Skip to content

Instantly share code, notes, and snippets.

@vuddameri
Created April 30, 2024 19:55
Show Gist options
  • Select an option

  • Save vuddameri/55e47e011191864372c136874ea25557 to your computer and use it in GitHub Desktop.

Select an option

Save vuddameri/55e47e011191864372c136874ea25557 to your computer and use it in GitHub Desktop.
Assignment4-8-9.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/vuddameri/55e47e011191864372c136874ea25557/assignment4-8-9.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"id": "d6fb5e38",
"metadata": {
"id": "d6fb5e38"
},
"source": [
"<h4>Problem Statement - Assignment 4-8-9"
]
},
{
"cell_type": "markdown",
"id": "6ae6aaae",
"metadata": {
"id": "6ae6aaae"
},
"source": [
"Calculate the Wronksian (set up the equations) and solve for the particular solution of the ODE: y\" + 2y'+26y = 82cos(4t)"
]
},
{
"cell_type": "markdown",
"id": "8c0c1c51",
"metadata": {
"id": "8c0c1c51"
},
"source": [
"<h4> Solve the Complementary Solution"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f8f08d60",
"metadata": {
"id": "f8f08d60",
"outputId": "b43f0d6a-2449-466e-bfc5-bd86b884c1ab",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 39
}
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Eq(x(t), (C1*sin(5*t) + C2*cos(5*t))*exp(-t))"
],
"text/latex": "$\\displaystyle x{\\left(t \\right)} = \\left(C_{1} \\sin{\\left(5 t \\right)} + C_{2} \\cos{\\left(5 t \\right)}\\right) e^{- t}$"
},
"metadata": {},
"execution_count": 2
}
],
"source": [
"# Import library\n",
"from sympy import diff, dsolve, symbols, Function, sin, cos, integrate, simplify,exp\n",
"\n",
"# Define the function and variables\n",
"t = symbols('t') # Independent Variable\n",
"x = Function('x')(t) # Dependent Variable\n",
"hode = x.diff(t,t) + 2*x.diff(t)+ 26*x # Homogeneous Equation for complementary function\n",
"sol = dsolve(hode) #obtain the complementary function\n",
"sol"
]
},
{
"cell_type": "markdown",
"id": "b05bfcce",
"metadata": {
"id": "b05bfcce"
},
"source": [
"<h4> Equations for the Wronksian"
]
},
{
"cell_type": "markdown",
"id": "09e889f9",
"metadata": {
"id": "09e889f9"
},
"source": [
"From the complementary solution $y_1 = sin(5t)e^{-t}$ and $y_1 = cos(5t)e^{-t}$\n",
"Let u and v be two functions of t which satisfy the following equations:\n",
"\n",
"$ u'y_1 + v'y_2 = 0 $\n",
"\n",
"$ u' y'_1 + v'y'_2 =82cos(4t) $\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "baf47fef",
"metadata": {
"id": "baf47fef",
"outputId": "4155edff-6330-40f9-b4b4-417a3b780d3d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 39
}
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"-5*exp(-2*t)"
],
"text/latex": "$\\displaystyle - 5 e^{- 2 t}$"
},
"metadata": {},
"execution_count": 5
}
],
"source": [
"# Calculate the Wronksian\n",
"y1 = sin(5*t)*exp(-t)\n",
"y1p = y1.diff(t)\n",
"y2 = cos(5*t)*exp(-t)\n",
"y2p = y2.diff(t)\n",
"W = y1*y2p - y2*y1p\n",
"W = simplify(W)\n",
"W"
]
},
{
"cell_type": "markdown",
"id": "22e4e064",
"metadata": {
"id": "22e4e064"
},
"source": [
"Obtain the particular solution using the formula\n",
"\n",
"$ y_p = -y1(x) \\int \\frac{y2(x) f(x)}{W(x)}dx + y2(x) \\int \\frac{y1(x) f(x)}{W(x)}dx $"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7feca356",
"metadata": {
"id": "7feca356",
"outputId": "e3bb47ff-99fb-46a2-f41e-7482ddda2312",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 39
}
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"4*sin(4*t) + 10*cos(2*t)**2 - 5"
],
"text/latex": "$\\displaystyle 4 \\sin{\\left(4 t \\right)} + 10 \\cos^{2}{\\left(2 t \\right)} - 5$"
},
"metadata": {},
"execution_count": 6
}
],
"source": [
"Fx = 82*cos(4*t)\n",
"yp1 = -y1* integrate(y2*Fx/W)\n",
"yp2 = y2* integrate(y1*Fx/W)\n",
"yp = yp1 + yp2\n",
"simplify(yp)"
]
},
{
"cell_type": "markdown",
"id": "484b3598",
"metadata": {
"id": "484b3598"
},
"source": [
"Note: The result can be simplified or rewritten either by rewriting sin(4t) or cos$^2$(2t)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8f66f29",
"metadata": {
"id": "e8f66f29"
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"colab": {
"provenance": [],
"include_colab_link": true
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment