
/* Store the offset immediately before the returned pointer. */
ptr[-1] = (xxh_u8)offset;
return ptr;
}
return NULL;
}
}
/*
* Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
* normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
*/
static void XXH_alignedFree(void* p)
{
if (p != NULL) {
xxh_u8* ptr = (xxh_u8*)p;
/* Get the offset byte we added in XXH_malloc. */
xxh_u8 offset = ptr[-1];
/* Free the original malloc'd pointer */
xxh_u8* base = ptr - offset;
XXH_free(base);
}
}
/*! @ingroup XXH3_family */
/*!
* @brief Allocate an @ref XXH3_state_t.
*
* @return An allocated pointer of @ref XXH3_state_t on success.
* @return `NULL` on failure.
*
* @note Must be freed with XXH3_freeState().
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
{
XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
if (state==NULL) return NULL;
XXH3_INITSTATE(state);
return state;
}
/*! @ingroup XXH3_family */
/*!
* @brief Frees an @ref XXH3_state_t.
*
* @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
*
* @return @ref XXH_OK.
*
* @note Must be allocated with XXH3_createState().
*
* @see @ref streaming_example "Streaming Example"
*/
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
{
XXH_alignedFree(statePtr);
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
{
XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
}
static void
XXH3_reset_internal(XXH3_state_t* statePtr,
XXH64_hash_t seed,
const void* secret, size_t secretSize)
{
size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
XXH_ASSERT(statePtr != NULL);
/* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
XXH_memset((char*)statePtr + initStart, 0, initLength);
statePtr->acc[0] = XXH_PRIME32_3;
statePtr->acc[1] = XXH_PRIME64_1;
statePtr->acc[2] = XXH_PRIME64_2;
statePtr->acc[3] = XXH_PRIME64_3;
statePtr->acc[4] = XXH_PRIME64_4;
statePtr->acc[5] = XXH_PRIME32_2;
statePtr->acc[6] = XXH_PRIME64_5;
statePtr->acc[7] = XXH_PRIME32_1;
statePtr->seed = seed;
statePtr->useSeed = (seed != 0);
statePtr->extSecret = (const unsigned char*)secret;
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_reset_internal(statePtr, 0, secret, secretSize);
if (secret == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
if (statePtr == NULL) return XXH_ERROR;
if (seed==0) return XXH3_64bits_reset(statePtr);
if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
XXH3_initCustomSecret(statePtr->customSecret, seed);
XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
{
if (statePtr == NULL) return XXH_ERROR;
if (secret == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
XXH3_reset_internal(statePtr, seed64, secret, secretSize);
statePtr->useSeed = 1; /* always, even if seed64==0 */
return XXH_OK;
}
/*!
* @internal
* @brief Processes a large input for XXH3_update() and XXH3_digest_long().
*
* Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
*
* @param acc Pointer to the 8 accumulator lanes
* @param nbStripesSoFarPtr In/out pointer to the number of leftover stripes in the block*
* @param nbStripesPerBlock Number of stripes in a block
* @param input Input pointer
* @param nbStripes Number of stripes to process
* @param secret Secret pointer
* @param secretLimit Offset of the last block in @p secret
* @param f_acc Pointer to an XXH3_accumulate implementation
* @param f_scramble Pointer to an XXH3_scrambleAcc implementation
* @return Pointer past the end of @p input after processing
*/
XXH_FORCE_INLINE const xxh_u8 *
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
/* Process full blocks */
if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
/* Process the initial partial block... */
size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;
do {
/* Accumulate and scramble */
f_acc(acc, input, initialSecret, nbStripesThisIter);
f_scramble(acc, secret + secretLimit);
input += nbStripesThisIter * XXH_STRIPE_LEN;
nbStripes -= nbStripesThisIter;
/* Then continue the loop with the full block size */
nbStripesThisIter = nbStripesPerBlock;
initialSecret = secret;
} while (nbStripes >= nbStripesPerBlock);
*nbStripesSoFarPtr = 0;
}
/* Process a partial block */
if (nbStripes > 0) {
f_acc(acc, input, initialSecret, nbStripes);
input += nbStripes * XXH_STRIPE_LEN;
*nbStripesSoFarPtr += nbStripes;
}
/* Return end pointer */
return input;
}
#ifndef XXH3_STREAM_USE_STACK
# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
# define XXH3_STREAM_USE_STACK 1
# endif
#endif
/* This function accepts f_acc and f_scramble as function pointers,
* making it possible to implement multiple variants with different acc & scramble stages.
* This is notably useful to implement multiple vector variants with different intrinsics.
*/
XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
const xxh_u8* XXH_RESTRICT input, size_t len,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
if (input==NULL) {
XXH_ASSERT(len == 0);
return XXH_OK;
}
XXH_ASSERT(state != NULL);
state->totalLen += len;
/* small input : just fill in tmp buffer */
XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
state->bufferedSize += (XXH32_hash_t)len;
return XXH_OK;
}
{ const xxh_u8* const bEnd = input + len;
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
/* For some reason, gcc and MSVC seem to suffer greatly
* when operating accumulators directly into state.
* Operating into stack space seems to enable proper optimization.
* clang, on the other hand, doesn't seem to need this trick */
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
XXH_memcpy(acc, state->acc, sizeof(acc));
#else
xxh_u64* XXH_RESTRICT const acc = state->acc;
#endif
/* total input is now > XXH3_INTERNALBUFFER_SIZE */
#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
/*
* Internal buffer is partially filled (always, except at beginning)
* Complete it, then consume it.
*/
if (state->bufferedSize) {
size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
input += loadSize;
XXH3_consumeStripes(acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, XXH3_INTERNALBUFFER_STRIPES,
secret, state->secretLimit,
f_acc, f_scramble);
state->bufferedSize = 0;
}
XXH_ASSERT(input < bEnd);
if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
input = XXH3_consumeStripes(acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
input, nbStripes,
secret, state->secretLimit,
f_acc, f_scramble);
XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
}
/* Some remaining input (always) : buffer it */
XXH_ASSERT(input < bEnd);
XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
XXH_ASSERT(state->bufferedSize == 0);
XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
state->bufferedSize = (XXH32_hash_t)(bEnd-input);
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
/* save stack accumulators into state */
XXH_memcpy(state->acc, acc, sizeof(acc));
#endif
}
return XXH_OK;
}
/*
* Both XXH3_64bits_update and XXH3_128bits_update use this routine.
*/
XXH_NO_INLINE XXH_errorcode
XXH3_update_regular(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_update(state, (const xxh_u8*)input, len,
XXH3_accumulate, XXH3_scrambleAcc);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_update_regular(state, input, len);
}
XXH_FORCE_INLINE void
XXH3_digest_long (XXH64_hash_t* acc,
const XXH3_state_t* state,
const unsigned char* secret)
{
xxh_u8 lastStripe[XXH_STRIPE_LEN];
const xxh_u8* lastStripePtr;
/*
* Digest on a local copy. This way, the state remains unaltered, and it can
* continue ingesting more input afterwards.
*/
XXH_memcpy(acc, state->acc, sizeof(state->acc));
if (state->bufferedSize >= XXH_STRIPE_LEN) {
/* Consume remaining stripes then point to remaining data in buffer */
size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
size_t nbStripesSoFar = state->nbStripesSoFar;
XXH3_consumeStripes(acc,
&nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, nbStripes,
secret, state->secretLimit,
XXH3_accumulate, XXH3_scrambleAcc);
lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
} else { /* bufferedSize < XXH_STRIPE_LEN */
/* Copy to temp buffer */
size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
lastStripePtr = lastStripe;
}
/* Last stripe */
XXH3_accumulate_512(acc,
lastStripePtr,
secret + state->secretLimit - XXH_SECRET_LASTACC_START);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
if (state->totalLen > XXH3_MIDSIZE_MAX) {
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
XXH3_digest_long(acc, state, secret);
return XXH3_finalizeLong_64b(acc, secret, (xxh_u64)state->totalLen);
}
/* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
if (state->useSeed)
return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
secret, state->secretLimit + XXH_STRIPE_LEN);
}
#endif /* !XXH_NO_STREAM */
/* ==========================================
* XXH3 128 bits (a.k.a XXH128)
* ==========================================
* XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
* even without counting the significantly larger output size.
*
* For example, extra steps are taken to avoid the seed-dependent collisions
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
*
* This strength naturally comes at the cost of some speed, especially on short
* lengths. Note that longer hashes are about as fast as the 64-bit version
* due to it using only a slight modification of the 64-bit loop.
*
* XXH128 is also more oriented towards 64-bit machines. It is still extremely
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
*/
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
/* A doubled version of 1to3_64b with different constants. */
XXH_ASSERT(input != NULL);
XXH_ASSERT(1 <= len && len <= 3);
XXH_ASSERT(secret != NULL);
/*
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
*/
{ xxh_u8 const c1 = input[0];
xxh_u8 const c2 = input[len >> 1];
xxh_u8 const c3 = input[len - 1];
xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
XXH128_hash_t h128;
h128.low64 = XXH64_avalanche(keyed_lo);
h128.high64 = XXH64_avalanche(keyed_hi);
return h128;
}
}
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(4 <= len && len <= 8);
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
{ xxh_u32 const input_lo = XXH_readLE32(input);
xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
xxh_u64 const keyed = input_64 ^ bitflip;
/* Shift len to the left to ensure it is even, this avoids even multiplies. */
XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
m128.high64 += (m128.low64 << 1);
m128.low64 ^= (m128.high64 >> 3);
m128.low64 = XXH_xorshift64(m128.low64, 35);
m128.low64 *= PRIME_MX2;
m128.low64 = XXH_xorshift64(m128.low64, 28);
m128.high64 = XXH3_avalanche(m128.high64);
return m128;
}
}
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(input != NULL);
XXH_ASSERT(secret != NULL);
XXH_ASSERT(9 <= len && len <= 16);
{ xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
xxh_u64 const input_lo = XXH_readLE64(input);
xxh_u64 input_hi = XXH_readLE64(input + len - 8);
XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
/*
* Put len in the middle of m128 to ensure that the length gets mixed to
* both the low and high bits in the 128x64 multiply below.
*/
m128.low64 += (xxh_u64)(len - 1) << 54;
input_hi ^= bitfliph;
/*
* Add the high 32 bits of input_hi to the high 32 bits of m128, then
* add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
* the high 64 bits of m128.
*
* The best approach to this operation is different on 32-bit and 64-bit.
*/
if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
/*
* 32-bit optimized version, which is more readable.
*
* On 32-bit, it removes an ADC and delays a dependency between the two
* halves of m128.high64, but it generates an extra mask on 64-bit.
*/
m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
} else {
/*
* 64-bit optimized (albeit more confusing) version.
*
* Uses some properties of addition and multiplication to remove the mask:
*
* Let:
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
* c = XXH_PRIME32_2
*
* a + (b * c)
* Inverse Property: x + y - x == y
* a + (b * (1 + c - 1))
* Distributive Property: x * (y + z) == (x * y) + (x * z)
* a + (b * 1) + (b * (c - 1))
* Identity Property: x * 1 == x
* a + b + (b * (c - 1))
*
* Substitute a, b, and c:
* input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
*
* Since input_hi.hi + input_hi.lo == input_hi, we get this:
* input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
*/
m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
}
/* m128 ^= XXH_swap64(m128 >> 64); */
m128.low64 ^= XXH_swap64(m128.high64);
{ /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
h128.high64 += m128.high64 * XXH_PRIME64_2;
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = XXH3_avalanche(h128.high64);
return h128;
} }
}
/*
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
*/
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
XXH_ASSERT(len <= 16);
{ if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
{ XXH128_hash_t h128;
xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
h128.low64 = XXH64_avalanche(seed ^ bitflipl);
h128.high64 = XXH64_avalanche( seed ^ bitfliph);
return h128;
} }
}
/*
* A bit slower than XXH3_mix16B, but handles multiply by zero better.
*/
XXH_FORCE_INLINE XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
const xxh_u8* secret, XXH64_hash_t seed)
{
acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
return acc;
}
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(16 < len && len <= 128);
{ XXH128_hash_t acc;
acc.low64 = len * XXH_PRIME64_1;
acc.high64 = 0;
#if XXH_SIZE_OPT >= 1
{
/* Smaller, but slightly slower. */
unsigned int i = (unsigned int)(len - 1) / 32;
do {
acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
} while (i-- != 0);
}
#else
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
}
acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
}
acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
}
acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
#endif
{ XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ (acc.high64 * XXH_PRIME64_4)
+ ((len - seed) * XXH_PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
}
}
XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH64_hash_t seed)
{
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
{ XXH128_hash_t acc;
unsigned i;
acc.low64 = len * XXH_PRIME64_1;
acc.high64 = 0;
/*
* We set as `i` as offset + 32. We do this so that unchanged
* `len` can be used as upper bound. This reaches a sweet spot
* where both x86 and aarch64 get simple agen and good codegen
* for the loop.
*/
for (i = 32; i < 160; i += 32) {
acc = XXH128_mix32B(acc,
input + i - 32,
input + i - 16,
secret + i - 32,
seed);
}
acc.low64 = XXH3_avalanche(acc.low64);
acc.high64 = XXH3_avalanche(acc.high64);
/*
* NB: `i <= len` will duplicate the last 32-bytes if
* len % 32 was zero. This is an unfortunate necessity to keep
* the hash result stable.
*/
for (i=160; i <= len; i += 32) {
acc = XXH128_mix32B(acc,
input + i - 32,
input + i - 16,
secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
seed);
}
/* last bytes */
acc = XXH128_mix32B(acc,
input + len - 16,
input + len - 32,
secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
(XXH64_hash_t)0 - seed);
{ XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * XXH_PRIME64_1)
+ (acc.high64 * XXH_PRIME64_4)
+ ((len - seed) * XXH_PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
}
}
static XXH_PUREF XXH128_hash_t
XXH3_finalizeLong_128b(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, xxh_u64 len)
{
XXH128_hash_t h128;
h128.low64 = XXH3_finalizeLong_64b(acc, secret, len);
h128.high64 = XXH3_mergeAccs(acc, secret + secretSize
- XXH_STRIPE_LEN - XXH_SECRET_MERGEACCS_START,
~(len * XXH_PRIME64_2));
return h128;
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble)
{
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
return XXH3_finalizeLong_128b(acc, secret, secretSize, (xxh_u64)len);
}
/*
* It's important for performance that XXH3_hashLong() is not inlined.
*/
XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64; (void)secret; (void)secretLen;
return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_accumulate, XXH3_scrambleAcc);
}
/*
* It's important for performance to pass @p secretLen (when it's static)
* to the compiler, so that it can properly optimize the vectorized loop.
*
* When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
* breaks -Og, this is XXH_NO_INLINE.
*/
XXH3_WITH_SECRET_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)seed64;
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
XXH3_accumulate, XXH3_scrambleAcc);
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
XXH64_hash_t seed64,
XXH3_f_accumulate f_acc,
XXH3_f_scrambleAcc f_scramble,
XXH3_f_initCustomSecret f_initSec)
{
if (seed64 == 0)
return XXH3_hashLong_128b_internal(input, len,
XXH3_kSecret, sizeof(XXH3_kSecret),
f_acc, f_scramble);
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
f_initSec(secret, seed64);
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
f_acc, f_scramble);
}
}
/*
* It's important for performance that XXH3_hashLong is not inlined.
*/
XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed(const void* input, size_t len,
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
{
(void)secret; (void)secretLen;
return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}
typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
XXH64_hash_t, const void* XXH_RESTRICT, size_t);
XXH_FORCE_INLINE XXH128_hash_t
XXH3_128bits_internal(const void* input, size_t len,
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
XXH3_hashLong128_f f_hl128)
{
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
/*
* If an action is to be taken if `secret` conditions are not respected,
* it should be done here.
* For now, it's a contract pre-condition.
* Adding a check and a branch here would cost performance at every hash.
*/
if (len <= 16)
return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
if (len <= 128)
return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
return f_hl128(input, len, seed64, secret, secretLen);
}
/* === Public XXH128 API === */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_128bits_internal(input, len, 0,
XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_hashLong_128b_default);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_128bits_internal(input, len, 0,
(const xxh_u8*)secret, secretSize,
XXH3_hashLong_128b_withSecret);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_internal(input, len, seed,
XXH3_kSecret, sizeof(XXH3_kSecret),
XXH3_hashLong_128b_withSeed);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_withSeed(input, len, seed);
}
/* === XXH3 128-bit streaming === */
#ifndef XXH_NO_STREAM
/*
* All initialization and update functions are identical to 64-bit streaming variant.
* The only difference is the finalization routine.
*/
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
return XXH3_64bits_reset(statePtr);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
return XXH3_64bits_reset_withSeed(statePtr, seed);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
return XXH3_update_regular(state, input, len);
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
if (state->totalLen > XXH3_MIDSIZE_MAX) {
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
XXH3_digest_long(acc, state, secret);
XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
return XXH3_finalizeLong_128b(acc, secret, state->secretLimit + XXH_STRIPE_LEN, (xxh_u64)state->totalLen);
}
/* len <= XXH3_MIDSIZE_MAX : short code */
if (state->useSeed)
return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
secret, state->secretLimit + XXH_STRIPE_LEN);
}
#endif /* !XXH_NO_STREAM */
/* 128-bit utility functions */
/* return : 1 is equal, 0 if different */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
{
/* note : XXH128_hash_t is compact, it has no padding byte */
return !(XXH_memcmp(&h1, &h2, sizeof(h1)));
}
/* This prototype is compatible with stdlib's qsort().
* @return : >0 if *h128_1 > *h128_2
* <0 if *h128_1 < *h128_2
* =0 if *h128_1 == *h128_2 */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
{
XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
/* note : bets that, in most cases, hash values are different */
if (hcmp) return hcmp;
return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
}
/*====== Canonical representation ======*/
/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
{
XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
if (XXH_CPU_LITTLE_ENDIAN) {
hash.high64 = XXH_swap64(hash.high64);
hash.low64 = XXH_swap64(hash.low64);
}
XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
{
XXH128_hash_t h;
h.high64 = XXH_readBE64(src);
h.low64 = XXH_readBE64(src->digest + 8);
return h;
}
/* ==========================================
* Secret generators
* ==========================================
*/
#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
{
XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
{
#if (XXH_DEBUGLEVEL >= 1)
XXH_ASSERT(secretBuffer != NULL);
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
#else
/* production mode, assert() are disabled */
if (secretBuffer == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
#endif
if (customSeedSize == 0) {
customSeed = XXH3_kSecret;
customSeedSize = XXH_SECRET_DEFAULT_SIZE;
}
#if (XXH_DEBUGLEVEL >= 1)
XXH_ASSERT(customSeed != NULL);
#else
if (customSeed == NULL) return XXH_ERROR;
#endif
/* Fill secretBuffer with a copy of customSeed - repeat as needed */
{ size_t pos = 0;
while (pos < secretSize) {
size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
XXH_memcpy((char*)secretBuffer + pos, customSeed, toCopy);
pos += toCopy;
} }
{ size_t const nbSeg16 = secretSize / 16;
size_t n;
XXH128_canonical_t scrambler;
XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
for (n=0; n<nbSeg16; n++) {
XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
XXH3_combine16((char*)secretBuffer + n*16, h128);
}
/* last segment */
XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
}
return XXH_OK;
}
/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
{
XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
XXH3_initCustomSecret(secret, seed);
XXH_ASSERT(secretBuffer != NULL);
XXH_memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
}
/* Pop our optimization override from above */
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
&& defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
# pragma GCC pop_options
#endif
#endif /* XXH_NO_LONG_LONG */
#endif /* XXH_NO_XXH3 */
/*!
* @}
*/
#endif /* XXH_IMPLEMENTATION */
#if defined (__cplusplus) && !defined(XXH_NO_EXTERNC_GUARD)
} /* extern "C" */
#endif
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment