Last active
June 16, 2025 05:21
-
-
Save vabsalack/b53b98a5d006582fab4339a51500da07 to your computer and use it in GitHub Desktop.
My experiment: If you literally feed the model an averaged image (e.g., [5,4] from [2,3] and [8,5]), it treats it as one single instance. will you get equally spread out values(1/10, 1/10, ...) in Softmax probability distribution for that averaged image
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "id": "43ccfda4", | |
| "metadata": {}, | |
| "source": [ | |
| "# Experiment 1\n", | |
| "### Hypothesis:\n", | |
| "My variety of thought on how training works: \n", | |
| "Scenario **1**: \n", | |
| "Train using one instance. Model adjust it's tunable params so the loss value for the instance is zero. In result, the tuned params are one of some combinations of numbers which outputs zero loss for the given instance. \n", | |
| "Scenario **2**: \n", | |
| "bunch of instances, the batch. the update to each of tunable params are the average of all instance's gradient in the batch. In result, we after some iterations, we would find the one of some combinations of number for params that fits the batch. \n", | |
| "Scenario **3**: \n", | |
| "bunch of batches, the epoch. each batch is large enough to represent entire dataset. every batch has similar loss In result, after some iterations, we would the find the one of some combinations of number for params that fits the batch. " | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "8575c25c", | |
| "metadata": {}, | |
| "source": [ | |
| "In scnerio 3: \n", | |
| "Every batch has multiple instances but the update to params happens only once for the step. For neural network pov, it tries to fits itself for, the average of gradients, the batch. In result, for each individual input of instances, it predict correctly. he learned about the every class/instance sequence. but not only them. is it also learned the average image sequence, so it outputs all classes as equal for an average of batch images." | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "b346aa70", | |
| "metadata": {}, | |
| "source": [ | |
| "1. take the batch size used for training, here 256. \n", | |
| "2. shuffle the training or/and test instances. collect 256 batches of samples.\n", | |
| "3. average and display them.\n", | |
| "4. give them as input to our model. \n", | |
| "4. study the results." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "id": "e43ea540", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "from netweaver import load_dataset" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "id": "2f3f986a", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Property | instances_train gtruth_train instances_test gtruth_test \n", | |
| "-----------------------------------------------------------------------------------------------\n", | |
| "instances count | 60000 60000 10000 10000 \n", | |
| "shape of the set | (60000, 28, 28) (60000,) (10000, 28, 28) (10000,) \n", | |
| "shape of an instance | (28, 28) (1,) (28, 28) (1,) \n", | |
| "Data type of unit | float32 uint8 float32 uint8 \n", | |
| "Total memory (gb) | 0.17524 0.00006 0.02921 0.00001 \n", | |
| "\n", | |
| "\n", | |
| "train labels count : 10\n", | |
| "train labels values : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", | |
| "test labels count : 10\n", | |
| "test labels values : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "path_dataset = \"/home/keerthivasan_user/Documents/test_netweaver/datasets/fashion_mnist_images\"\n", | |
| "instances_train, gtruth_train, instances_test, gtruth_test = load_dataset(path_dataset)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "id": "b56cd367", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "id": "e0377fe8", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def scale_neg_pos_one(arr, maxvalue):\n", | |
| " max_half = maxvalue / 2\n", | |
| " return (arr - max_half) / max_half\n", | |
| "\n", | |
| "def count_labels(ar):\n", | |
| " d = dict()\n", | |
| " for e in ar:\n", | |
| " if e in d:\n", | |
| " d[e] += 1\n", | |
| " else:\n", | |
| " d[e] = 1\n", | |
| " l = list(d.items())\n", | |
| " l.sort(key=lambda e: e[0])\n", | |
| " return l\n", | |
| "\n", | |
| "MAX_VALUE = 255\n", | |
| "BATCH_SIZE = 256" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "id": "6bc519af", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Before shuffle: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]\n", | |
| "After shuffle: [26732 12986 38199 59201 22220 22365 47919 8377 10672 7855 59267 24558\n", | |
| " 528 52433 6589 18474 38157 53408 43923 27110]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# shuffle\n", | |
| "indices_train = np.array(range(instances_train.shape[0]))\n", | |
| "indices_test = np.array(range(instances_test.shape[0]))\n", | |
| "\n", | |
| "print(f\"Before shuffle: {indices_train[:20]}\")\n", | |
| "\n", | |
| "rng = np.random.default_rng()\n", | |
| "\n", | |
| "rng.shuffle(indices_train)\n", | |
| "rng.shuffle(indices_test)\n", | |
| "\n", | |
| "print(f\"After shuffle: {indices_train[:20]}\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "id": "2efd9d15", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# reassign after shuffle\n", | |
| "instances_train_shuffle = instances_train[indices_train]\n", | |
| "instances_test_shuffle = instances_test[indices_test]\n", | |
| "\n", | |
| "gtruth_train_shuffle = gtruth_train[indices_train]\n", | |
| "gtruth_test_shuffle = gtruth_test[indices_test]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "id": "12b4980b", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "(5, 256, 28, 28) (5, 256)\n", | |
| "(5, 256, 28, 28) (5, 256)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# create seperate arrays for train and test 's instances and grtuth, has 5 batch of images, 256 each. 256 because it's the batch size used for training.\n", | |
| "images_train_in_batch = np.array([instances_train_shuffle[i*BATCH_SIZE : (i+1)*BATCH_SIZE] for i in range(5)])\n", | |
| "gtruth_train_in_batch = np.array([gtruth_train_shuffle[i*BATCH_SIZE : (i+1)*BATCH_SIZE] for i in range(5)])\n", | |
| "\n", | |
| "print(images_train_in_batch.shape, gtruth_train_in_batch.shape)\n", | |
| "\n", | |
| "images_test_in_batch = np.array([instances_test_shuffle[i*BATCH_SIZE : (i+1)*BATCH_SIZE] for i in range(5)])\n", | |
| "gtruth_test_in_batch = np.array([gtruth_test_shuffle[i*BATCH_SIZE : (i+1)*BATCH_SIZE] for i in range(5)])\n", | |
| "\n", | |
| "print(images_test_in_batch.shape, gtruth_test_in_batch.shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "165dadb8", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "b76937e147ff44ca85ee982bc1d2fac3", | |
| "version_major": 2, | |
| "version_minor": 0 | |
| }, | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAH0CAYAAABM7aF5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoAdJREFUeJzs/XucJXV97/t/qmrd+zo9l+7pucBwG5CrIiBBCSrhYmIkcrKjyU4wcWtiBvdPidtksjUG4z4TdZ+ErSLu4y9CPAkhMUc0MYZEUQZRwDCCCMrIDAMzw0zPte/d61ZV5w/i4GT6/VmLnunrej0fj348oD9d9a1V9f2+67u+vaYrSNM0NQAAAAAAAABoQjjXBwAAAAAAAABg4WBBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0LTMXB+Amdmtt95qH//4x21gYMDOP/98++QnP2kXX3xxw+2SJLE9e/ZYR0eHBUEwC0cKLExpmtro6Kj19/dbGM6/3yOQAcDMIgOA1kYGAK2NDABa24xlQDrH7rrrrjSXy6Wf+9zn0ieffDJ9xzvekXZ3d6f79u1ruO2uXbtSM+OLL76a/Nq1a9csjOqXhgzgi6/Z+yID+OKrtb/IAL74au0vMoAvvlr760RnQJCmaWpz6JJLLrGLLrrIPvWpT5nZC79lWLNmjb373e+2P/iDP3C3HR4etu7ubnu1vcEylp2NwwUWpLrV7AH7qg0NDVlXV9dcH85RyIDjl1ndL2sHL1/tbtv+fFXWAuf2EFYTvV2sa2Zm5WUFWUsjvd3eN9VkLbOj6La59v982K0vdmTAFBp9ksGbHk3zUxBBZvo5ldb0WHVd+DK3/Nwb22VtyQ+9c6BLYdWfWk6s0AO99poRWev++zZZa/vSI26bnrCk8yN18iytNrgmczvFPgoZACl0brxJPK1d7v/tS9x6ebkeG5kJHS59D07IWvjgDxofmOJl+jwax8eDDJgfKj/3Crd+6Fz9GooHdF8cPk3vc9m5+902D4+WZC2uTe8ftGaf9ufltQ79WpaddUDWlpZ0Bhya0K/DzOzw48tlrWub3q6u37bYsr/4rtvmfDJTGTCn/+S5Wq3ali1bbOPGjUe+F4ahXXnllfbggw8e8/OVSsUqlcqR/x8dHTUzs4xlLRPM/wAB5sy/Z/Z8+6cAZMCJkQnzshblnLugmWUy+iPv7oJi4iwoBv6CYiY7vQXFsKSLUaHB62zh/mFmZMBUGp6LGVhQPI5+mAbTfFOb8cdG6IydKDe9BcWowRvwKK/HclKqyJqXHcczxsMgJ2tpoBdUGl+TebQQQQZACZwbbzC9fxYX5Rvljh4bUaz7aCaj5xfh8Vx/d1zMo3F8PMiAeSF27mNmZlFevwbvnhw6u8206fcJZmZR7MzLp7mg2CgDYi8DnOPNlup6u8B/nf58R2+XOrWF0OeOmKEMmNM/oHDw4EGL49h6e3uP+n5vb68NDAwc8/ObNm2yrq6uI19r1qyZrUMFMAPIAKC1kQFAayMDgNZGBgAL2/z7i6yOjRs32vDw8JGvXbt2zfUhAZhFZADQ2sgAoLWRAUBrIwOA+WVO/8nzsmXLLIoi27dv31Hf37dvn/X19R3z8/l83vJ5/6OsABYOMgBobWQA0NrIAKC1kQHAwjanC4q5XM4uvPBCu/fee+26664zsxf+COu9995rN95441weGoBZQAYcrf66C2Vt11X6D3isunCPrJ3Z/qTb5rkdz8vaNw+sl7WRiv47JHHq/22O4XH9N5BWdusHMvzdqX8vaxt6ftVtc+SfT5W1A4Mdspbu06/zzI8967ZZ33vsP9XB0eY0A47nD+1Pc9tpP1jFzMKS/mPj2z50vqxd/rP+gwp+qXOHrK355UOydqiuH+aSNPgHMCdnD8ray/PjsnbdZ/+rrA39xqVum9kJnTttfz/NhzY1+jtELfCgh+PFPGAWeA9dMXMfvBI4Czdbb9G5s/I+/28p935Kj7nwbD33eOp3O2Vt+al+Biz5y2P/Ht8RjMc502oZsPMN/v1x2Sn6gSRDI3oekMR6v+s6D7ttnr9Uv494fdcPZe1v918ka4O3+f8U/St/+1lZ+4Wn3ixrS505wvaDS902ayv0wx1HTtN/v7n+nJ7v6Me8tI45XVA0M7vpppvshhtusFe+8pV28cUX2y233GLj4+P2m7/5m3N9aABmARkAtDYyAGhtZADQ2sgAYOGa8wXFX/mVX7EDBw7YH/3RH9nAwIBdcMEFds899xzzh1kBLE5kANDayACgtZEBQGsjA4CFa84XFM3MbrzxxkX5kWYAzSEDgNZGBgCtjQwAWhsZACxMC+opzwAAAAAAAADmFguKAAAAAAAAAJrGgiIAAAAAAACAps2Lv6EIAItF/XUXytqed1XdbX9u3eOylgz2y9pze5bK2rPJMrfNB/On6OKuoiylq8u6tj/vthn06m0vX75N1n7lO78ta9GzBbfN2pqKrK1YNiJrh5x97r5tidtm8oA+t/3/8zvutpjngkDX0nR625nZ/nddKmu3ve+TsnbLXt3/w8A5HjO7b3C9rLVFOrMeP6gzaX3PfrfNnty4rP2XzTpDT7/vMVkrnrTabfOdX7lH1j7wq2+StaWfa5O1wle+67bpCiNdS+Lp7xf4j46jPz3zoVfI2sv+dLes1Z/bNe02kyeekrUzfldv9/wf/Iy7356Xny1r6aNP6g0ZqziBlj7qf55raFTP26OKnkPUT9Fz63xYb3xgwr3DL5O1gfFOWQu6c+5+y6k+pt7iqKztHNNz7+rT+njMzDr26/M3erq+Lqf8s//+rdXxCUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANC0zFwfAAAsNM///s/IWvE1B2WtvL/T3e8/PXChrAWx3i5MdS1ZXnXbjKuRrKUr9LZBTf8+Ki05B2tmuSiRtTu+e5nebp++ZdW69T7NzNKKfp2HH18ua4Fzbkfb826bdl5Zlvb9V92Hej/xHX+/mHup0zFC3de2f/Rid7cbf+GLuvau35a14ne3y9qaeyfcNuupHsuJBbL2c6uekrVnJ5a6bb6yfYes/VPvObKWnnWqrO28pstt868GXiVr5XJW1uIbdaaPlfQ+zcza/+4hWQuyOs/Sip+hwDGc3LHE70/ppefLWqeOFqs/t2t6x9PomKb5WtZ++gm3yb2/obNlxaPOht6xBjojzcy/V6AlLXtk0K0fOr9b1ooHdH+r79Vz0mS9308rsb4fnVo6oDfs0aXHCyvcNrfWdJtJqo93fdd+WXu20O+2Odmna0GpLmvZ0ZqsMcL5hCIAAAAAAACAl4AFRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATdPP6waAFjb8a6+Std6f2y1rO7eskrUwl7ptplldz4zp3//UVldlLbsz77ZZ69Rths7hJsVYt3nYv7Ukw7oeOY2mzm6Dbn0OzMzyTxdlrV7Ubcbtid5pR91tMzick7Xhl1dkrdfdK06YIPDrqTM2SiVZG/yl82TtLT/3gNvk3fteLmuFB34kawd+Rbf5y0s+4bb5ib0/59Zlm9UOWQsDP+uenFwtaxeevFPWzrpjQNY+2PEDt83LCjpDr7nyElkb/cULZO21//3bbpuP3K1zJ63oDLAw0rVEZy8wHYfO1XnW9y96vuPeAVPn3nk8nLERj4y4m+aH9DFF3V16v0PDjY8LaFJ9ib4vmJmlBZ3xUbnBvEXYMqDvuWZml/Y/K2sPHDpV1lYW9ZgbXePcx8zsqcpKWStGNX08z6/T2w34n5VLndN36iV7ZK1W6db7dFtsDXxCEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANC0zFw2/sd//Md28803H/W99evX21NPPTVHRwRgNs3nDNj36kTWgq0rZS1b1/uMe2tum7mdOVmrrq3qDYNUb7fKbzOI9Ou0SO83CnWtXo7cNq3LOaZRfVtKirrNdNK/nZX7dZuBc7xhJZC17IG83+ZK3Rn6+oZkLbNmtazVd+1221xo5jQDgga/U01jvelJq2RtvF/v95yif/3u3HyZrK1PH5e15Q/sl7XvTZ7strmqOCRrl7Zvk7V/HjxX1jqzZbfN0XpB1joyFVnbMbFU1r4Tne62+Y7vXSpra2Pd3/a+WmfAby550G3zi+9/v6yt+R/fkbUgq/Msreh+uRDN53nAgpJMv1+kzi27/tyuae5U368b8l5L2GB+4SgN6HlAulbP62xoeNptorFWy4Dso9v9H3jrmbI02avvRxnntlut+nPkTmfjTKjfJ3Q49/ol1+5x22wL9fua7SPLZK38VLesFfX0wczMRs7Q8/Int5wsa2eO7pU1511Uy5jTBUUzs7PPPtu+/vWvH/n/TGbODwnALCIDgNZGBgCtjQwAWhsZACxccz5aM5mM9fX1zfVhAJgjZADQ2sgAoLWRAUBrIwOAhWvO/4bi008/bf39/XbKKafYr/3ar9nOnTvn+pAAzCIyAGhtZADQ2sgAoLWRAcDCNaefULzkkkvsjjvusPXr19vevXvt5ptvtte85jX2xBNPWEdHxzE/X6lUrFJ58R/Hj4yMzObhAjjByACgtZEBQGsjA4DWRgYAC9ucLihee+21R/77vPPOs0suucROOukk+7u/+zt7+9vffszPb9q06Zg/2gpg4SIDgNZGBgCtjQwAWhsZACxsc/5Pnn9ad3e3nXHGGbZt29RPFdy4caMNDw8f+dq1a5pPHgMwL5EBQGsjA4DWRgYArY0MABaWOX8oy08bGxuz7du326//+q9PWc/n85bP52f5qADMlvmUAVFXVdbiCR2dXRcclrXBHyxz26z2JLIWDGVlLemsy1rmoN7OzKznB7pWL+na0h9MyNoz17tNWjiQ0/t9PJW1gdc5r/Ow/zrrXXrbQDdphQP6927j63UfMTOzOJClgd09shZdotts27Xbb3OBm9UMSGK3HFx4tqw9/Xu6v634kh7HjXSvG5S1f3j6W7J26R/dKGt//YFfcNv8+ic/JWtv+oW3ydrIGcf+U7Sf+Nf/6xa3zd/ZeY2s1VPd/6txJGv92SG3zWpFX7OJn3+FrGX7dNZ9e/Jkt81Vr3Pe6P4PXUp/6p/ztZr5NA+YdwJ9T7FU38iCBk/MDfwoPOHHM1cKz+t/Gjt2xhJZKz7u7DRo8NmcdLont3Ut9gyIG/wT7WhU3+cqp5RlrVDSc9LyQWdCb2b/9Iye76zs1sfbHul71X3nfMlt81d3vFbWdj2hH9CTH9e586q3Puq2+a9PvkzWOp+YV8tiC8qcfkLxfe97n23evNmeffZZ+853vmO/9Eu/ZFEU2Vvf+ta5PCwAs4QMAFobGQC0NjIAaG1kALCwzelS7O7du+2tb32rHTp0yJYvX26vfvWr7aGHHrLly5fP5WEBmCVkANDayACgtZEBQGsjA4CFbU4XFO+66665bB7AHCMDgNZGBgCtjQwAWhsZACxs8+qhLAAAAAAAAADmNxYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDT5vShLFjAwmj62ybxtDYb+NJZsjY5mXO3XffW70+rTWAq7U/p/jbWnZe1Va/Y6+53/7f6ZW3ldyqyFuf074aef63bpC15akzWooMjspYW9DnIrEn8Nu9uk7Web+2StfjXSnq7z+jzbmYWPrdP1ra/5zRZq/Sksnb2Kc+7bf74oZNlrba0LmtjK3W+6jOHE+3wh6uydsv6/1fWPvFr+l615Q9Odtt840lPyNp/G7hE1n7lvf8qa5HpPmxm9ovXv11vu/1ZWeuurpS1c//1RrfNj1x2t6zdvf/lstae1Tn4jUF93s3Mrn/Zo7L2i3/+PVl7qqJz+XvjJ7ttXrfyMVn70muulLXwW/pYgZcq7Op065EeVotKMFGWtXqBz9hgdoSFgltv2x3I2mhOz72XrBiStcLXO9w2ax06I555mZ5f/3yfnrNU0prb5s4/O0PWum4YlLWHL7xT1tbf+w63zb6vZWVtoldvl45NuPttdaQnAAAAAAAAgKaxoAgAAAAAAACgaSwoAgAAAAAAAGgaC4oAAAAAAAAAmsaCIgAAAAAAAICmsaAIAAAAAAAAoGmZuT4ALFBp4tTSae82ePnZstbTNiZrvcv3ufsdfNV5uvjQ4w2P64QLgultdxznFkfLrDvJredydVmrt+nt6s90yNqFr/+h2+Y/llbKWmWJjuuoovtF3Ftx20wj3Rdr/UtkLTM4IWth6PfTJV/fLmuHrzxV1g7sjmWtsNofU5Pnnaa3Pai3HT1fn7/tB5a5bUaTer9pW03WKkuy7n5xYgTZnFv/mb4dsvbdcd1Ps9/sk7W95Um3zZ7cuKzV00jWnhrT2fF/r7nfbfOfM5fLWpTTfTHd/pys9Tz0crfNNVcckrV1bbr2qnadHfcMnuu2OVovyNodB14ja8WoKmtLsjoHzcwGnZvF/t8ry1rft9zdAidU0irvBp25dxgzv8bsSMo6+83M/bjX6m/q99/7RnplrfpKPec0M8sc1vf6ZctHdZu1Tln7o/0XuW2WBvT8+vn9+r3UGV/9HVlb9qAfZoEzzitLnPdSBw64+211fEIRAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DT/2dqAkupHqzcyeMOlsrb67dtk7ey2Q7L2ivbn3DZ//L/3ydpD52fdbWfEcZw/nBi1ld1ufXIwp4t9dVnq2KZj9bmJHv+YlsSyNnSa3u/SJ5zjeazgtjm+SrdZ6dK/c+reHsha9oGi26Z1T8jSksf0OK+1L5O1aps/pnp+OC5rz7y5Tdayz+t+UF7h/04u7E50cZ++LpWlznY4YX58y8vd+n/r/v/L2sPjp8nalct/JGv/+2/f4Lb5n67fLGt7yt2ytrIwLGuXff8/uW12ffv7spa2t8vawG+9QtaGztGZZGb2T8MXyNo/PH2urP394EWy9r9e/1dum18+pI93XemgrH3lY1fI2lk3Pum2eXppv6yN7u6UtVVnr5e1+MmtbpvAf5SO63uumVk63XeDC2wumxbzshZVFtZrweLV/ryeAw6v04O141ndh4dK/iDPH9Jz+vGH9Nz7Hy/Qc+T8N/U9zsxs4g36eINJfQ6yI3ruHeshbmZmaaBfZ1jTNfj4hCIAAAAAAACAprGgCAAAAAAAAKBpLCgCAAAAAAAAaBoLigAAAAAAAACaxoIiAAAAAAAAgKaxoAgAAAAAAACgaf4zxI/T/fffbx//+Mdty5YttnfvXrv77rvtuuuuO1JP09Q+9KEP2Wc/+1kbGhqyyy67zG677TY7/fTTZ/KwMMN2feBn3Pr7//Pfy9pj42tl7dy23bJ2uN7utnl91xZZu3lPQdZes+G3Za1098Num5jfGVDryLr1IJvIWuZQTtbCmt5nJtT7fOEHdL3ancpa+w/2ytrwKWvcJvddpH+vlB0LZO3Q+XlZi8r6WM3Mtv9Gr6zFRb1t/pA+npM+t91tc/B1p8ha4FyWsKrbjNqci21m4UF9iw3qert6h3/+FpL5nAGnb/Az/H1O/l/w6z+QtS0Dq2XtlM8957b5n37rEVnbNH6trI3FejxevMJv86t/dYGsdX9D3x//ZePHZe3/OniZ2+bq3KCsVcd1vp7xO9+Vtff96Q1um2//+a/L2nPlpbK2/0o9zn+xtN9tc7BekrVT/l7vN35yq7vfhWQ+Z8CCk07v3pCUy27dm7fMmEDfW2dKvVuPx8x4PL2dpg3mdSADXqLMhO5T9YI3Z9f7zI74nyGb7NVtBrEeq4VHOmVtoq9BXp02LkupMw/I7I1kLaz7baZ6UyscWDxz79k2o59QHB8ft/PPP99uvfXWKesf+9jH7BOf+IR95jOfsYcfftja2trs6quvtnKDGx+AhYEMAFobGQC0NjIAaG1kALC4zegnFK+99lq79tqpf6Oepqndcsst9oEPfMDe9KY3mZnZ5z//eevt7bUvfelL9pa3vGUmDw3ALCADgNZGBgCtjQwAWhsZACxuc/Y3FHfs2GEDAwN25ZVXHvleV1eXXXLJJfbggw/O1WEBmCVkANDayACgtZEBQGsjA4CFb0Y/oegZGBgwM7Pe3qP/llZvb++R2n9UqVSsUqkc+f+RkZGZO0AAM4oMAFobGQC0NjIAaG1kALDwLainPG/atMm6urqOfK1Z4z9sAMDiQgYArY0MAFobGQC0NjIAmF/mbEGxr6/PzMz27dt31Pf37dt3pPYfbdy40YaHh4987dq1a8aPE8DMIAOA1kYGAK2NDABaGxkALHxztqC4bt066+vrs3vvvffI90ZGRuzhhx+2Sy+9dMpt8vm8dXZ2HvUFYGEiA4DWRgYArY0MAFobGQAsfDP6NxTHxsZs27ZtR/5/x44d9thjj1lPT4+tXbvW3vOe99hHPvIRO/30023dunX2wQ9+0Pr7++26666bycNqLUEw/W3TVJai5ctl7c/e9hfubv/P7W+QtbOWTP33MszMfjC+WtZ+pmObrJmZPVbW2/ZHz8na1z/1KVnb978qsmZmdtNz17l15fPrvipr1592ubttUi5Pq82ZMp8zoNrlx19aTmQtM6rHVa1N7/Ocjj1umw/XT9PH4wzlp9+l+3e9v0GfGM3KUuD8zikz4RxQg9ipd+hsSUqxrNXqesfb/+upbpu1Ln09C/v060ycbtLZPum2OZIr6GJOl9JIn5+w4OzTyIATacWt35G1Pbfq7Vavr8na8CV6rJqZFQLd/09v2y9rT4+vkLXOrN8nPn3JX8narlcslbWP7LtC1irewDGznsy4rJ31356RtbRNB2ytU587M7Osc27bIn0/P/OkvbL2jf96mdtmdN/3dM10bTFZyBnQKrz5xcw1qu9z/nb+OPdUl+gbb+mBrbLmttjodYSRriXTfy0LCRnw0pR26r8JWb6yW9ZyI3oum2vwZyaDWG8bOVOI0OnCZT19eGHbHfp+Xhx3QskZct6xmplVluj9lvbp9wnwzeiC4iOPPGKvfe1rj/z/TTfdZGZmN9xwg91xxx32/ve/38bHx+2d73ynDQ0N2atf/Wq75557rNDgDROAhYEMAFobGQC0NjIAaG1kALC4zeiC4hVXXGGp85ubIAjswx/+sH34wx+eycMAMEfIAKC1kQFAayMDgNZGBgCL24J6yjMAAAAAAACAucWCIgAAAAAAAICmsaAIAAAAAAAAoGksKAIAAAAAAABo2ow+lAWzJPAere48W72B8IKXydrAh/Vz4p+tLnP3+ytrHpG1ZyaXy9qblnxP1u4fO9Ntc3XusKx9v9opa7VUD5FX5Ktum589+R9kbVes1/KfqEV6p2ec7LZpjz/l13HExPJGv09JdCWntyoc1LUfjq70m4z0eA1rznbeMB/Nuk0u+zd9HsKa3nEa6typdjmZZGaZcV2b6NPHW+vUx1Pr0tfLzKz4vB5XuVHveHSb5yzf67b53UeXylp1mc7QNOO8lqx/Pa1c9ut4UehkrZkFWZ3/aaUia/HWbbLW5tTMzIb+pw6Xu358oax95Pwvy9pXD5/ntvmp518va4VIB8+yvB7InRm/Hz5X1mPDlnTJUjg+KWun/5W+JmZm2Z/VY+6Ctp2y9vgrdAZEtsdtc9pmaF6Hl2i+XQcnszKr9Pyivmu3u1tnqmvRy86QtfiHP3b3O9/U2vX5S9f2y1rmYFHW6gP7/EYTnTvAVMIDQ7LWvqNH1gqDeu44tsp/z5Mf1LXEyYfQ6d5dT7tNWlzQ+Zo607O68/DvTMXP5Zrz1r0wWHe3hcYnFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNcx4EjtkWZPTlSOvOo8xT/xHpnkNvv1TW/vNN/yxr9+w7W9bu3HWx2+aK0qisrWs7JGuH43ZZu7i03W3zmeoKWTvk7LcvMyxrX5tY67bZEU7KWiGo6Vqoa+tv3+a2+aML3TJ+SnbcHzdBRf++JXSGY3ZM7/eUtoNumw9mTpG1/GAga2PnlWUt91zebXPwTF1Ls7oW91RlLbM/57ZZ74plrePHOgerzq/Aogn/92O1Tn1dglSf22qfHo8/2N/vthnpy2KF3nFZq+zWmRQE+ljxEiW6H5qZpRVdD/J6XKWViqxl1p3kttkbPSBra3/5B7L2kS+/QdZ+ed2jbpuTsR7o3Tl9HxupFWTtcLXktvk/Vv+DrP3ni94naz3f2iVrJ/25f3/8/I5LZG3oyaWydvLP6oEcbvbPbVjQ5ygpOwFxHPM6nEDz7Drs/oK+YZ/dOyBrI9VV7n77fnO3rNU/p89BMdMra8+PdrltJs6prceRrJXyeu5x4HCn2+Zp/1O///jtu78ia18f0u95/nXb+W6by75clLXuR/bJWrxth7tfLF5pWc8hPEnkzA8bRFnirAilejha4ky9k+xxzFcTXQqc1+JM51+oZ/QP5PdPTOdwYHxCEQAAAAAAAMBLwIIiAAAAAAAAgKaxoAgAAAAAAACgaSwoAgAAAAAAAGgaC4oAAAAAAAAAmsaCIgAAAAAAAICmOQ8JXwQC/WjwIHKegW5maeI8kzyJp3tEfpv1+rS2i152hqytuv15d9sr2/5V1u567pWyFjjPbL+q/ym3zZ/vfEzWflBeI2sjcUHWttZWum32Zodl7XC9XdZqqR4i2cC/XiuiUVnbXluhN3S617ml3W6bP7I+t44X1XV3MjOzNJ/IWmWp3q40oHPnF5y+b2b21+VLZc073syevKxV+mtum/k9WVkLJvXvnPIHdZvlXn3uzMyygzp/q13OdiP63FaW+W1azik9p2t15/wMZ0t+m2eWZSk9qLcNMjpfg6VL/DZHRvw6Tox4mvOAur/dzXuvlrWoU4+bdUsOyVpXZqLxcQmV2LkHhvq1JLEeq2ZmXx07W9YO6KmHvetDD8taIfSz7t6n1sva+g89KmvBmn5Za9QLkqp/TJjnQue9gvde4OJzZekf7v6c2+TZd/5XWculel555dIfydrWCX9u+JWPnSNr7+/X7xMO1jtk7cf5XrfNjJMf1UTnztriYVl7OH+y2+aBD7fJ2vJI3zsT03l2Su9Bt82rPqCvyz/8/utlLb9th7tfLF7p5KSsJXpKavWis1P/lmzO23pzSpY22K/bphOh3vF4B+RuZ/75C6rTW4cBn1AEAAAAAAAA8BKwoAgAAAAAAACgaSwoAgAAAAAAAGgaC4oAAAAAAAAAmsaCIgAAAAAAAICmsaAIAAAAAAAAoGkzuqB4//332xvf+Ebr7++3IAjsS1/60lH1t73tbRYEwVFf11xzzUweEoBZRAYArY0MAFobGQC0NjIAWNwyM7nz8fFxO//88+23fuu37M1vfvOUP3PNNdfY7bfffuT/8/n8iTuANNWlev3EtXOCJK95uaw9+8aCrP3xm/5O1p6cWOW2+f2RNbL2qt5nZe3M4l5Ze2pypdvmv46eK2srs0Oy1hZWZe3lxWfdNidS3a8erZwka9vLOVn75SXfddvsiyqytqVckrVCUJO1pZkxt835Zs4zwJHkArde2KvjMY10tkwu0/tdHk26bQZ1vW2Q6O1S56UE437MJ7qLm9fdal36HCSl2G3T0kiW8oP6xdTadZv5w/7vx+ptetuJfr2dd34a6e8dkrUDj/TKWq1bX+y0ODvj40SZzxkwF5Il7W79ob9fK2urq9+Ttcd3nSpr/33NP7ltfvPQellbUxqUtUqis6WU1/drM7PHx1bL2sY3fEnWvjWsj7UY+W2u+0udLQd/Vc+/lj982N0vfAs6A5IG9zJhx3V6nJ/5Dxvcbdd/QI/z+OKXydqtr7xO1lb824Tb5lf/+lOyduVXb5K1nkf1vbzRHMubt8TO5f/RgL4/jq7x5wGbf/fjsvbz//19sjZyij7YdX+l3w+Zmd10/zOydteyq2VtnoyAE2JBZ8BcCHU/9t4LHA9nWm6BF4PH89E0Z9t0mq8zrOm5vpmZefutTy/vMcMLitdee61de+217s/k83nr6+ubycMAMEfIAKC1kQFAayMDgNZGBgCL25z/DcX77rvPVqxYYevXr7d3vetddujQobk+JACziAwAWhsZALQ2MgBobWQAsHDN6CcUG7nmmmvszW9+s61bt862b99uf/iHf2jXXnutPfjggxZFx372tlKpWKXy4j8jHRkZmc3DBXCCkQFAayMDgNZGBgCtjQwAFrY5XVB8y1vecuS/zz33XDvvvPPs1FNPtfvuu89e//rXH/PzmzZtsptvvnk2DxHADCIDgNZGBgCtjQwAWhsZACxsc/5Pnn/aKaecYsuWLbNt27ZNWd+4caMNDw8f+dq1a9csHyGAmUQGAK2NDABaGxkAtDYyAFhY5vQTiv/R7t277dChQ7Zy5dRPCc7n86391CdgkSMDgNZGBgCtjQwAWhsZACwsM7qgODY2dtRvF3bs2GGPPfaY9fT0WE9Pj9188812/fXXW19fn23fvt3e//7322mnnWZXX331TB6WmZlFp61z69XVS2TtwAUFveEVg7KUpIHb5qqu/bJ2eqAfg/7Z514ja935SbfNzpyud2V0bTTR52Cg3Om2eWZxr6ytyurzN+K1We9y22wLq7L2+o4nZe3e0bNlLUn9D/j+zfDLZW001q9lde6wrIXu8+7NopedMeX307hi9pS76YyYzxkQ1P16eaX+gY4f6+gsL9dj9Yuj57ttplm9bbVb1zITOlvSjN7OzCyo6Vqc19vW23RfzB72by3euZ/od/Y7ol9no+sZTept46J+nbkhvV3hTD9f9+zv1seTdTbsdC5KPXbbnG/mcwbMheQHW936hrv0POBj5+pzctYH9B+w3/yPZ7pt/sW6f5S1tz59vaz1Fkdlrb1QkTUzs7pz//za4ZfJWldWj7lXtu9w23z60GmytmRSB0j8pH/NXMnCGq8zYbFmwKH/cqmsvfJn9YRrz0d0PzQzi/pWyNpYb07Wam16nwcvKLlt/tqTb5O1jm36fj56ir53Rv7t0Z1fZEf1fTfJOPMAf7pjv/vcL+ptE71xea2+J4+ds9xt86xv/7qs1fVbDNPvQheexZoBcyF05rpezRqMDW+Jwl298N+W+py30emxfzrzxdpx/Ptad78lFqmna0YXFB955BF77Wtfe+T/b7rpJjMzu+GGG+y2226zxx9/3P7yL//ShoaGrL+/36666ir7kz/5E37rACwSZADQ2sgAoLWRAUBrIwOAxW1GFxSvuOIKS1O9JP4v//IvM9k8gDlGBgCtjQwAWhsZALQ2MgBY3ObVQ1kAAAAAAAAAzG8sKAIAAAAAAABoGguKAAAAAAAAAJrGgiIAAAAAAACAps3oQ1lmS9SzxKIwd8z3t926Wm5zWu9Bd5/rSltl7ZxMRdaeGVsma6NV/2lVhUg/7315YUzWTivtl7W4wbPVs84z5nuicXdb5ZeXPzKt7czMDsXtsrYme2ja+x2KS7JWTrKydmp+n6xtr61w21yZHZS19YWyrA3UumRtaaT7gZnZ/kuXTvn9uFo2e8rdtOVkx/UfiDYzs0SXysv1tqU9gazduf0it8kg1tuaU4qL+njSBimfmdA7nuzTJ8E71iTjn9tMRedSGjivxYmzuOA2aWFV17zjzR/W241/f4nbZvfLdWaN7nXuB8M6k5KOBi8UzQucQWVm5vwR+ekKi0W3Puzcq2659C5dO/Wtsva5H1/qtvnJ4dfK2hm/9T1Z237PybL21mUPuW1+qXahrIWmz3tffkTWvnLwfLfNtZ99Vtau6n5S1v7vM05x9+sKI11LnZvMDPQ9nFjO1NF2jup7w8TJ/k15crl+71Lt0JlVPl3PK6v7/fcftfv1fLbWrftisM55n/Ckns+b+fOW+mr9Pius6XvgZK8zpszskS2ny1r6mljWLln/jKx971Xr3Tb7P6ePd/eVjHMcK8hMb3kmdW43x7OtMy33+cPRUu8tj9NmpOPB4pw/rwv0MLdyr55/HbvKhJ/GJxQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATZvec8nnmSCbtSDMHvP9U/+0Lrepta9w9/ndC0+WtcpS/SzzypqqrPWvHHTb9JxUPCRrYaCfy74uv9/db2dYlrVSqJ/LXghq7n49SarXsZ+vL5G1oVg/zr07mnDbrKXT6+r/R/seWdsb62ttZpZ1nlz/rcmTZG00KcjaD8pr3Dblrwj41cEx4rxfD2r6pGXG9cUtL9f5UB3WfdjMLA31ttlh3ebkqbovFp7NuW0mTjnntBlWnONZ6+dDcmxcH1Ec0Od9sk9nXcaPAIvK+niDWNc6duv7SBr6uXLa6w/K2hNjS/WGgT4HSc5v04kd/EepHm8zJorcctkZHP80eL6sXf+Jf5W1CW+Qm9nXz+uWteCCl8la9qP6XvXgn5/utlkMdWaN1PR+d072yNqy/Pi026yl+rpkTl4ra/Vnd7pthjl9PZOynn9h/hvv17XMXb2yNnaN3087vtkma9VOvV1a1n04O+bfGcrO+5o00rXM0/pYg9ht0r3XVyf1BK3erveZLvXn5YEzx7JhnZP7JjpkLTPqn9s9l+t79lWXPypr2929YlHL6j7j3Kos8aaHDSaHjcbrdASNplheXU/3LXXeQ5R7/BcaVXSj5R59Av1ZFFhmAAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATcvM9QGcCGmcWJomx3w/GJuU22Qnq+4+V3/5sG5vsixrQajXaJPBIbfNWt8KWfvKZVfIWrUj0G1mdc3MLDj2tP1ULZW1NND7DVK9XaNjyow7bUZ6n2mDpfGwpmv1Nn08H57Qx5Nk/TYzE7qWG9MnPlN2Lop/aq33qb1Tfr+eVPwNW1C95I8NC/V1yA/qzYbP1NtFe/Juk3GH3rbcH8tabq/ujHHJ7zS1ZXpwtD2dk7VKj95vNOYMVjMrPa8H7OhZ+nhCZ79pg8s5sc4JgcTJpEl93rPj/i30Vd07ZO0JWy9r9a66rCUF/9z6Vcy1wLl3mpllA93fqonub4P1Nln75z0vc9vsLO6TteDZPbKW/cGorH3n4Clumxf27JS1czuel7X/1PmorH18/5VumzVnEvFcdZnesOLPF13OnBALW9v5+n1C4ZEuWfudcx5w9/vpXVfLWv8D+t5Q69T5kGT8eUBuSOdSVNG1uKD3GepD/ff9OkVn2FSWTH+OnA7qOU3+kM6HkbV67rbkaed4zKz9t3fL2vcOrJa1Ltvm7heLWK++H3lz3TTyin6TztRjxj5+5rXpvecPne3igj/Hyg3rEzG5XL/QTnevYKYDAAAAAAAAoGksKAIAAAAAAABoGguKAAAAAAAAAJrGgiIAAAAAAACAprGgCAAAAAAAAKBpLCgCAAAAAAAAaFpmpna8adMm++IXv2hPPfWUFYtF+5mf+Rn76Ec/auvXrz/yM+Vy2X7v937P7rrrLqtUKnb11Vfbpz/9aevt7X1JbcUHD1oQZI8tHDggtwnb2tx9Bj1LZC3tW6o3HC/r7VYvd9tMxyuy1vP1Z/SG1Zquhf7j0z1Bdopz+u+SkdFp79cC77H2+nHuQbGgt4u95903kM/rWkVfk6BYdHebJsm0Dsc771av+xsXxGuZ5rEcj9nMgOmIne5kZu6vW+pOfIRV3b+LB/zxWD7JyY9dJVlLvC7T5feZYFzfBiZX6n4TVvRriUt+fxtbp8d5OB5Nq800o/dpZhZU9QVNs/p4J5fpk1va72Svmd136AxZq7c5x5vq11lr82/b+uzNvvmeAcclmObvY3POYDWzWqqvYOz0i2yg74Hx/7PCbTOt7JS1savPkbXafzkka6tzQ26bv9j1qKx98Df/i6z9zfk/J2v/x3/5htvm/mqHrIWBk1n5nLtfT1pz8neac6GFZDFnQD6rr23b156Qtb96+0XufuMefV+pdOn8CE4Zl7X6Hj1/MDOrLtX5ETi5k4a6n0ad/v0xOajn3mm7PrfFLj1PiiJ/7jHp3OsrHTp7N56us+V/2//htukZu19nc5dtm/Z+55PFnAEzZXS9XoPITOoxl0Z6rIaN3iYvoI+YOdMdc6ZQZmaWOFPo2FkOgG/Gus/mzZttw4YN9tBDD9nXvvY1q9VqdtVVV9n4+Is3vPe+9732j//4j/aFL3zBNm/ebHv27LE3v/nNM3VIAGYRGQC0NjIAaG1kANDayABg8ZuxTyjec889R/3/HXfcYStWrLAtW7bY5ZdfbsPDw/YXf/EXduedd9rrXvc6MzO7/fbb7ayzzrKHHnrIXvWqV83UoQGYBWQA0NrIAKC1kQFAayMDgMVv1j7gOjw8bGZmPT09Zma2ZcsWq9VqduWVVx75mTPPPNPWrl1rDz744JT7qFQqNjIyctQXgIWBDABaGxkAtDYyAGhtZACw+MzKgmKSJPae97zHLrvsMjvnnBf+Hs/AwIDlcjnr7u4+6md7e3ttYGBgyv1s2rTJurq6jnytWbNmpg8dwAlABgCtjQwAWhsZALQ2MgBYnGZlQXHDhg32xBNP2F133XVc+9m4caMNDw8f+dq1a9cJOkIAM4kMAFobGQC0NjIAaG1kALA4zdjfUPyJG2+80b7yla/Y/fffb6tXrz7y/b6+PqtWqzY0NHTUbyX27dtnfX19U+4rn89b3nsiL4B5hwwAWhsZALQ2MgBobWQAsHjN2IJimqb27ne/2+6++2677777bN26dUfVL7zwQstms3bvvffa9ddfb2ZmW7dutZ07d9qll146U4d1RPJTT5d6yfUZ+kVIoye6t7yJibk+gqMNDc/1ETStntZmvc35ngHZUb8e1AJZq3akspbkdW31Vw+4bT7du0zW4t6K3nAoJ0tBwU+WcCzSNecchBWnVtP7NDMLYr1t4Bxu6HTjqKr3aWaWOoc07vxrmfE+vWHX13/sttlbqMraU852YVn/44Fqh9ukFfzyrJrvGTAXgow/7eqIyrKWDRJZe2p86jdeZmYfvvkv3DY3ve0NsrayuE3WfmHZ92VtZ1VnmZnZy/P6tWT+bas+nn/T+/yN9z3itvkne6+Wtch0blt4HP+YJ3RyKXXaXCQWcwb88ppHZe1fJjplbWRrj7vfYIW+1weJM79YOiRrz+4puW1aTo9HG9eZlRvRY6Pe4c87vXt9WtX7nRzWd7moWHfbTPc52zrznXsOnStrsZ5+mZnZcEW32f+tefa+ZgYs5gyYKZVO3f/TSPfTRn3RE8zB7Sh1bo+JM2cPnO28XGkkO6ZPQuYk/Uah/hyfkJ2xBcUNGzbYnXfeaV/+8peto6PjyN9B6OrqsmKxaF1dXfb2t7/dbrrpJuvp6bHOzk5797vfbZdeeilPdAIWATIAaG1kANDayACgtZEBwOI3YwuKt912m5mZXXHFFUd9//bbb7e3ve1tZmb253/+5xaGoV1//fVWqVTs6quvtk9/+tMzdUgAZhEZALQ2MgBobWQA0NrIAGDxm9F/8txIoVCwW2+91W699daZOgwAc4QMAFobGQC0NjIAaG1kALD4zcpTngEAAAAAAAAsDiwoAgAAAAAAAGgaC4oAAAAAAAAAmjZjf0MRAOazJDf9bbNjgazFp1R17UdPu/vteGaZrOXOGZG1A4N6u2SiQcw7f94mzutiqk+BpZH/N3Ma1eV2WWe79rq/bVX//uzkdftl7bmgT9Z6BwfdNitJp6yFuptYrTORtTTk94CzJnA6eejUHPGaFW49DLbK2uqi7m87JpbK2v97+JVum2/uf0zWhuOirD012S9ra/OH3DYv/MT/T9bWBN+XtSCng/t/HbjcbfPs9udlbbhekrV0mtfazMyS6WUd5r9lGX1PNtPZ39CQ7uNJpPvijj16HpAf9u8b1dSZJzjdPz51UtYS53WYmQUZPTaCNud+Pqj3G8f+WA2XV3Tx+YIsPTe6RNaSjN/mknxZ1sZW6WvW7u4Vi1mc17WwqsdNnNN9MYinfzxp5NScaGk4W9VTXYucObLHO1Yzs7igz1FmXJ/b6ho9xwqf29XwuBY73pkAAAAAAAAAaBoLigAAAAAAAACaxoIiAAAAAAAAgKaxoAgAAAAAAACgaSwoAgAAAAAAAGgaC4oAAAAAAAAAmsaCIgAAAAAAAICmZeb6AABgPkpKsazV2wK9XV3XGlnydFXW7r3g72XtN5ZcPu0260kka/moLmuZIJG1YqRfh5lZPtT7zQb6vJec/S7LjLptlsKKrJ2d3yNr//mB97j79WzZs0bWqkv0+fN+1eecOrxUQYOxmqa6ljg1x8gpbW79U/98jayV9uiO8Qu//oCs7a10uW1+b3StrIWmX2dPblzW+rODbptdrx3Qxf/lZO9Z+lhH6tvcNu8/dLqs/Vrfw7L2UOk8d7+ucPr3A8y96PRTZK0z8vubsvZrNbe++3XZae3XGaqWRH5eJUXnfuRsGya6f3f/0H+LOXKqbjOT1ze6WpczphrMv5IRfW5z43rbPXt6ZK1wst/mge0rZe1l33pW1rjVt64kp/tUUNfjMXGiI+tPyy31PmKmb8kWeNHixIqZuXPd1NnWbfM4ePutt+k8y83AsSw0fEIRAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DT9DGwAWMTCml+PRiNZq3alert9+ekekmXu3SJrP3/xz8va/p9bK2sTfYHbZr2kX0u9XdeCRO8zKvttmrdtVW8bTertigf1sZqZtQ3UZa1w/5OytnbiO+5+PZVyTtbSrD7ezIjue8On+Oe2o/Fh4SdSv8/MSJMNfo3b8az+gb5vDcraf3vvQ7L2vuev8tvMlmUtG8SyNh5PP+smKnps5H72HFn70Kc/J2sjScFt89bTz5C1//nPPydr2VM6Za34uNukL3DG8hz0TRzr4M/0ytrf7b/I2VKP1cJ3n3bbzL38bFkrL9PbpXWdHbVu56ZrZkGbvj/aUFa36YzjsbXT78O1g0XdZlFnUjgy/be1VeccZUtVWSuv8ffb+bg+R/W9Aw2PC4uQl/3mzxMi572Lc7tuOPdI9bTTUu9W5WznHU+jejDN+PCO1czMK3vva6pdOlv0CG8dfEIRAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DT9DOzjtGnTJvviF79oTz31lBWLRfuZn/kZ++hHP2rr168/8jNXXHGFbd68+ajtfvu3f9s+85nPzNRhAZgl8z0Dau1+PXHSMZoMdNEpHY/67udlred2pzYTB7PIJDO03/wTRVmbOKUma3E+lbXl368f1zHNpvmeARYcx2BNp9dreu571q3XTumTtZEzOmVtKNHHU0v93x3vnuiWtSW5SVkbredl7aGx09w2X9G7W9ZWfnRY1p6tLZO1m79xndvmmW1PytpfvewvZe2G6Pfc/XoCp4/pUb54zPsMaGByhb5+53fqPvwNa5O1eEj3bzOzZU/oe8PIGj0xaX8qJ2tBg7gaX6VfZ25I50eS07243ub38MyYbrPWo7ft/IF+nRN9Ddoc122Gzq01PawnjKFzDszM8sOtMNK1hZ4BMyHM63tn4411yRvnsR42L+xWx45Z5NSOo3snWafoTM/Cqq5FlQZtOu/tvKlSPT9Db+4WiRn7hOLmzZttw4YN9tBDD9nXvvY1q9VqdtVVV9n4+PhRP/eOd7zD9u7de+TrYx/72EwdEoBZRAYArY0MAFobGQC0NjIAWPxm7BOK99xzz1H/f8cdd9iKFStsy5Ytdvnllx/5fqlUsr4+/Rt5AAsTGQC0NjIAaG1kANDayABg8Zu1v6E4PPzCR/x7eo7+B3h//dd/bcuWLbNzzjnHNm7caBMTE3IflUrFRkZGjvoCsDCQAUBrIwOA1kYGAK2NDAAWnxn7hOJPS5LE3vOe99hll11m55xzzpHv/+qv/qqddNJJ1t/fb48//rj9/u//vm3dutW++MUvTrmfTZs22c033zwbhwzgBCIDgNZGBgCtjQwAWhsZACxOs7KguGHDBnviiSfsgQceOOr773znO4/897nnnmsrV66017/+9bZ9+3Y79dRTj9nPxo0b7aabbjry/yMjI7ZmzZqZO3AAJwQZALQ2MgBobWQA0NrIAGBxmvEFxRtvvNG+8pWv2P3332+rV692f/aSSy4xM7Nt27ZNGSD5fN7yx/NkJACzjgwAWhsZALQ2MgBobWQAsHjN2IJimqb27ne/2+6++2677777bN26dQ23eeyxx8zMbOXKlTN1WABmyXzPgP77x9167eYhWXtuq/7D0e3PRNM9JF8QODXnz+Em8Yk/loUonIHr0uDcLv9+Tdb2nFeVtTXrBnWT/9zb+LjmifmeAZam0980md62yeCQWx/c2ClrSz+k+9Pnhy6WtVd07nTbPLewS9YOxe3utkqS+n+i+0BOv87huChrV5aekbXPf9Efj0FWT3kfq/TLWqVLv5Y2t0UzC53zcBz9b6GY9xnQQMeuRNa+ffjYhY4XDUy7zQPnZ2Wtfv6YrP36Wd+Vte0Ty902i5HOljNK+rUM1vUIyAb+ePzx+Aq3rkQXTn/cTMb63Jbruvb0wWWytqxt0m1zdLC1HzSy0DNgJgRd+v5nZpY6032v5g25BsPRNd39Bsdxiwt09LqSXIP9OsfrnvdZe+rIwjRjC4obNmywO++807785S9bR0eHDQy8cEPq6uqyYrFo27dvtzvvvNPe8IY32NKlS+3xxx+39773vXb55ZfbeeedN1OHBWCWkAFAayMDgNZGBgCtjQwAFr8ZW1C87bbbzMzsiiuuOOr7t99+u73tbW+zXC5nX//61+2WW26x8fFxW7NmjV1//fX2gQ98YKYOCcAsIgOA1kYGAK2NDABaGxkALH4z+k+ePWvWrLHNmzfPVPMA5hgZALQ2MgBobWQA0NrIAGDx41+EAwAAAAAAAGgaC4oAAAAAAAAAmsaCIgAAAAAAAICmsaAIAAAAAAAAoGkz9lAWAJjPggcfd+v7v3GprHWN6u16HxyWNf9PUzfg/WHrND6ePS8cQaBrDf7wtyWzf47yX/03WTtt26nOlllZiX+s94n5LymX3fqpSw7K2vd//kxZC1/XJ2sn3zPhtvnZv3qDrK26X287/sERWTs43O626clk9Fj9QvRyWRv9DT8D2l5+tqx98C91rXdPzd2vJ41bJJsXqY67HpK13Uv0HKHzXwuydvhf+t02J06rytqav9H7/Yfu18pa6UDdbTMN9b31STtP1oK6HnNh7I/H1LudO8eTHdOvJY2cnTbYb+DMIZZ2OW+X0za3zZW7Z2hOiIWr6t9TkpxTi3Uf9rZLG3yELI28oi6F0789Tp8/zH3uypfecfFgchyNLn58QhEAAAAAAABA01hQBAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNMW9FOe039/IlfdajwqC3DU7YXHcKWNnoS7wBxfBviPCYsr+mmssX4Io9Xjiqyl6Vw8Dm0xOY6nPM8zqdNPPPE0+xAZcKIbdp74dxxPXa+N63DxMqme6O2qY05gNdpv3amN6z6cTEx/ehln9LkNIl1LJhtlulNz+k69psdc2GA8Bs6jNWf7fkAGnFhxdXpjwxtvZmbJpB6v9ZruT3FVP6a1Xpv+U5497lOek+N4ynPgPI257jzl2dupTf8pz/Wa95Rnt8l5NSckA+aHNJ3+PTlwNo2dj4nN1FOe5+RtzfE85dnjzRFqeu5RX0Dv7WYqA4J0AafK7t27bc2aNXN9GMCCsWvXLlu9evVcH8YJQwYALw0ZALQ2MgBobWQA0NpOdAYs6AXFJElsz5491tHRYUEQ2MjIiK1Zs8Z27dplnZ2dc3148w7np7HFeo7SNLXR0VHr7++3MFw8f+mADHhpOD+NLdZzRAbAbPH27xNpsZ4jMgBmi7d/n0iL9RyRATBbvP37RFqs52imMmBB/5PnMAynXF3t7OxcVBf/ROP8NLYYz1FXV9dcH8IJRwZMD+enscV4jsgA/ATnp7HFeI7IAPwE56exxXiOyAD8BOenscV4jmYiAxbPrycAAAAAAAAAzDgWFAEAAAAAAAA0bVEtKObzefvQhz5k+Xx+rg9lXuL8NMY5Wti4fj7OT2Oco4WN6+fj/DTGOVrYuH4+zk9jnKOFjevn4/w0xjl6aRb0Q1kAAAAAAAAAzK5F9QlFAAAAAAAAADOLBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0LRFs6B466232sknn2yFQsEuueQS++53vzvXhzRn7r//fnvjG99o/f39FgSBfelLXzqqnqap/dEf/ZGtXLnSisWiXXnllfb000/PzcHOgU2bNtlFF11kHR0dtmLFCrvuuuts69atR/1MuVy2DRs22NKlS629vd2uv/5627dv3xwdMZpBBryIDPCRAYsTGfAiMsBHBixOZMCLyAAfGbA4kQEvIgN8ZMCJsygWFP/2b//WbrrpJvvQhz5k3/ve9+z888+3q6++2vbv3z/XhzYnxsfH7fzzz7dbb711yvrHPvYx+8QnPmGf+cxn7OGHH7a2tja7+uqrrVwuz/KRzo3Nmzfbhg0b7KGHHrKvfe1rVqvV7KqrrrLx8fEjP/Pe977X/vEf/9G+8IUv2ObNm23Pnj325je/eQ6PGh4y4GhkgI8MWHzIgKORAT4yYPEhA45GBvjIgMWHDDgaGeAjA06gdBG4+OKL0w0bNhz5/ziO0/7+/nTTpk1zeFTzg5mld99995H/T5Ik7evrSz/+8Y8f+d7Q0FCaz+fTv/mbv5mDI5x7+/fvT80s3bx5c5qmL5yPbDabfuELXzjyMz/60Y9SM0sffPDBuTpMOMgAjQxojAxY+MgAjQxojAxY+MgAjQxojAxY+MgAjQxojAyYvgX/CcVqtWpbtmyxK6+88sj3wjC0K6+80h588ME5PLL5aceOHTYwMHDU+erq6rJLLrmkZc/X8PCwmZn19PSYmdmWLVusVqsddY7OPPNMW7t2bcueo/mMDHhpyIBjkQELGxnw0pABxyIDFjYy4KUhA45FBixsZMBLQwYciwyYvgW/oHjw4EGL49h6e3uP+n5vb68NDAzM0VHNXz85J5yvFyRJYu95z3vssssus3POOcfMXjhHuVzOuru7j/rZVj1H8x0Z8NKQAUcjAxY+MuClIQOORgYsfGTAS0MGHI0MWPjIgJeGDDgaGXB8MnN9AMBc2rBhgz3xxBP2wAMPzPWhAJgDZADQ2sgAoLWRAUBrIwOOz4L/hOKyZcssiqJjnrizb98+6+vrm6Ojmr9+ck44X2Y33nijfeUrX7FvfvObtnr16iPf7+vrs2q1akNDQ0f9fCueo4WADHhpyIAXkQGLAxnw0pABLyIDFgcy4KUhA15EBiwOZMBLQwa8iAw4fgt+QTGXy9mFF15o995775HvJUli9957r1166aVzeGTz07p166yvr++o8zUyMmIPP/xwy5yvNE3txhtvtLvvvtu+8Y1v2Lp1646qX3jhhZbNZo86R1u3brWdO3e2zDlaSMiAl4YMIAMWGzLgpSEDyIDFhgx4acgAMmCxIQNeGjKADDih5vSRMCfIXXfdlebz+fSOO+5If/jDH6bvfOc70+7u7nRgYGCuD21OjI6Opo8++mj66KOPpmaW/tmf/Vn66KOPps8991yapmn6p3/6p2l3d3f65S9/OX388cfTN73pTem6devSycnJOT7y2fGud70r7erqSu+777507969R74mJiaO/Mzv/M7vpGvXrk2/8Y1vpI888kh66aWXppdeeukcHjU8ZMDRyAAfGbD4kAFHIwN8ZMDiQwYcjQzwkQGLDxlwNDLARwacOItiQTFN0/STn/xkunbt2jSXy6UXX3xx+tBDD831Ic2Zb37zm6mZHfN1ww03pGn6wqPiP/jBD6a9vb1pPp9PX//616dbt26d24OeRVOdGzNLb7/99iM/Mzk5mf7u7/5uumTJkrRUKqW/9Eu/lO7du3fuDhoNkQEvIgN8ZMDiRAa8iAzwkQGLExnwIjLARwYsTmTAi8gAHxlw4gRpmqYn5rOOAAAAAAAAABa7Bf83FAEAAAAAAADMHhYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0LTMXB+Amdmtt95qH//4x21gYMDOP/98++QnP2kXX3xxw+2SJLE9e/ZYR0eHBUEwC0cKLExpmtro6Kj19/dbGM6/3yOQAcDMIgOA1kYGAK2NDABa24xlQDrH7rrrrjSXy6Wf+9zn0ieffDJ9xzvekXZ3d6f79u1ruO2uXbtSM+OLL76a/Nq1a9csjOqXhgzgi6/Z+yID+OKrtb/IAL74au0vMoAvvlr760RnQJCmaWpz6JJLLrGLLrrIPvWpT5nZC79lWLNmjb373e+2P/iDP3C3HR4etu7ubnu1vcEylp2Nwz0umb5et54u6ZS1YLIsa/XleruD57W5bdZL+jc5uWHdNQKn19Ta/N8OlVfojWurK3rDEX2Nu5/0V9mXPzIsa8G4Prfm/KYr3v6s2+Z8UreaPWBftaGhIevq6prrwzlKK2WA159eqOt+HESRrIXtJVlLV/u5M7lSZ0S1U7dpx3Hn8HIndYZy4XAiax3b9Bg3M7OBA7rNel1vF8d6u5qumZmlzraW+NueaGTAwhBkc7pWcGrFoqwlK5e5bU6s1vnhZUCQTG+OYGZWdeYJ3rbFg3rctD895Dd64LAspbWa3s6pJVUnO8zMUp1ZNsvTbzJgYZhuBoQ93bJW69U1M7Pyirys1QvOvCSefgbUStP7dExuVI+p9ufG3G2DPQdlLa3o9wJpVWdAWiMDToSWyoAG7wXCvJcBeqwG3fqaVlcvcducXKbb9DIgrE+/D9ec9wKBM2y8DOjY4WdAuE/PA5KJCVlzM6Baddt0LZIMmNN/8lytVm3Lli22cePGI98Lw9CuvPJKe/DBBxtu/5OPNWcsa5lg/gdIJtSD1cwsjZyQCJ0OlynIUpTTNTOzNK8Hc5Sb3kQhcfZpZhYW9MZh0dm2pq9xlPMnJplITxSCyHkxTugHC6DPHfHvL3G+/VOAVsuA41pQDJwFxUBni5crZmaZrM6IJDszC4ppbnoLipmsnkR4Y9zMzLxz5Jx3C5wFxcB/I+Hvd5b/uREZsCB495XA6cOBM79IjiMD4tw0FxSdNwNmZpGTAd78IpPV4zHT4HWac45Sb1w4taThePJOxCz/Pp8MWBCmmwFhqPt/6rxPMDPLZJ2xk3XmJc57k0YLikmDebvizwOcXwyYn5OpE1qpM2Tc7DAzMqCxlsuARguK3r3enQfocZw0zABnbDhjNWo00B2JNw9whs3xZEDozZWcOb2fAcczjhdHBszpguLBgwctjmPr7T36EzS9vb321FNPHfPzlUrFKpUXP8E2MjIy48cIYOaQAUBrIwOA1kYGAK2NDAAWtvn3F1kdmzZtsq6uriNfa9asmetDAjCLyACgtZEBQGsjA4DWRgYA88ucLiguW7bMoiiyffv2HfX9ffv2WV9f3zE/v3HjRhseHj7ytWvXrtk6VAAzgAwAWhsZALQ2MgBobWQAsLDN6YJiLpezCy+80O69994j30uSxO6991679NJLj/n5fD5vnZ2dR30BWLjIAKC1kQFAayMDgNZGBgAL25z+DUUzs5tuusluuOEGe+UrX2kXX3yx3XLLLTY+Pm6/+Zu/OdeHdsLFq/wnLY6v1U9bnVyq134Pn6//OOnK0/bJmplZb2lU1gqR/uOkl3Y/I2u3PPo6t83LTt0ua4nzRIaxmv5js99vW+22Ob5KP92qoB/6ZoVBfW67dz7vtplWnCdW44hWyoAg5z+YKWzXGZCuWiFrg2d3y9rwKf7vjSrLdB8Pe/WDTool3b8b/ZHmQk7/0eSxsh7nhw7o81M6c6nb5tIf6aeZtT2j//5OOKifGJeO6vw0M0tj569KO0+O9bZLa8fxNLl5atFlgPcwrwYZEPXoe1W8ermsDZ6hx8boWj8DJvudB50s0089zOb0HCET+U9lyUS6zYmKPkeHn2+XtfZT9PkxM1vytD63pZ16LIcHnSfIDzV4urzzBEfv6bDz6Qnxs2HRZUDoPEStTT9V3cwsXKr7afUkfZ8bPE0/dGF8jf8H+MsrnLHcrecBUUb3xUZ/8z+X1W3WY51ZB50MaDut222z65kOWWvfqbMuGhiUteSwrpmZpXXn4W3OOE+dh16RAQuAkwFRp+7DZma2Qq8XVNZ0y9rQqfreOb7KH5CVPj0nLS4dl7XAme83yoB8Vrc5WdUP1zm0x8mAU7vdNjuf1YvPXgZk9ul7fXJQPznazCwt6/dL7r3eM88yYM4XFH/lV37FDhw4YH/0R39kAwMDdsEFF9g999xzzB9mBbA4kQFAayMDgNZGBgCtjQwAFq45X1A0M7vxxhvtxhtvnOvDADBHyACgtZEBQGsjA4DWRgYAC9OCesozAAAAAAAAgLnFgiIAAAAAAACAprGgCAAAAAAAAKBpLCgCAAAAAAAAaNq8eCjLYhItXy5rQ6f5j4k/cIF+vnpwsn5kezquHxN/eLTNbXNovChr5/btlbVPfP+1spbbpvdpZrZ3ZZes7Ty4RO/33/T5K5TcJq22flLWhvv0MMg9qGvxq17mtpkdGNXbbt3mbouFK8jq8RievMbdttbXIWujq/O6tlb/bqiyPHHbTNrrstbZVpa1TKT3G4V+m1GQylouo48naq/J2uQq//djQ1U9lqvt3bLWvluHS26/Hzzh8JisJYNDshZEkayltarbJuZekHMyYO0qd9vKqm5ZGzlJZ8B4v54/TPb54zEt6HqS6HFVc8ZUkvHbrNV1H08S/Vpsie7/kxV9fszMIud460U9Lyl16P1mB/w2bXBYltJYz+uCUB9rWon9NjE7Qt2Ho05nvr+qz93t5Co9Dxg5KStrXgaUV+j7qpmZ5fV4DZz7dRLrfMjm/DbrzrZ1Jx+CHi8DCm6bmUknd7L6/VKpTZ/3XMlvMzisMyAZGdHb6UMlA+YLLwOW6HtKusbPgHKf7osja/W9YXyVzoBKb4MMyDjj3LknB4GuZbN+m7VYnz83A5x5wETs35PDms6dJKPn9KWSzoB8Qc/5zMyCg0O6zSGdD540mV8ZwCcUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA0zJzfQALUXTW6bJW7euQtcml/vptfVlV1pZ+vU0fj97Mxq+bdNvsKJZlLUkDWSsUdaOVXNFtMxvGslYdy8laJuvstMHSuHe85b15WZtcps9B8aB3QGZBTV+zzPrTZC3eus3dL+ZekNd9Jlq1UtYq/Z3ufkfW6v1WenRfrLenspa01902w7wej/VED6yx8YKsZbJ6n2Zmuaw+pkyktw0D/Trjkt9mebl+LXHeqeX0NenSl8TMzHSamQVlnb1Wc65Z0KDRVJ8jnDhBVl/dqL9P1iqrut39Dq/T/a28XF/7Wpe+7mnRHxtBTtczzlitVfUUMowSt81MRtcDp4+Hznb1Lj/rJvr08dbanAzI6qzrqvrnNlPX9aBa0xvGejtG+PwQFnW/sBXLZKm6Qs8NzcxGV+m5ZaXbmQe0OT2j4I/HwBlX5t1365HezKmZmeXzTv93JLEeq/Ul/j4nqvrc1kt6v0mk876z6l/PjDOWw7rOrLSq37ek3hzBzCzxcwknRtTZrosrlspSubfk7nd0lb5XlZd68wDnvlr0+0wQ6nHuTTsDJx8ayYRO7jj54LVZdd4rmZlNVPUcq17w3gvoDAhjpx+YWTbWrzN0xmparuiakytmNusZwCcUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE3TzyVvcZmT1sja5JouWUsy+nHlkysaNFrV67ulg/rx34fO0pexWs66Ta7qGpa1x3avkrXQebx82mCZetdQt6xFBf06J9c7j09P/MfEdziPpm/brQ+4fY/e7uC5/vBZ87UJWav3tMma/0owW4KMvr5hqSRr8dIOWRvrz7ltVpboq5843c2rBVndh83M0lj3/1ot0vt1xlQ2W3fbTFL9OkNnAHS0T8raRMZ/neWyfp1hVb/Oco8+oCDOu20uHSzrNnO6L6SxzkELGgRs6myLlybU/SJsK8pafXmnrI2t8jOg1q77W+zczutFfU8OctPPAE/gjNV8zs+ASlWHVjar+3CxWJU1nQ4vqNW916lrE31OdsT6Xm5m1j2qMyAo6T5kk3o7r1+amVlCBpwwzrkOigVZi5053vjK48gAZ9N6h77uUd7vE7Hz/sMTZfR+O9ucPmxmlbo+tzlnv977j0qga2Zm1aX6dQZ1nUkTvc52iTOOzax7TL93CStOfkw4c49qzW0zJQNOGO+9QFDQGVBdqq/tRK//3rzWqa99vaT7eNKmr3umwXuB2Lk/RpHeNnTeC5Ryfj+tOhngvRfOOfOL1Hl/YWZW7XHGsjPJmqzp/UYV/71A14juJ9GEnx9KUPfnWGlldjOATygCAAAAAAAAaBoLigAAAAAAAACaxoIiAAAAAAAAgKaxoAgAAAAAAACgaSwoAgAAAAAAAGgaC4oAAAAAAAAAmqafhT4L/viP/9huvvnmo763fv16e+qpp+boiF4Ur+iWtch5FHetPSdrgX7Su5mZ5Q/qx6eX9eFY4ZDeca1Bo8uLY7J2oKQfeV9P9Fr0+Kqy22Yhqx91PpE4j14f093Vf0i82WhQkrUlZX2OKp2N9qwNn94ua20DVVnLlvSxJhMT0z6e+WhOMyDU483MLMg48ZjLylJ5eUHWJlf4v8Op6UtvQaJrcUH34TDrbGj+2Mnn9FjNZXQOtucrbpu1WJ/7ZcVxWSvH+prUin7uPDOisyXJ6eOJi3qflW4/H2pLdF/ITep88PYaxv71TEZH3fp8M6cZEPjXL8g695yi7hjlFU5taYMM0Lddi4t6nKd53S8yOT1WzcwCZ55QKuh7VS2r97ukNOm2ORzosbGsXWdANtRtDhacwWpmA5P6esZ5fV1iPa2zyR7/erat0OM8W9evJXD6Zhj71zMZ1+dvPprPGRAW9H0jaNM37MoSvV25QZ+pexlQcub0zr0+DP37huX1frPOOI8ivd9G84C6c3Ptcu7nhUxN1oYLOlfMzPbH+tzXR/U8ICrrftLoetaW6n6Sq+vzF6TOvK6m52ZmZnFdnaPArMF70bkwnzMgyDvvS4u6v1WX6BtHpctvs+5049ipBU4GBA0yIJPT9VzG729KR4MMGEp0BhRzettSVmfAREG/PzMz2xd3ylqc13OEJKuvWaP3AtWl+qIVyjof3PcCiT+Q46qau81MBszpgqKZ2dlnn21f//rXj/x/xnsTD2DRIQOA1kYGAK2NDABaGxkALFxzPlozmYz19fXN9WEAmCNkANDayACgtZEBQGsjA4CFa87/huLTTz9t/f39dsopp9iv/dqv2c6dO+XPVioVGxkZOeoLwMJGBgCtjQwAWhsZALQ2MgBYuOZ0QfGSSy6xO+64w+655x677bbbbMeOHfaa17zGRsXfgNq0aZN1dXUd+VqzZs0sHzGAE4kMAFobGQC0NjIAaG1kALCwzemC4rXXXmu//Mu/bOedd55dffXV9tWvftWGhobs7/7u76b8+Y0bN9rw8PCRr127ds3yEQM4kcgAoLWRAUBrIwOA1kYGAAvbnP8NxZ/W3d1tZ5xxhm3btm3Kej6ft7z3tCUACxoZALQ2MgBobWQA0NrIAGBhmVcLimNjY7Z9+3b79V//9bk+FKs4j/gePlmftsKQfhZ3NOm3WV6htx39+XFZS55q18fzSJvb5vbupbKW3qNrQU7v86Jffspt89+eOUnWMs/p817r0OenuHrqj8X/xMQBfR6qXfrB7IXDus00cpu0iV79AeDO7fqR92HPEllLJib8Rhe4E54Bgb62x7Xbou6nlS7dMZIGiZs69XrR6Yv5RLdZ9TtqmItlLU68D7Hr7XKhrpmZZUJ9vBln21V5nYO11P/A/UB3h6xNxLqfxHnnemb9/jW5XAdlUNO5nU30+QlqOjvMzILJqTtRkKZmdXfTeWFWMyDw+0zgbJu2FWWtvET3mVhHR8N6rdPpFyV9cdPU76dRxhnL06wVMn4/NX36bGlBj/NlOV2bLGbdJstVXR+O9ByhYnocp+H0MyCs6AyInL7XMAOqU9eDNDBrcFnmg1l9L9AoA3K6z6QlPVirnToD6g0yoO6MjXpJzwOCrM6HRjLeWM7pTuNlSz7ybzhdxbKsdef1G6b2bGVa25mZTVT0eBxZpvtCJXSypUEfcucBdZ07We/eNem/ziCauv8FacI84JhagwzI6ol50qEHa6VT7zdusBZab9fjPCk584DM8WSA3jaf1Z3Ge59QbDAPCJ33NZHzPsHLgI6sfz29DBhy5m6V9DgyYIXeNipPMwMqVbfN2c6AOf0nz+973/ts8+bN9uyzz9p3vvMd+6Vf+iWLosje+ta3zuVhAZglZADQ2sgAoLWRAUBrIwOAhW1OP6G4e/due+tb32qHDh2y5cuX26tf/Wp76KGHbPny5XN5WABmCRkAtDYyAGhtZADQ2sgAYGGb0wXFu+66ay6bBzDHyACgtZEBQGsjA4DWRgYAC9uc/pNnAAAAAAAAAAsLC4oAAAAAAAAAmsaCIgAAAAAAAICmsaAIAAAAAAAAoGlz+lCW+ezwmVlZS51l2LYny3qfZxXdNoN6oNv8Ubus1boTWat36H2amRX/ZoWsLdlTkbWRk3KytvWg3qeZWf4pfR5Sp0f+P2+8Vdbe8b3fcNvs+qHe8cSl4/p4Hm+TtSSXum0mGX3uqz0FWYsG8+5+cWIEoT82gpzu40l7SdbqBWccN/gVTpLRfSqJnA1zOgPybVW/UUetphvtKOqsK2Zq7n6X5Cdk7dTSAVnLh3q/A5Uut818ti5r5aKuJc4wT8r+LdTrC/V2fY8J6zrvM7G+1mZmwcTk1N9PzUy/zJYURN6gMrOsvkZJl5MBumSpHzuWOhng/Qo4zOh+USrpe7mZWSbU245XdA625XW2lDJ+7qwojsraysKIrPVk9P26nOjrZWb2w1yvrI3n9eCodeh+Elf9PlRt1xctX9LHG9ScOcKk08HMzMbEOWrU+RarQL/uIOtneFDQ16HeoWu1NudcN5gHeBmQRroWZvU4LhT98ehlQKWm+2l7QWdLe9bPnVWlYVnryelxHgb6HFQS/3ruLnTL2kRez73rzjiOx/1xVXX6Qq5NH29Q1/0rO6bfm5iZBeNTz7GCNGEe8B+EOf++4WZAu9NnSs57gQarL958Pw11/89EznsB5x5nZpbL6Hqlpg+4lNPz8vaMnwHdOf1eYHluTNZiJ0QnY/96Hizo+fV4QV/PmpMB9Uk/A2pOX6h1OPOAWK+XZMennusfMaSOd2Y+S8gnFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNa/Dg8sUrbGtz6/WSrmXGde3g+foR32mkH/VuZmbOU8dzQ7oY1PXz5YuvPOQ2WXuqR9YqS3T3yE7o13J4V5fb5pKDzrbnx7L2T8MXyFqS+I9sH1+t26yP5mQtl+h9hlW/zbCua4fX68fE9+/Wx4OXKHXGXOD/PiVo0yEQl/T1q7XrfpHozV6o53XN609xVb+WbNbZ0MziWG8bOqeoK1+WtXrqn9tluTFZy4c1WVueGZW1pEGb9UTX2zv0axmNdT+otzsBYWblJTqbQye3g0RnQHRYb4cpeOM89DM8KOn7eZzX98d60cmABrOuuOBkljeFSHWb+Yy+rzaSy1RlrbswKWvt2Yq737XFQVlbltXjvCPUY3XCC1Azi50M6GjXr2Wwqsdcrd3PnfJSJ5sn9A0hrOlsiTJ+BgTB1H3B7+2LmJMBYd7vM1YsyFIa6f3Gzm7jBvOAOO8M9Gl+DKTRtY9C3WZ7QY/lQkbPL3KhnzurnQxoj/Q49zJgb63bbdOLUC8DhmN9Bmvt/nisdumLVpl05gg1fbPIFBr020jsN23R+YOTAUGuwXsuZx7gZUC9oPuMlw9mZnHJmVtmdC8OnHGcCf35ajbS9Vykx3LeyYA2Z/5gZtZfGJK1Uqi39d4nHKx1uG0+4xxvV4czD3DmWLXy9DOg7GWAc7PIlPS9ycwsyE6dH0GamOnTN218QhEAAAAAAABA01hQBAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNP1M+kWucumZbj1xzkzsPKk7mNC1tuf9Yxo9WdcqS/Wj4LOj+lHmY0/2uG0uGde17IR+hPzIWn2COrb569TDZ+j9hp36Web/sONcWTtl+SG3zb15vd+RkaKsLXtc7/PQ2fpx7mZmiVMu7dPXs75UHw+/AXhpgozup2Fnu79xPidLSS7SNee6p3qzf9+v7heeINYZUK36MR9FejwGerdWifV+41Tv08zs1MJ+WeuOdIiOJ3lZW5077La5smNU1hLTL7Qe61E3GejjMTOrdeoLXpvQbaaBPrfZkTa3zWj/1B0wSFMz5/60WAWhPs9hqeRv26braaT7hZcBiY6VF+p5nQFpTo+rxMmAOHEGspl1Fcu6zVRvW4jq7n49ZxT2ytqKjB6r++sdsrY8U3HbPK37oKyN1PTEbrKiL9pk3b8r14t622q70zeX6e0yo34GBINT51KQBmb6Ui9aQaRzOCjp+ZaZWVrUGZ/k9X7jvJPv/tTRnQd4GWDOWI1C/57cWdAdI050Hy9k9Ny6kTMKA7K2NBqTtZFEj9VsELttrmoflrWxmr7WXgaUnfu8mVmtQ29bmXSy2ekoWed9i5lZmJu6zSA1M+d932LlZYDl/XlcmtfXIc7rsRE7u20010+depDz+7gSNsiAjry+f2ZD3WbOqYWB36aXAYVAZ8u4M5GKzD+3a9sGZa0tU5W1ck3Py8fa/PdZtTZ9vDVnHlCp6n6bO+RPJkPx/jdo8P5sulifAAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADTNf871cbr//vvt4x//uG3ZssX27t1rd999t1133XVH6mma2oc+9CH77Gc/a0NDQ3bZZZfZbbfdZqeffvpMHpaZmRV+sMutL1l6iqxN9Op12PyQflx5fsR/1PvQWfrR4WlFt1ka0/usdrtN2v4r9GPZOx/XjyQfOVc/Wr1j2bjb5m+f9l1Z+9Yhfe2ffPRkWdu6s8Nt84pXPSFr5562W9Zu3/IGWYvzbpOWdU5Dx86KrEVj+tzq3jU/zXkGBHrcpJNlf9OOdllLctG0Didt8CucNKOvcBrqWpDq7MhkErfNbKRzqaOg++mqtmFZO71tv9vma0rbZC02/Vr21LtkbSguuW125PT1HqvpwVzI6Yys5fxbaL2or1mod2tJVp+DWnvWbTOSfX5ufn84nzPAYv+e7KmXnAzQl88dx2ZmaVaP16Cgjzdw9pvL+K+zLavvObmwLmt9xVFZO6M04LZ5YUHPwYYSPR5DJ89q5udyT25C1qqJ3ra9qHOwWvUzIC7441Vul9edqN7lTz6yiegL6dzMIOY8A0Jnbn0c5yTJOdlyHBngRnXkbBvoWtG5j5mZFTO6XsrofAidNs/p2OO2eVFhp6yNJnrcFAJ9rFGDWXJXVs8DyrFu082ASoMMyOtjSjLOOC/ofdY69fszM7NcfercTlOd5zNpPmeAWzMzC6a3rTM0LG30FsLZOHTeJ3gazQM6nLFRcvIh78wRzmnzM+CCvH7/PZ7qcbWnvkTWIu/Em1lPTr85H6wWZa0tr3NwPOcMVjP3fpBEXgbom0Hc7mdAIO5tx3PP88zoO4zx8XE7//zz7dZbb52y/rGPfcw+8YlP2Gc+8xl7+OGHra2tza6++morl/03+gAWBjIAaG1kANDayACgtZEBwOI2o59QvPbaa+3aa6+dspamqd1yyy32gQ98wN70pjeZmdnnP/956+3ttS996Uv2lre8ZSYPDcAsIAOA1kYGAK2NDABaGxkALG5z9jcUd+zYYQMDA3bllVce+V5XV5ddcskl9uCDD065TaVSsZGRkaO+ACxMZADQ2sgAoLWRAUBrIwOAhW/OFhQHBl74+zq9vb1Hfb+3t/dI7T/atGmTdXV1Hflas2bNjB8ngJlBBgCtjQwAWhsZALQ2MgBY+BbUU543btxow8PDR7527fIfrAJgcSEDgNZGBgCtjQwAWhsZAMwvc7ag2NfXZ2Zm+/btO+r7+/btO1L7j/L5vHV2dh71BWBhIgOA1kYGAK2NDABaGxkALHxztqC4bt066+vrs3vvvffI90ZGRuzhhx+2Sy+9dK4OC8AsIQOA1kYGAK2NDABaGxkALHwz+pTnsbEx27Zt25H/37Fjhz322GPW09Nja9eutfe85z32kY98xE4//XRbt26dffCDH7T+/n677rrrZvKwzMwsyGbdeseOcVnrfqIqa0kpJ2uHzm1324zKulbviGVtfFWktyslbpvdy8ZkbfiUblkLR3XXed3Ln3bb3DJ8kqz94IdrdZvOPttPHnbbvKBDfxz+4eF1spZeMShrk3s73DazT+lzdPC8gqyVl+Vl7eTv+0M2rdfd+myb8wwIA10LnJqZWU2fyzDW4yrQQ9UsSP02G5TlZiV9rN2lSXfbvjb9x6z7CqOydlbbnsYHJoTOCy04J3BNZsjZp591hUifo45sRe/XuWbFrD/e9g4UZa1W0okWJLrNervOezMzi8X5S72OOXPmcwakqT/ggmpN1qKqkwFOt2gUAZY4ueTU8iU9Lylk/H66qjQka91ZnR8dzqSlFOrjMfPHeV80IWsHnOx4vr7EbTMf6uu5JKdf52C+JGuTRX8uWYl0BiTOpnFWX+t6wc+AjOjXjfr7TJnrDAice71XMzNLnQwIa849xykF3hg3m/Y8IJfT47xRBvQ69/revJ4jePfH3qw/L1/uZHPWdH6UnIAdSfTc2sxseU6/zmyoM2myrgfrZLVBBuT0MSXOlN6rxQX/80CqXwfWoO/NkDnPgMjJTGe+ZWYWTDrzQycDvHlAg9ujWerMW5xsyWZ1H27P+Y0uL+j1gP68Hsu1VJ/brkivpZiZLY/0i8km+nijzGFZe7a2zG1zSUbPL/qKOh8Ol9tkLeNkr5lZnNd9LM3oax3rJSWrF/31gBld4Jvt9h555BF77Wtfe+T/b7rpJjMzu+GGG+yOO+6w97///TY+Pm7vfOc7bWhoyF796lfbPffcY4WCf0MAsDCQAUBrIwOA1kYGAK2NDAAWtxldULziiivc34gGQWAf/vCH7cMf/vBMHgaAOUIGAK2NDABaGxkAtDYyAFjcFtRTngEAAAAAAADMLRYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTZvup0vNGWsz7PxA6j2wPdC0c0o9Ib9/jP61q5FR9OQp7da3a4z22Xh+rmdnws92yFjpPQc+u1a/zB4P9bpu1WD9iPizrNe6kPZa1kT0dbpuH1+nHvVcTfTz1f1sia8EKfd7NzGrOIaXOUn4QO/2rw3+d8eCgW8eLguz04y/O6z6THkeqeuM1Lej+1rFkQtbO7tnrthkF+g9ln1baJ2sn5w7I2vO1HrdNT9aJrHygMyCbHXL325sfkbViVJO10Zq+V5QyVbfNgd5OWasNlGQtO6ZPQrW9we8BVb9O/LxarALnfh1E0zyXZlYv6QxwhpSFNf+eHE7qYwq7dH/rapuUtVM7D7pt5p2b/dr8IVlbGo3JWjnNum1WnZtgR+hkXajPQVtYcdv0Xmcx0vuNE32s2UhnkpnZeJt+LXHOmQtVdSfy+p6ZWZCb+twHidMxF7Os3xddTn5484DAiVunC79Qr+g2ky694yXteh5w7pI9bpuR6f2uyut5pZcBjRx27kleMueck9soA0InnDPO/MKTyzhvlsxswsmAxOlDidNP6sUG9y6RAbbYMyAIph6zkZ+ZDfcppM5aQainlRZW/XlAUHHmAZ36Gi7v0OPxrK4Bt832SI+d3uywrGWdcVPwToKZHXLe73rjvOC22SBgHV4GePf6QsF/neMl535enF4fivMN+lA+N/X3Z+itAJ9QBAAAAAAAANA0FhQBAAAAAAAANI0FRQAAAAAAAABNY0ERAAAAAAAAQNNYUAQAAAAAAADQNBYUAQAAAAAAADQtM9cHMFeCWr1BXT8e3FuG9fZb7fDXb1Pnqfbeo8NXrD8ga505/Rh4M7PtA8tl7Wuv/qSsjaa66zxdXeG2+bPFvbJ2Y/sbZS0X6nN7w4pvu21+duBnZe1V3TtkrXqVfp3bDi1z26yUO3XRedp7dlgXxy4/3W2z+OXvuvVWEwTOiW4k1OM1iZz9proU5/0mk2Iia1FJ9//l7eOyVoyc8DCz9khnxGtKP5a1Q3GbrI3FBbdNz2jiBKGjN9LnzsxsSXZC1vJOwJ5UOixrO8aXum2mie4nTpy5+RBnG/TpWNy7UueetggEmYwFwRR5HTn9Kd9gQDr5kWR0LXUuUdJg1uVlQD6nO82SwqSs9eZH3DZLUVXWLio+I2sH4g5ZG6/55zYKdFAOOxnQEep+/Iq8HqtmZt+f1OfI01PQ+To82SDrnL7gnAJLneliQgZMLYzMgmP7ThA5JzObbbBPva03Z/dqSYMmk6LuGLmCvlctLep7nHefNzMrOPfAcwu7ZO1AXc9zy6n/QvNON645Y6Mj1Buuzw67bX4vo8/RmDNByzq5U603CHXntQTePMDNhwYZkIqN1fcXiyB84es/ftu5l7v50IA3D/DWCpy30C/Ui7q/FUt6LLdl9b28M1N22+xyxsbp+QFZOxS3y1qtwQstBHq+493mOkK9XWxDbptbw36nzendI8tlP+u83XrrO977hPmWAXxCEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANC0Bg8uX7zSTOTXs07defx8vKRD1vZdpx/nbmYWj+rHjkdlfalO7Toka3950jfcNu89KS9rh5OcrI2nunZRYY/b5rJIP2L+zcu3yNp/ah+Wte21MbfNX+/9jqx95Omfl7VKTZ/3yHlsvZnZ2gufl7XnHl0la4Gz21rJ/x1A0a0uYkEw5bgMivqMBO1t7i7jZV2yNrlM94tqd6r3WfL7jAV6W692cvthWXtV+3a3yf7soKyVU/06y6nOq3xYc9v0dISxrNWc03Mg9sdGKdT5+3ylW9b2VTplbbjqj7hsri5riT595hyqmb79vFAWfT5I/HveghdFZsGxr9Eb50FB3//MzOIuvW2lU5/P2NltnHc6sZmZU46dPr6mTY/j80q73Ca9DCgEejyWnTlCW1hx2+xw8qzmtOkMG4tT/9x6uXSotkzWDpd1P6jFDeaSOZ35cU5vGzmnL230UYC86IBJg/BY4IJsxoLg2HtW0K7nnGmxUQbojK906etXd24NcdHvp2lG95nEuYZL8+Oydlphn9vmmqx+H3FyRs+vD8f63HYEk26bOee9VMHpqpFzExxtkAGe0VpB1mrO/bNRk2lG/4AzxbI047zXzPqNBtmpkzJIpn9+FgKZASVnQHo1M0s6S7JW69D9oua8xYgLDa6D02eSRN8Alhf0WG2UAf0ZPQ9YkxmRtUNOBnRHOpPMzLLOOC84+ZANpv95uNjJjzFn8ubd651DNTOzxFttc7aNnRMU5xo0mhGNJg3eh04Tn1AEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANA0FhQBAAAAAAAANG1GFxTvv/9+e+Mb32j9/f0WBIF96UtfOqr+tre9zYIgOOrrmmuumclDAjCLyACgtZEBQGsjA4DWRgYAi1tmJnc+Pj5u559/vv3Wb/2WvfnNb57yZ6655hq7/fbbj/x/Pp+fyUN6URC45XCsqouR3nb0tE7d5G5//bbnGV0b79e1lYVhWfv00Dq3zd/oekrW/tlp9FDcLmtPBzW3zXKalbWCs+2fHV4qa7H517M/OyRrBw7raxaP6SGSGfSHzyuu0ud2Z7LK3VZJMv7rnG9mKwOCXM6CYIp+tbRbbpOU/HbiNt1P6yW9Xb0tlbU0o2sv/IC+vks6J2Ttgo5dstafHXSbbAt01tXSSNZyQSxryzMjbpu5IHHryniqx1x3WHe3zTrH6+nMlmXtQKBz0MwsSfT1TJz48E6Pc0leUBD9enqn/LjNWgZEoQXBsScnKBXlNmnRbycp6osU5/R29dL0MyCIdZ/pap+Utf68ngf0ZXTNzGx5qLOl4nS4Qqizo7vBPCDrzMEKzv18wBnGbaHfyb0MyDqDrj1XkbUDaZvbpjc1iZ3ul47pmpcdZmZBdup7V5DMTQjMWgZkIguCY0+ON86TtoK7Ty8D6nl9cb0MSLIN5gHOfaNY0ONqRX5U1hpmQDQuazXncDtCnUnefL6RbKDfL+2LdT/25iyNJM5gLWb0a2nwdtIs0iew7nS/UMeO1QsNGs2IfptMbx50vOZ6HmDOPCDp0DUzs7hN3+y9DIidaxvnGr0X0KV8VvfFnqwex92Rvs+bmXWGeq4bO+9N2pyO2u3MLY7H4Vj348RZY3ihrrOlnuj8yEf6PUYQNLieoa57c8lIXxKLc34GzPY8YEYXFK+99lq79tpr3Z/J5/PW19c3k4cBYI6QAUBrIwOA1kYGAK2NDAAWtzn/G4r33XefrVixwtavX2/vete77NChQ/JnK5WKjYyMHPUFYGEjA4DWRgYArY0MAFobGQAsXHO6oHjNNdfY5z//ebv33nvtox/9qG3evNmuvfZai8VHWTdt2mRdXV1HvtasWTPLRwzgRCIDgNZGBgCtjQwAWhsZACxsM/pPnht5y1vecuS/zz33XDvvvPPs1FNPtfvuu89e//rXH/PzGzdutJtuuunI/4+MjBAiwAJGBgCtjQwAWhsZALQ2MgBY2Ob8nzz/tFNOOcWWLVtm27Ztm7Kez+ets7PzqC8AiwcZALQ2MgBobWQA0NrIAGBhmVcLirt377ZDhw7ZypUr5/pQAMwBMgBobWQA0NrIAKC1kQHAwjKj/+R5bGzsqN8u7Nixwx577DHr6emxnp4eu/nmm+3666+3vr4+2759u73//e+30047za6++uqZPCwzM0uLznO6zay8sl3WRtfoR5IfukQ/Vjwc8x/xbb9wWJZO6xiVtS8+eYGsvfsV33SbrKT68eHbKr2ydlZhj6wN1LvcNr1H12cDff7KzqPga6l+1LuZ2f3DZ7h1KdbXrN6tH1tvZvblrefp3bbr856O6tcSpP6j6cOOjqm/n1bNdBeaMbOVAWExb2Fw7JhOS3m5Ta2n5O6z0qP72+Ry3S+SZRVZK7ZV3TaLeV1f163/QHU+rLn79XSHus2sE1lZ8bdtzMzGE33ezcxK3n4DXeyI9LhZEunMNjObSHTmVxJ9rcfqervEGmS6I3XuvkGsx3ngx45ZIs6R+v4Mm60MCHJZC4Jjr2Oa09c27iy4+6z06H5c7dbXvubcG9KifwHznTo/+tp1iC/L6pp3XzUzWx7p/lZOdbaU03FZG0n8c5sNpvf77D7nWBv9jjwyPQYmYyfv67qWJA1eRzK9jPDGeepk5As/IM5Rg/nDTJm1DMjnLQinmAe06b5Y7/LvVdUuHdTVLicDOp05XqMM6C7L2oqOMVlbmRuStY5w0m2zJ9QZUXD6WyHQ+RA3GI+lQM91Y9N9dXmoj2c89c9twcnCOHXm+43GuSdwxp0zlAPnlu3NH17YWOy4UXbMkFnNgCneCyQlnQFxm78eUGt3MqDTyYAOfQGTkj8fK3Xr8dpT0rUVOT0P6A71e28zs+WR3q83Z28L9HuIWoOO6meL874+1OM8sem/HzqeOb0ndeYtDZYvpNjvtrOeATO6oPjII4/Ya1/72iP//5O/d3DDDTfYbbfdZo8//rj95V/+pQ0NDVl/f79dddVV9id/8ieWz/s3eAALAxkAtDYyAGhtZADQ2sgAYHGb0QXFK664wlLnN6L/8i//MpPNA5hjZADQ2sgAoLWRAUBrIwOAxW1e/Q1FAAAAAAAAAPMbC4oAAAAAAAAAmsaCIgAAAAAAAICmsaAIAAAAAAAAoGkz+lCW2RJkMhYEx76U+FXnyG2GTim6+5xcrh+rPblC/2HZoKrXaNMGy7erOkdk7U0rHpO1MLhA1gqB//j0j+y7Qta+vXedrL36ZT+WtVWZQbfNQ0mbrPVF+hxEps/7aFJw27x2yQ9k7a2veljWfuuBt8laOu4Pn/pBfUxpIZG1sK6fIR9n/ce9h8t6pv5+UjEbdTdd2JLULDi2f9SX6HFe6/CvX62oz3VcdDIgdGpTHONPSxIdEplA95lCUJW1vmjcbbPkdKnY2S42veHyjB7HjSwJ9TVLnAyopd7RmpVCfY5qjcJZyIZ+m9msrsfOeXcutUUVvw9ZXbSZ+Me6WMVLSrJWa8+629badb+o6926v6oNMv71iyJnnEf6ft4RTspad1hx23S6m1urmr5X5QK/v1VSvecVkZ4jTCR6HFfSuttmOdXXezzOyVro5HY226DNnHcGNe9WEdYbZEAi2kwabLdIxSV93esl3YfNzKrTzYDImQc06BNeBhQzOgO6owlZ63NqZmZtwfTugbVUz6Mavf+oORmwJNInt5Lq/ZZjP+vKzvFWE13zMiAKG4xx79Q6Q9KL0AbxalYXubTY5wFBYBYeO7lKizoD4mKD93JORtSd9wmp817AMn6fCZ1tvXlnlzPOlzd4L5D3315KoTNh7Qz88ehpD5339UlZlobNvyfHznx/vK7nAd77Ny+zzWz6GeDcs0P/ZZrVRE4mjTacHj6hCAAAAAAAAKBpLCgCAAAAAAAAaBoLigAAAAAAAACaxoIiAAAAAAAAgKaxoAgAAAAAAACgaSwoAgAAAAAAAGia/6z0hSKKzIJjH+ueffwZucmS8lp3l9mT2mQtjfQj5O2Qro2dWXXbzDnPAB9N9OPTP3LSl2Tt2VqP2+ZfDFwma73tY7L2sZ3XyNp/P+krbpuR84z0H1RWy9ryzIisrckectv0zp/3yPswq2tJzV+P7143KGsTZefR9PWsPp7YbdIsCF7a9xeJNE0tnaJfReM1uU1OX1ozM4tz3jXS1z6Z0LFaz/kXMI71fg+VdSZ5DsRFt14OdS5lTZ+kZ6orZC1u8LuqyNlvKazI2sFYn79sgy5+sN4ua8+MLpO1iZoej7XYuReYWXlC96HipN4uO64zsjDo96G0OnWfTxN9f1nMgrqT73V9ns3MwppT9zb1siXw20wSPXbGanlZW5rR9+ty2qCfprpPeafgcKzHVOieBLNd9bKstQc6kw4n/jzKMxHr8zdYLsnacFnPH6rVBtPoqr6ekY46iyr6xOfG/HObJlPX1fcXjTQ1S449b24GVP1zEtX8sSN596PQzwBPkuodd4R6TI2nfj8tpfr+oGdRZkOJHjelwOngZjYQ63q7M9k97Gx3OPGv13BdH683x5r05gH1Bn2kpq+ZlwGZsu4nmUm/D7VsBiSx2VT3MycDgtg/l8EUmfIT6XQ/lhU1mgfoPhM6c4i+7PA0D8g36uTOgXqnrE0483kzs2ww5FTHZeWw040PN3jPs7/WIWteBrjvBRrcJ8LyNOcBOtItO9FgHhDPbgbwCUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANC0zFwfwAmRpGZBesy303pdbxMf+/M/rbivImvl7qKslQ7FspZEObfNx0v9svbM4FJZu7/7dFkbrRXcNg89s0TWhsd1m0lWn7//Xnuz22Y90evY67v3y1pvfkTW9lU63TYn46ys5SPdT9q+W5K19j2J2+aetg693226Lyz9UU3WSs/qc2BmlgxMff6StOput9AFmYwFwRRxVtXXNm33x2NU0X08O663q01Eus0ut0kLnV/x5DP6tdRSHeXlVPd9MzNzunEh0G0OxXpsxA1+V5XN6ZwcTnRtNNGvpdqgzbKz7eEJnen1WF/PcIr7zk9Lyvq6RGW9XaQjwLKjzn3NzEydP+e8Lmqpf408Xga4129S98W4QQbEcSBrmVAP1tFY9+GloRNYZjbu3JMjp497Yyob+P0tG+jXMpzoPu5cEjcfzMzG4rysHZ7UeTZe1veKJNHXy8wsqOhzGzrj3M2AsQYZEJMBRwmda+TVzCyq6H6accZ5NOZkQJvfZhzrbWvO/ehQ3C5ra9JDbps1031qNNFt7q/ruXd35OdOZ6JDdG88KWuHnfn8oUSPYzOzkbp+T+TNA6p1fS+v1/T5MTMLyroe6beaFlV12OVHGoxlMuBo3vTQH47uPCDjzQMqesdJ6jeaOPfkybru/9547M8Mum2GiX6do877iIG6ntQsz/jvWQ8lesyFNiFrhxM9jg/E/nrAeF3PA4Ym9X7LVX0O4gYZEJb19fYyIOO9Dx3z1yBm+70An1AEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE1jQREAAAAAAABA01hQBAAAAAAAANC0GVtQ3LRpk1100UXW0dFhK1assOuuu862bt161M+Uy2XbsGGDLV261Nrb2+3666+3ffv2zdQhAZhFZADQ2sgAoLWRAUBrIwOAxS8zUzvevHmzbdiwwS666CKr1+v2h3/4h3bVVVfZD3/4Q2trazMzs/e+9732T//0T/aFL3zBurq67MYbb7Q3v/nN9u1vf/sltZXWqpYGxz5aO61V5TZhrdFjs/Xjwett+vHf+R/XZC0z6Z/u/uX6ke7bn18ua4NF/dz6537c57aZP6wfdV7p0ecov1I/zr0S+49Pb8/p67L52+fIWtxdl7UzTh5w2xyr5WRtSWFSb6gvtbXv1OfAzCy/p03WOp/Vj3vPjujXGYw7x2pmaSL2mzZ4vPwMmNUMqNctDY79/Ug4oq9R2JZ39xkUdT+OdTyYHRtFR9TL3oZm9VBvXKnr/PjBxGpZq6X+eCyEOrNKYUXWDtfbp7VPM7MflNfI2p7MmKztr3fK2lhccNv83mHd5uhYUdayOT0eazX/3AYV/Tu7zIS+1kHi1OIGY1ltmzodc4bMZgYo4YQzDyj449HL/9S5nQfOJUrLfp+pJ7rRybo+3h+V+2UtG/jznSFnnHsOOOOxI/LvVc/UlsnaRDQsa0NJSdaery1x2/zx2ApZGxnX+ZHEehzXK/71zEzq65kd12MyrDsZUGuQAWqst2gGRKO6f9dL08+AZLoZMOn3mUqs5ybjnXou+/Rkr6ytyIy4bY4merzWnLAbrOt5bi7Q904zs4G4S9Zi58QfivXc47mqfq9kZvbMmM6d4RH9WryhkzTIgKyTAZlJLwP0PsNag7FMBhwlLDvvq9r1mDIzS715gPOxLLf7O3NDM7NKpHOp3KHH487KUllrlAEdoc6AoViPDW/u7e3TzGygrjOgFulxNZroOfvTFZ2DZmZ7J/W8xXsvEDvzgKTB+k624mRAeXoZEFXm13uBGVtQvOeee476/zvuuMNWrFhhW7Zsscsvv9yGh4ftL/7iL+zOO++0173udWZmdvvtt9tZZ51lDz30kL3qVa+aqUMDMAvIAKC1kQFAayMDgNZGBgCL36z9DcXh4Rd+49zT02NmZlu2bLFarWZXXnnlkZ8588wzbe3atfbggw/O1mEBmCVkANDayACgtZEBQGsjA4DFZ8Y+ofjTkiSx97znPXbZZZfZOee88E9aBwYGLJfLWXd391E/29vbawMDU//z1UqlYpXKi/90YWTE//gugPmBDABaGxkAtDYyAGhtZACwOM3KJxQ3bNhgTzzxhN11113HtZ9NmzZZV1fXka81a/TfxAIwf5ABQGsjA4DWRgYArY0MABanGV9QvPHGG+0rX/mKffOb37TVq198cEBfX59Vq1UbGho66uf37dtnfX1TP0hk48aNNjw8fORr165dM3noAE4AMgBobWQA0NrIAKC1kQHA4jVjC4ppmtqNN95od999t33jG9+wdevWHVW/8MILLZvN2r333nvke1u3brWdO3fapZdeOuU+8/m8dXZ2HvUFYH4iA4DWRgYArY0MAFobGQAsfjP2NxQ3bNhgd955p335y1+2jo6OI38Hoaury4rFonV1ddnb3/52u+mmm6ynp8c6Ozvt3e9+t1166aWz8kSnoFxx69Gkflx5op/mbtFkTdaWPe6v3x5+vX5ceRjpx3xnQv3o8NPPfN5t8/mV+pHthUQ/5jyKdJtx4r/OWqzPbf6gs+3BnCxV1vhded8h/Ton2vV+U+dwooOjbptBvV3WSgO6/0UTVb3T2H9MfFIuT/39VPfLmTKrGVCrmQXH9td0fFJukjmsr7uZWZDqMZcd0yFQ7dH7TGoNfodT12MuMV3z1FJ/bGTTWNZGY51JE4k+fwNVf3JXT1fIWjHU/X/SaXOoqo/VzOzgWJus1YbzspZ0TP/3boFzPSPnFpSZ1OM8mvDHclqZesdp6uTKDJnNDEjLFUuDY8dsOOlk7ViDsZHT1z6q6G29+4Y591Uzs7SiNw5NZ1LsNNoW+vMdz3iix4aXAYfreryZme0JdO4MZPT9ejguydrzlW63zbGafi3VCZ3pgTP/sti/nlN0yRdr+hRYWNUbRhVnQzNLq1NnRLrI5wFptWrpFJcjqOvzFU3W3X0mTgY4t6opj+PI8TTKAOe+kY30a0m8Ro/DkDPmRuOCrJW9N0tmti/U/fH5aImsDdf18TxXdiZgZjZS0ccbe/eDjDOQG8zrAmfYRVNP2V9o0pkHZMb9ftuyGVCrWxocez2CRJ/LsEGehnn9ntXLcPcjW053MjNLnYzIORlQS/WxNuLNIcqpHsvePGB3danbZhTo67I70Nt6bT436bfpZUBt0sks75o5mW1m5kSdex+JKs57gQb3rrQ+dT1N/e2ma8YWFG+77TYzM7viiiuO+v7tt99ub3vb28zM7M///M8tDEO7/vrrrVKp2NVXX22f/vSnZ+qQAMwiMgBobWQA0NrIAKC1kQHA4jdjC4qp8+menygUCnbrrbfarbfeOlOHAWCOkAFAayMDgNZGBgCtjQwAFr9ZecozAAAAAAAAgMWBBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0LQZeyjLvBcex1qq8/dlk5zzePnE/8O0I6MlWcsX9HPFhyaLsjZRcR6BbmaFnPMsc2+7rH7seJz45/a57Sv0fvPOhvrp6VZv0OZJvYdkzTvefR16n0E9dts05ynySc45Xq9vhv6j6VtVGqeWBsd2kDCjx2OaOB3KzMKy7uO5UT2Wq6P6+oU1//qlTnmsmpO1/WXdUeuJPgdmZstzo7LWlZmQtZ2TS/TxTDoDx8xS54X2lkZkrZroW9ahcpvbZrmqszA75PSTYf/8eXKj+nUWhnT/yh+qyFo4NOa26ffqxSutx5YGU5zTWJ+RoKqvgZlZNK7vj9lRfbPKtjsDOfX7U5LX2TJS1W0O1fT84elKn9tmVzTu1pX9VT3O95a73G17cjpboimyvJk291f83BmuFGQtHNL54ByOBQ0yPTek68XDzj1mSM/5wiH/esl7W7q40yGtVC0Njh0/YcU5l86YMjOLKnq8Zib1/Sgzoa970OCzHHFebzvuzAO8DHi2usxtc3lGzwNqTmZ5bY7H+ljNzDoyZVnry+l5wP6aHucHyu1um2MVfUzR6PTu9Y3mdbkRXc+N6fcR2VFdi0b1uTMzs1bNADEPCCv6Xh44fcLMLJp0rkNZ36+jSX3dI2etwMwscebI1VhvO17XefZ8Tc/ZzcyWRnpuWU70/XHQyYBGwiny+ieWZfXxHKzpcT5Y1WsiZmajZX2OgnF9bsOqviZezcws69yyc2N6TPoZoN8nmJlZLLZNG6xdTBOfUAQAAAAAAADQNBYUAQAAAAAAADSNBUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE3LzPUBzJkgcMv1jrysJVlnw1SXMsMVt83wmU5Zq52qd3zOqp2ytmNkqdtme04fUyZIZK0zNylrB8vtbpsdZ+g2twUrZS0oxLK2vnu/2+Z4nJO1tqgqawfL/bKWtJfcNguHdC0zVpO11Ouasb4mrSzIRhYEU8RZXl93C/3fp6SRvhBeBgS6m5o1uHyhs+2BwQ5ZW9k2ImtDtaLbZnd2QtYO1nSb5VifhNTtxGZtWZ0BUeCEqGOi5gWzWa0WyVpGR4A7INPQP9bsuFMb1Rc7nNT5YLW622YaT73fNF3c2RFkRAZ4GuRpUNN1b5yHzuULvb5mZoHT3wZH9T1npFvPWZ6eXOG2uSo/JGujcUHWDtfaZG2i7mSvmdXT6f0+e6SuX+eBSX/uMVHRxxRW9Hn3rmdU9bMuN6IzIjeidxyN61rQKANS0ab6/iIhM8AZ52HZP5dRpPtpVNV90ZlWmoV+n/EMj+n7+XCnHqvPTC5395sU9OscjnWb3tx6uKqPx8xs0plDJE4+HK7qHBys+PPyal3fI8La9DIgbJAB2VEnA5x5QGbCyYAJ//1ky2ZAYBZM9f7eycywwbm0jJMBXr/w7hsNmvQ+7zU0rsfjwQ59T3467HVbrOT1ePTmAePOPbmSTH+ZqZ7oObs3Dxiu+u956ok+t948ICpPr2Z2HBkwpm8kQblBBiTivjdD7wX4hCIAAAAAAACAprGgCAAAAAAAAKBpLCgCAAAAAAAAaBoLigAAAAAAAACaxoIiAAAAAAAAgKaxoAgAAAAAAACgadN/nvdCpx6n/e9qHfrURPop3hZN6ufEhyMTbpvtOztlLf8D/Rj0H92gHwU/OFpy22wrNnx2/ZTSdImsZSL/3B4e0o+1zx3Sj4nvumBQ1r69c53bZvu/tMva2El6u7ZB/aj3pD3ntpkf1OchqOtaWNWPkE879blraUHwwtd/lOrr11Cof9+STtHUEU73Txv8Cidwto3HsrK2Z6xL1paVxt02nw+7Za0S6xzcMbRU1so1/9aSy9RlrbOgM2mskpe14bGC26Y9rzM0N6wvaN2J0HSqPvdTorLuf2HNyYfxst5prPMBU/Du9ceRD6HuwhbqaYAFid9nrK6PqTKu7znPjujx2Nc24jaZOME0GevceXa0R9a8sWpm1pbTE6nECdixmt7vaIM2Rw7p+2dhwrkuXsnpB2ZmkTOUw4oey6GXAXU/A1KREWnqz80WujQ1S22K8VNzBmTVqZlZUHDeC1T0WM04/cmdP5iZORlRHtZ9/JmizoBq4t+TK059tKbvrTtGdAZU63o+b2ZWzOrBUy7q3Dk4qcfx4Li+z5uZTRzQ27Y58wDvmnn3AjOzrPPWLzOq+180PClrQcXvt6m67y32DIhTS6eYSKdlPa8MMn4/Daq6L2Yn9PnMjuv9Jlk/BIJEZ8vkqB6Pu9q6ZS2cKhubNFzT42qHM/fw7uVmZtlI38smcvq8D1f18Rwe99c9xg7penHYeZPmnL6owVJKZtK5V3gZMOb02wYZkIj57fG8LfbwCUUAAAAAAAAATWNBEQAAAAAAAEDTWFAEAAAAAAAA0DQWFAEAAAAAAAA0jQVFAAAAAAAAAE2bsQXFTZs22UUXXWQdHR22YsUKu+6662zr1q1H/cwVV1xhQRAc9fU7v/M7M3VIAGYRGQC0NjIAaG1kANDayABg8cvM1I43b95sGzZssIsuusjq9br94R/+oV111VX2wx/+0Nra2o783Dve8Q778Ic/fOT/SyX/cd8nTNZ/6fWCftR54j9hXm83sN+tdzy/XNaqHbrR/dv0I9uzI/6a8WimTdYC79HizpPg47z/TPKwojeutettB59YJmv5Qf/R9KVDdb3fc/Q5yo7pfYYTVbfN4qG8s7E+3jTStfDwsNvmfDKrGRDHZkF87PerNbmJ32PMgrzOiEzZ2S7RtcjvMpYd0UcVxFlZ25f0yNqhzna3zWcLett6XY+NyqGirAWxf3bHsvokHc7qDAgmdA5G437WlfbrY4om9Xap81ISfUnMzCzU3c+iSadv1qfoyz85ntjpYGaW1qbOujTVGThTZjMD0ji1dKrBF+tzGUxW3H2GzjwhO6mvQ6Xq9FMnO8zMwroz98jlZO35bLesjVX0dmZmB4o6I6qxM/c43ClrSYMMGMkVZG1wQmdLpaqvSXXCf52ZA3rAZsf1dokzXZzqtnNUmxWdZ2FZj8lAjGMzs7TS4Eai+nza4GBnwOzPA469D6Q1J2sbZUBG9//cqM6AWpvT/72bipk7OUmcTBoM9His1v33PIed8z1Zc9o87MwvGrzO4Zzuj4N5JwMqehzHI34G5A7o65kd0dslzm7DBrfW7ITuJ24GOH0znXQmLWaW1tU8YJFnQJqY2RTnu+Zk5qQ/dwycMZdx5gFR2XlvOd4gA5x67MwD9obdsjZWdt6Tmtnuot52sqbH3OFBvY7Q6I1WGOr7Y76gc7vqzLFqDeYB2YPOPGBUb5c63cSb65uZRVVnHlB1MmBCTxjTiQm3zdl+LzBjC4r33HPPUf9/xx132IoVK2zLli12+eWXH/l+qVSyvr6+mToMAHOEDABaGxkAtDYyAGhtZACw+M3a31AcHn7hk1U9PUd/Guav//qvbdmyZXbOOefYxo0bbaLBiiuAhYkMAFobGQC0NjIAaG1kALD4zNgnFH9akiT2nve8xy677DI755xzjnz/V3/1V+2kk06y/v5+e/zxx+33f//3bevWrfbFL35xyv1UKhWrVF78CPjIiPP5dADzBhkAtDYyAGhtZADQ2sgAYHGalQXFDRs22BNPPGEPPPDAUd9/5zvfeeS/zz33XFu5cqW9/vWvt+3bt9upp556zH42bdpkN99884wfL4ATiwwAWhsZALQ2MgBobWQAsDjN+D95vvHGG+0rX/mKffOb37TVq1e7P3vJJZeYmdm2bdumrG/cuNGGh4ePfO3ateuEHy+AE4sMAFobGQC0NjIAaG1kALB4zdgnFNM0tXe/+912991323333Wfr1q1ruM1jjz1mZmYrV66csp7P5y2f959SBGB+IAOA1kYGAK2NDABaGxkALH4ztqC4YcMGu/POO+3LX/6ydXR02MDAgJmZdXV1WbFYtO3bt9udd95pb3jDG2zp0qX2+OOP23vf+167/PLL7bzzzpupw3rRvoNuObmgR9ZC54nbwaR+NH2a6MfLm5ntu1A/yrxtj/PI8WX6seK1bv9DqJmcfjHe49yTRD8LXj/M/QX1qtPtvP2u1OfWDne4bY6t1EeVLtH7nVyhb1hty9rcNjOT+tymkb4u9TbdD8Ld+prMN7OZAUmlaklw7LkJypUpfvrf1WruPsNI95nSPn1tk0j373pJ928zs7DujPO63rbervtTXPIzoFLW/S1NneN1umJQ819nUHPGY87bsbPTBkMjcrpCGOuNMxO60SDxG82PONdzwrlXTOpMt5qTg/PMbGZAWq/ZVN01LTvn0hnjZmaBk9OFg+2yVi/oPpMp+2PDG3KBc38c7dDjuFzQtUbqiT4HXu9PJv3pZbXu7Nd5nYl3PBU/63IjzvzC6ybONYkm/QzIjut5XzChQymdmNQ7rTuTUDNLRS6l6ezPH2Y1A+LY0uDYPpB684Cgwb0qozMiN6SzuNZWkDXvXmRmFud0reAcb71DH2vVqZmZjYZ6rluPp/eP2dKqv51z27XaFPO5I/t18iGI/euZG3UyoKbbjJzpYtjglpyZ1BkQlqc5DyADpjStDGggyOh7WXZYd4ycM+YCfznAEuf2WTis+/BYl96wWvTvycOmMytxJya6lDr3eTOz2Bnn1dB5n+DMA6zB+4/MuJMBFX083jVrlAHePCAcc+YBY+O61qhPp6JN9f3jNGMLirfddpuZmV1xxRVHff/222+3t73tbZbL5ezrX/+63XLLLTY+Pm5r1qyx66+/3j7wgQ/M1CEBmEVkANDayACgtZEBQGsjA4DFb0b/ybNnzZo1tnnz5plqHsAcIwOA1kYGAK2NDABaGxkALH4z/lAWAAAAAAAAAIsHC4oAAAAAAAAAmsaCIgAAAAAAAICmsaCI/6+9e/mN4sriOH66bXfbgB8YhI1lrFizYaRIaIQAWSyx8CoKjz+AXURiFkn2wJIokbJIhJQdSLMA5IUTwQ6BMUKyiQIeMQhksYh4jF8Bj7Fj3O5HnVkQbPXY91S1aVOu6u9HYkHf7q7bp279+tZNhwsAAAAAAAAExoIiAAAAAAAAgMDWbZfnja7watps3/ovd3tde4Oz7c+/NzvbtlRXmcfMNnvOtvpnCWdb+z9rnG1//MPdJiKyacK9+1bddMHZNvM399BJZs1DmtRY4k5o2n3MnL2LWGrO3b7jurtGtdM5d9vj/5jH1Myiuy3rLpI1Sgrz8+YxK5aqiKw8x4WZGedLEqmU+ZaJhYyzbfObBWdb3fg2Z5sm3NexiEjCc2eAFNxjOLtjs7Mts93+nPlau08u1Rl3f6rfGJ9DRNT45sludodA0h1JkprNm8esezFntrto2p0PXsrO9Ko59xiSqVfuY/7pvs41b39O8RxFUqN4ceDIAM+oZaLangJZGZ4y2rZOu+cBWmWPmYSxI6ZWu6+NxYe17ratW8xjZuvdGVBjxEOzuwSSmrczwDPqkK13Z1aVcczaGXuM100YGWBkr9a4++qX6dXTxnf2H+55pi4a84ccGbAqVwYY3+WJrHuOJ2LPA2qMtqbpJuNN1/adK2JnQPbfm5xtme3uNhGRxQYjA4zX1VvzAKNNRMQz7omyW9wZUL1g3Le8ssd47VozwMrtKvt8Jl+/cTe+/K/7mAvueaYW7HwlA4p5xnWe8JlTWRlRk3O3Nb1qdLZZ3yl+NOWetyxur3O2ZZrd9wki9jxglZIuqTO+k6t87s2te/58nfue35oH1L2yz2f6D3cGJBfdr7WyV6vs3+dVv3QfU6fdGWB9d0nB51p2zSV9dl1fK36hCAAAAAAAACAwFhQBAAAAAAAABMaCIgAAAAAAAIDAWFAEAAAAAAAAEBgLigAAAAAAAAACi/Quz/rXTjV5yZk7EK3pvQvuLYTyefeuO/mce402b7yniIiXcb9vIevefSlv7PhXWLR3ASpk3YXL59yvLSy6h46u2y7Pxuvy9gCwPqc1dqwa5D37g6pRCKvN4qm9I6FLXnJ/HXd9dncKi38GuK+bhPrsuKzuXfSSxrn3jOt8vXZ5zufdO8ZZY1hEpJBc446T1u5tOZ9dno2XFrLuELDKk/T5nH7566LGTmqeUfe3r3UfM2GMITs77M+puvr3QaVmgLVrsnWNv31z9/lNeO69T63zrvIeuzwb+WFtVJnP2VM9a35hxqTxNZb3yQDPc7+x1R/7mH4ZYOyY6Fl1N3Z39Nux18qdNc4R/DNg9XlCpWaAGNe5XwaY+WFkgHne32eXZ2Ms5vNGm988wLrmDAlrbu2zw6tnhIvVH+uY/hlgnBdrl2ef3LYk1yUDfHbPJQP+7wlWBvjdCxht1n2gNQ9IvscuzwX3l30+Z1xTOfuYZgZYw8W6nfW5N7dKX7B2TzfnAfYuz1XGGk7SmO+b8wCfMSSeMRaM69y8599g9wIJjXCqvHjxQnbt2hV2N4DIeP78ubS3t4fdjbIhA4DSkAFAZSMDgMpGBgCVrdwZEOkFRc/zZGxsTOrr6yWRSMjs7Kzs2rVLnj9/Lg0NDWF3b8OhPv7iWiNVlbm5OWlra5NkMj7/0gEZUBrq4y+uNSIDIBLf8V1Oca0RGQCR+I7vcoprjcgAiMR3fJdTXGu0XhkQ6f/lOZlMrrq62tDQEKuTX27Ux18ca9TY2Bh2F8qODFgb6uMvjjUiA/AO9fEXxxqRAXiH+viLY43IALxDffzFsUbrkQHx+c8TAAAAAAAAANYdC4oAAAAAAAAAAovVgmI6nZazZ89KOp0OuysbEvXxR42ijfNnoz7+qFG0cf5s1McfNYo2zp+N+vijRtHG+bNRH3/UqDSR3pQFAAAAAAAAwIcVq18oAgAAAAAAAFhfLCgCAAAAAAAACIwFRQAAAAAAAACBsaAIAAAAAAAAILDYLCieP39ePvroI6mtrZUDBw7Ir7/+GnaXQnP79m355JNPpK2tTRKJhPz8889F7aoqZ86ckZ07d0pdXZ10d3fLkydPwulsCM6dOyf79u2T+vp62bFjhxw5ckRGR0eLnpPJZKS3t1e2bdsmW7ZskePHj8vk5GRIPUYQZMAyMsBGBsQTGbCMDLCRAfFEBiwjA2xkQDyRAcvIABsZUD6xWFC8cuWKfP3113L27Fm5f/++7NmzR3p6emRqairsroVifn5e9uzZI+fPn1+1/dtvv5UffvhBfvrpJ7l7965s3rxZenp6JJPJfOCehmNwcFB6e3tleHhYrl+/LrlcTg4fPizz8/NLz/nqq6/k6tWr0tfXJ4ODgzI2NibHjh0LsdewkAHFyAAbGRA/ZEAxMsBGBsQPGVCMDLCRAfFDBhQjA2xkQBlpDOzfv197e3uX/l4oFLStrU3PnTsXYq82BhHR/v7+pb97nqetra363XffLT02MzOj6XRaL126FEIPwzc1NaUiooODg6r6th41NTXa19e39JzHjx+riOjQ0FBY3YSBDHAjA/yRAdFHBriRAf7IgOgjA9zIAH9kQPSRAW5kgD8yYO0i/wvFbDYr9+7dk+7u7qXHksmkdHd3y9DQUIg925h+//13mZiYKKpXY2OjHDhwoGLr9fr1axERaW5uFhGRe/fuSS6XK6rR7t27paOjo2JrtJGRAaUhA1YiA6KNDCgNGbASGRBtZEBpyICVyIBoIwNKQwasRAasXeQXFF++fCmFQkFaWlqKHm9paZGJiYmQerVxvasJ9XrL8zz58ssv5eDBg/Lxxx+LyNsapVIpaWpqKnpupdZooyMDSkMGFCMDoo8MKA0ZUIwMiD4yoDRkQDEyIPrIgNKQAcXIgPdTHXYHgDD19vbKw4cP5c6dO2F3BUAIyACgspEBQGUjA4DKRga8n8j/QnH79u1SVVW1YsedyclJaW1tDalXG9e7mlAvkVOnTsm1a9dkYGBA2tvblx5vbW2VbDYrMzMzRc+vxBpFARlQGjJgGRkQD2RAaciAZWRAPJABpSEDlpEB8UAGlIYMWEYGvL/ILyimUinZu3ev3LhxY+kxz/Pkxo0b0tXVFWLPNqbOzk5pbW0tqtfs7KzcvXu3YuqlqnLq1Cnp7++XmzdvSmdnZ1H73r17paampqhGo6Oj8uzZs4qpUZSQAaUhA8iAuCEDSkMGkAFxQwaUhgwgA+KGDCgNGUAGlFWoW8KUyeXLlzWdTuvFixf10aNH+tlnn2lTU5NOTEyE3bVQzM3N6cjIiI6MjKiI6Pfff68jIyP69OlTVVX95ptvtKmpSX/55Rd98OCBfvrpp9rZ2akLCwsh9/zD+Pzzz7WxsVFv3bql4+PjS3/evHmz9JyTJ09qR0eH3rx5U3/77Tft6urSrq6uEHsNCxlQjAywkQHxQwYUIwNsZED8kAHFyAAbGRA/ZEAxMsBGBpRPLBYUVVV//PFH7ejo0FQqpfv379fh4eGwuxSagYEBFZEVf06cOKGqb7eKP336tLa0tGg6ndZDhw7p6OhouJ3+gFarjYjohQsXlp6zsLCgX3zxhW7dulU3bdqkR48e1fHx8fA6DV9kwDIywEYGxBMZsIwMsJEB8UQGLCMDbGRAPJEBy8gAGxlQPglV1fL81hEAAAAAAABA3EX+31AEAAAAAAAA8OGwoAgAAAAAAAAgMBYUAQAAAAAAAATGgiIAAAAAAACAwFhQBAAAAAAAABAYC4oAAAAAAAAAAmNBEQAAAAAAAEBgLCgCAAAAAAAACIwFRQAAAAAAAACBsaAIAAAAAAAAIDAWFAEAAAAAAAAExoIiAAAAAAAAgMBYUAQAAAAAAAAQGAuKAAAAAAAAAAJjQREAAAAAAABAYCwoAgAAAAAAAAjsf6E6uzCKensVAAAAAElFTkSuQmCC", | |
| "text/html": [ | |
| "\n", | |
| " <div style=\"display: inline-block;\">\n", | |
| " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n", | |
| " Figure\n", | |
| " </div>\n", | |
| " <img src='' width=1300.0/>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# this cell's reason is to give intuition of how average image looks for different sum of images.\n", | |
| "# first row is original 5 images from dataset,\n", | |
| "# second row, each column is average of first 5, 100, 150, 200 and 255 images. \n", | |
| "fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(13, 5))\n", | |
| "\n", | |
| "for i in range(5):\n", | |
| " axes[0][i].imshow(images_train_in_batch[0][i])\n", | |
| "\n", | |
| "\n", | |
| "axes[1][0].imshow(images_train_in_batch[0][:5].mean(axis=0))\n", | |
| "axes[1][1].imshow(images_train_in_batch[0][:100].mean(axis=0))\n", | |
| "axes[1][2].imshow(images_train_in_batch[0][:150].mean(axis=0))\n", | |
| "axes[1][3].imshow(images_train_in_batch[0][:200].mean(axis=0))\n", | |
| "axes[1][4].imshow(images_train_in_batch[0][:255].mean(axis=0))\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "id": "51345341", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "0e6d4ccfaea34947b04818b29fc2aaab", | |
| "version_major": 2, | |
| "version_minor": 0 | |
| }, | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAGQCAYAAADfiOw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnbVJREFUeJzt3WuoZfd93//PWvt+7nMfjaSxlMSp86/7t8GNFeFQ0lbE5A8hrv0gfVT3AqHpKOD4QcHQODQUVFJoTYpaPyl2+yBN8AM7JBRDUByZgOxg1Wnq2lblRJbGHs19zm3f91rr/0D2aM75fn7WPqOZOXuf/X7BgPSbte/r+/v99jpnvp+sqqpKAAAAAAAAADCF/LCfAAAAAAAAAID5wQVFAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaFxQBAAAAAAAATI0LigAAAAAAAACmxgVFAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJjaQlxQfPbZZ/XYY4+p3W7riSee0J//+Z8f9lMCcJ9R98BioeaBxUPdA4uHugdmR1ZVVXXYT+J++v3f/339o3/0j/TpT39aTzzxhD71qU/pc5/7nF566SWdPn36LW9flqUuXbqk1dVVZVn2AJ4xFkFVVdrZ2dG5c+eU5wtxXf+Bejt1T83jfqHu7x/Weswq6v7+Ya3HLKLm7y/qHrNooeu+OuLe//73VxcuXLj9/0VRVOfOnaueeeaZqW5/8eLFShJ/+HNf/ly8ePF+nfoL7e3UPTXPn/v9h7q/91jr+TPrf6j7e4+1nj+z/Ieavz+oe/7M8p9FrPu6jrDRaKQXX3xRn/jEJ26P5Xmup556Si+88MJU97G6uipJ+ln9f6qrcV+e51tK/AQlbzXjoe2Wv4uN9TA2OncsjPVPx/uUpEknXmnPx5U91hkvxdeQlf7Y1nb8i5Xv7sbHv3LT3r7s9cJYNRrbY6vRyD+JcOD0r3UaE431Z/oft88v3Dtvt+5nueazenw++cqSv48Tsb677zwexobrNXvzcsrVoZaYB4pmfA1V4ofBzd14H+0bsWbb371ub1/e3Ixj3b5/sLLw4w8AdX9/HPW1PquZGnVjkvKlThib/I1Hw1jvjN8rjJfjWp+5Ek8siZP48KoN/bFLVydhrPO97fhQFy/Z21fDKddvSVVh6v4B/QMd6v7+mLu1/iC/DZWZPfeyKS5J+fGNMNZ7Z/wtrcEJP2cM16fb31eJX7ip6mZ/X/ja6lw3+/uLcc+ef/eyvX25Hb8LVBO/v7f17T6D+zAPUPP3z9zVvXOAtT4z3/UlKXd7/J86E8ZGq77u3R7drfX5xNdHWTN7/MQc0dqO62/rRly/m69c9Y+1HfcF5SCx/lfm4gJr/X13pC8oXr9+XUVR6MyZvQV25swZffvb37a3GQ6HGg7f3P3u7OxIkupqqJ7N1sSTZ+aCohmTpCyPXx7KejuM1Rv+9lUzzhK11DcKo3QTV+KCYr0R/6JeixuGPPfPtczil5TUhYzKflOyR0553MHujl+3v/cOWvfzVPOZeT5uHpAk1WLN1xux5idNv9nIpr2gmKqhA1xQrDfifdTr8XnVzTwmSaV5D9w8IMl+UXtgqPv74qiv9VlmatSNKTEf2LU+UUtmrT/IBcXKPHwtcWy9EWu0bq4+Vok5bvr1W6ps3T+YLxnU/f0xd2v9272gmKiD3KyLbq2vJdb6mqn53NTWvbig6Pf3cSy9v4+fU2pfYevbfgb3YR6g5u+buat75wBrfep7/bR1XzZ83bs9ur2gmFhnM1P3qTmi3ogXFOv1eHA9Wfduj5+qW3dxgbX+fluwf+D91p555hmtr6/f/vPoo/En+wCODmoeWDzUPbBYqHlg8VD3wP13pC8onjx5UrVaTVeuXNkzfuXKFZ09e9be5hOf+IS2trZu/7l48eKDeKoA7pGD1j01D8w31npg8bDWA4uHugdmz5H+J8/NZlPve9/79Nxzz+lDH/qQpDfSnZ577jk9/fTT9jatVkutlv+nQA9EHn81uba24o89fTIMDR/dsIdu/Vj8deHdR+Kv5A7P+l4kSydj3xIn9Vu+rUa83/7I/6r5je/H17v8ExthbO0V36Ng5WLsnVa/smWPLa/HPozVwPyTK9d/STrUXg3wDlr3h13zWT1Ow/lSoi/iQ7EvUv/x2EdFkrYei/e79TdMr8LzsTeJJJ3biOPjIs5P3ZH/JwobnViHk9L/DOu7fx1fV+NGvN/17zxsb3/s2/E9aLyW6rd4K4y5Xqrpmqe+Z81RWevzZV/3rkfa5Ewck6Sb71yOY++OC3P5Dt9j9ORGXOsLU7eDsd8+LrdiLY0m/p9cvfrqRrz9q3Ffc/IbsQe0JHVe3YyDV2/YY8vdbhirxom2CNM6xH6smPG13tS3U1tfs+PVw7EX2uARv+fdejzW4ua74jq19OiOvf1Pnox9y7rj+D41av58X2sMwtiNQZyHJOn/vnwujLWuxj3/xkvvtLff+GZ8DbVL1+yx1ZbpxzoxLZFY6+fKA6/7g/TdNMfa3ufriR57pi/i4FG//m0/FvfIN//f+J302OM+b+Cdx+MeuTT9A3bNXCBJzTzWTXfivw+8cuVEGMteiz1hT/6vx+zt178T1+/6DT+fVWaPX/bjHKVE3bs5Iil83tkD+9fVs+ZIX1CUpI9//OP66Ec/qr/9t/+23v/+9+tTn/qUut2u/sk/+SeH/dQA3CfUPbBYqHlg8VD3wOKh7oHZcuQvKP7yL/+yrl27pk9+8pO6fPmy3vve9+qLX/xiaOYK4Oig7oHFQs0Di4e6BxYPdQ/MliN/QVGSnn766eQ/ewJwNFH3wGKh5oHFQ90Di4e6B2bHkQ5lAQAAAAAAAHBvcUERAAAAAAAAwNQW4p88zyyX6HwspjlVj/ieEIOHYjLa9nn/kfbOmUTnMybJqO7jiYoiXnt2wVeNhk9Hcumwk0TyY3Y8pkT2ypgylY/97ct6TMpc7vj3pdmM6VvZzZgIXW76lGgpPodqHJ8/IElZIyag5S7F/XRMRJOk4UMxEXL3oVTNm8GTMcG8TCQvbw3aYaxdj/Vdy03SuaSdYazZVNprYy3WzNg8rW7XJ8PX+zEtbiU/ZY9t1uIdV9sx2bYaxvdKIhEad8EslrWVmIJaPeaKVhodi+d39yGfvLj7SDy/x2fiOVszaY6StN2LdV+rxRpPJb52h3GO63UTCZurcT7pn43Pa7Pv677KN8JYe9k/Vu2aWddvbsb7NPX9xsGxlpPVTfozqlgztZMxwXzyTl/zvYdiHfZP+rW6a+4iPxVTTVNr9fd2NsJYUcY6bJh5QJK2a/G5dke+ZhvrcV0dtuIeZnuUSuWN6bjLx+PjS1L7r02K7fWYeJuNx/b2JEIjJasnLp9ksUZrJrm5PJvY45+Ma/3Wj/nk5N13xLG6qfvRxD/XS7vxeoNb14eJ27txs0xKkpaXYt1vn4q33/oJ/1rzSfxev9T2z6u+FOeD/MqNMFb1evb2lXsRZj5/Y7z60f+/QPgNRQAAAAAAAABT44IiAAAAAAAAgKlxQREAAAAAAADA1LigCAAAAAAAAGBqhLIcIteUXSePh6HBWXOcpJ2H48c3OOEbrY82YkPRrBMbDmf59A1Fs2z6Y+uuGXTLN0J29zs6Hl9XL9G0edKO18mLlj92vYwNnhumqWqeaLJeDWKj2WTTZhq1Lw4TuCRJmQsBWovnYP/hGL4iSd1zsWFxsubXTVP4Wjy3U3XcHcTHGtamXzJcA/hJIgCm0TRz0Vp8XoOH/O2zMr7fRTM2t5ak9Sw2xm9+33xeXd+wWVvbftwIzZ2rUkr0dsbRldVNQMHDMWxtfCI2Hpek4Ua8/WDD1/3whFm/mnHtKUa+lkZZrPHc1HLV9I8/mUwX4CZJqsf7Ldbjcx2c8s+1NjBN4Zv+PWw3Yo03aiZU7ZYPYCtNA/fMhLJJUsVav/Bys+cs3xFrvn/GB4rsPBLPrWH8eiBJGp2Je+kls78eJ0LRnGZ9+nPYBzQlAtQa8dhOJwYhbT+aWOuLeL9VzQc5ZGUMvmiVZi4zoWySJBfMNvbBk4QxHl12/U4d2451X62bPf45/72+e9Z8rz+Z2OMfi+di26ypnab/rl2YYLbc7NHdcZLf4xeJOWapFetjuBpfaz+xx6/1zXePzH+v79Tj822O4nuQ2pbk5jt8aW4vSapY63+I31AEAAAAAAAAMDUuKAIAAAAAAACYGhcUAQAAAAAAAEyNC4oAAAAAAAAApsYFRQAAAAAAAABTI+X5Acjq/m3OlmIK6fjkShjrnfEJU+O1mFE0WfKJreVKTIOqN1xCUyKF1SSzuXTYZZPkJEnDcXwPaol02aZJfK1MytToxPQpcP1xIqVqGFOiNrbiWN7zibH28SeJFLghaVBHkokwzRqJmjfJ7sXJmOg8PO5rfrQaH6tInJpVK9a3S1is1aaPHXYVu5RIkGua5MdR4RPgxkWs5aoR62hrI3H7nZiU2Z8kan4c63ul2ghjzUv25pKr7/7AH7svETIj5floS8QZ56buJxsxjXiQqPvheqyPUSLluViKdZebQ3Oz/r9xrKlys/5WfvlW3aRM5rmfIyZjU8/tWF/DY77uawOzB8j8sVkR677Wj59Bnkhxzav4uspu3x6LI8qt9SYpXJLyEzGSuXcirlO904m09fU4VnR80WXNt7eouLTWulm/23VfG/Us3j6VEl1VJpHa7CF2l3369fCke79T3wVi+nOtfyyM1cvEZOYmzswkP0uq9ifDstbPnzyRgm7m/qzpk8XdWj86Fb/X7z7kvyOMV+I5N17z52e+amqpHc/PpYZff4dmP+7mApf8LElNMx+st/xeeFjE17u2HI+9mUiJHpyavu6rPH42+SB+Bo1hIpndJLZniQ0P3+vfxG8oAgAAAAAAAJgaFxQBAAAAAAAATI0LigAAAAAAAACmxgVFAAAAAAAAAFMjlOVec02bW7EZuCSpE5sOD4/FZqLDdd98fWLCGJJNm+txPDdhDJlpyCpJDdOg2YWyrDV9w+Kbpvlrs+4bxboGsr12bFZ/pYhhFpJUtOJpXTb9ezg0je2HJ+Mb2x765+ruNU80eC5GdzZ6zXzCBWZXInDBNWdONWzW8dhpfWgatY87/rHGsa+wxiuJmu/EhskNE3TSSjRPd82Z3Viq4fPENHLuJOaXdt2/3vj4/rVe33VhFolm+aP4vGojE9jQjc21JSmvx/vNtnbssdXNTTuOoymr+1CV7Fis+9Fxt9YnAhpMAFvpH0pVO9ZzwwSdjYaJ7Z9Z12u1ONZOhTGZ+cSFqqW4gKbNxLGjfpw7KxekIMnNB3UTttYa+/nQ3WuWCHAhoOFocvWd1RLBAOtxsR4eizXnaluSinasuaLjT6LMBCHVzf7eBi4pva7ut9zwIQbNPNbBatOHM5RmLiir+B5ur/jvTTv9+B66bCZJyswepGFqfnloEnAk1W7F22cNP/FWo73zIQFs8ydLrR2ZOcESYUzue/3gdDyXi1bie33MCbNzgSQ1TYDZqglGdd/fJWkwibXk5ogTnZ69vX1OZi6QpFO1OH6lvxrGUnuFG2Y+GJm9vCT1zHija/b4O4k9vvkOn1zrR/vf78X9bs9vKAIAAAAAAACYGhcUAQAAAAAAAEyNC4oAAAAAAAAApsYFRQAAAAAAAABTI5TlbiUCGlzz1qzh3+ZyNTYHdk3Zi9jjVZI0WY6dP8tEKEveiN2BK3Ooa74uSS0T5lCYhsetum9cutHph7FG7hvFLtVjU9llM9Zf8c2Rbx2LzXIHSnSwN9fU+6fjsbWBb97acOfB0Deuzu5o4ptVpeTfKsyoLNWE2R27ZBKTJJXLsTHweDmeg+NlP7+UJuulMoFLKaWp2aL0ncNdr3nXUL0/9rW10Y41n+IaOXfH8b3aLn2jdhdAMxmlml7Hz3HcMe/LSiJYx6j1fAN6VeWP/n/MvlQYk5kPctOQXZKqTjxvJ21zziXy21wAm1v/U4oivoZaIoyp1Yq15ALYGib0QfLBbKWNNJHGJqxttRWfl5u3JGmza+ae0s/Tjd34HCYdE9Sy7Ou+ZubJrOeb1WcENBxNJrQhFcBm13oTtpYKV3LjVWJ/7rIk3JF5IhTN7dvd7d36L0krjVjznZoPbXIBLENTsxsdv6YO1+IbM8r9ZzDqm2NX4uM3j/t5OzMBTVnfP69qsvf1VpV//Zg/Lngpq/vv9W6tH5jv9SOfA2TX9aqRqHtTzy4MMRXK4kIWWyY8ZaPp17lRGd+D44ljne2xCaRs+vX7xkqsp8nQ1/1wEuepwS2z1p/x3+ubZruR9RPfZ8J8kBPKAgAAAAAAAABvhQuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNRIeb7H8mZMFcvaPkFssmKSH5dMClziU3JhhlU+fRqUS3NMpUENx/FJLDVj6pJLaJZ8StSp5q49tnDJy0V8X28Oluztd9vxdY1NspskTfrx/R6bz2C86qP48kn8bOs7iajOPQngXMufOybBXfJpr6mU56oe72PSjudb4W+uomUS4BLh01VpUk0n8fFX2r7mXaJjzaS95mZMkjaaMRVtreETEutZfA7f622EsWHbT4bddqy5kXn9kjTedana8bjhCV/zrcq8B7uJmt9/bpDuPn8SdR8+W0lKpDyXnXguTUzia2HmAsknP046iSjBRBJsOCxxnNsD1My+Yrnp1/r1Vqz7diLxdXMU13A376y2Y4qsJG275MdEuvvwWPy8BsfN3F34z7BdxD1ULZHwmzX2zlNZVUqEvs6NVIKrZfb8klQsxftwyc3JlOemqc/EVFSZ8ObJJJ7bbv2WpMLUXMvMA83c7xXW6rE+1+o+FdXt72+O4gK80fa3H6/F299ITHmT1fgejJfNHmwpkQzfiON5I/GBhXVicdNe50aWvfHnh9yaLilbjutU6nv96GQ8drzivlP6k2OyGou5WvKbxmY91uNK06+Vznor7sePt7rxPhPf65drO2GsYfbyKduN+B4OJ37ubXbiAjo64e/Xpb73zpj0675/rHwSv4A1d1bssdnO3usYWVVJ038ERwpXNQAAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpEcpyt1IBDa5JdyqgITehCaYpe5no918smU7Mdd/oNTNN1esmqMU1eZWkdj02hW3V4tiqac4sSefam2FsKfeNXlt5bL56fbwaxr5b913O11djM+dbpum0JI37sQnvaD1+tgNznCTl49igubbiP++s9ub9ZlVGk/Z5Y+pVkjLTlL1q+Km1qk0XypJq1D5ZinVcts08oETN1+OxrjGzJPUn8Um4ABYXoiBJZ1rbYex0MzZxlqSxSZYpq/hetc2cI0mTMh7bbfvAhM2xqe9efK31VM2PzLGpICYcWTaMKdGwv2ya87tu6j4RsFS0zbqeWOvlwohMjWZZYt4wNV43AQ3jwj/Z060Ytrac2Be0TMjD1jg2ak891tJyvN/dRKP1shnrfmSa5Td3EgFua7HG8x2T5iRJtzb3/r9LzcDMqspEuKGp2VTNF414HrnQpSoVouQCVMz6LfmvI3Wzl281/Pq5YgKWGqY264lQlp9YuhLGVnO/r3Br/Xot7tldEKMkdRtxXR8t+8faHMfHGh6P+/PWlq/5xoar+UQQ0779YVZlEmU/V1JhTLbGE2FM4ynDmKrE1ZfK7OezxBzhwpScVFjqSiOunx0ToLY78ef8mWbc459s+D1+O4v32yvj/ab2CqXia728Ha8LSNKu2QMV10wIbioErxM/nMaSD+HJsn11b49aDPyGIgAAAAAAAICpcUERAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBopz3fJJTxKkloxSahqJVLg2vE+ChMWWjR9wlNlxrOWT2FzyY25SXlebfmEJZf41jRjeSI58ifbl8PYcu4fa7uIaUo1xef/yPKmvf2ySa7qm2RWSeouxxIYL8fkqfGyz24abcTbN2/5RKz8jgTwrJLkg+kwo/aned2WmguMKUPZkmmvJiAxmfyYmxRYNw+49DRJaphkV5fsnvKe5dfC2Nn6lj12UMX6vDV+19SPdW4l3u+Nuk9g3V2J80thUt1G6/59qQ/ih9BqJdIB7Sjmyf70zttc3afmCDPukh/d+p86NpUO6xIhm61Yt+tLMVlVktr1eGzdrOstc5wkvXv5e/E+85jwKEmXasfC2PfyOJZKkl/vxLW2b9ZvSZosm6TtVrzf4br/OXuVxw+hcc3vKzBnsmxPjR6o5nN/vtitsCnZ5J7AjR9gQanMHbvalvy63szjWKoOj9disvvpuk97LcyLaGRxr/Fq/bi9/XozzlupFPhtMxeOV83Ykn9dw2Om5m8m0l73fffLqkyafruEGZA1EpdETPpzVffn3GQpzgcmzFil2Z+/8Vgm5dklvsvv0V2i83rTf9lcb8RaOlbvhTGXzC5JP9GO6e5n65v2WFfjhfmdtm/2ztnbrzbia9hq+losVuP9jtfN9/pE3Tc65jNsJ/b4++f/anF/T29xXzkAAAAAAACAA+OCIgAAAAAAAICpzfUFxS9/+cv6xV/8RZ07d05ZlukLX/jCnr+vqkqf/OQn9dBDD6nT6eipp57Syy+/fDhPFsDbRs0Di4e6BxYPdQ8sFmoemE9zfUGx2+3qPe95j5599ln797/927+t3/md39GnP/1pffWrX9Xy8rI++MEPajCgeR0wj6h5YPFQ98Dioe6BxULNA/NprkNZfuEXfkG/8Au/YP+uqip96lOf0r/6V/9Kv/RLvyRJ+m//7b/pzJkz+sIXvqB/+A//4dt78FTTZjeeatRujrW9V1OXfV3QSqJRu2vQ3KzHJqnLpqGrJK2YoJOWadr87uVL9vbvbcVG7d3Kn35FdcKO73e82bXjt0adMLbS9gEwvabpgm8+rrLuP8Oxad5arPim8Fn15mdTVYmGvPiRHmjN72vUngxfKU34yTjRjdvMBa55e6IHsz22Kqfv1N40TdmPtWITZsnPBZ1aDFdYrvna+pnOq2GsSDR1H5qmz//PUpxLdhOpFVvjWPPDiZ9f6o04701MtoILwpCk0YoJ2EiEstT3fd6EtNydQ13rs0ToQs2Mp/YFhg1eSmW6uLrPE5OEGXd1nwpoeGhpO4wt12ONu7lAkh5t3ghjLlRN8iFNNfNih4Wvr0E7Fun1RBjTcDnW/cgEsGSTxIdgmq1PNnxT+DqN2u+JQ6v7ZM0fJIjJDJk6zsf+9lkRx6vEuVn5XLZgreUvupxqxVAVG4Jg1llJOt+4GcbOJUJZrhXxPnZyf79O2wTI5IkNk1vrxybMsmz693XSjuOTVb8Hmesv0zPkwe7x8721bsJXfvDAcajlv+e574pu25vIL5UmZk1q+oPd9/qJ2Uu7UDXJB7Acr8fv1VumZiUfwOLCVyRpI4/zyUYtPlYq+Kk0a2jThNJIUsNc2xiZayNFy8/zLoR1subrvrnvnMmmnYyPoCO7y3nllVd0+fJlPfXUU7fH1tfX9cQTT+iFF144xGcG4H6g5oHFQ90Di4e6BxYLNQ/MriP7Q5XLly9Lks6cObNn/MyZM7f/zhkOhxoO3/xp/PZ2/Gk9gNlDzQOLh7oHFs/d1D01D8wv1npgdh3Z31C8W88884zW19dv/3n00UcP+ykBuI+oeWDxUPfAYqHmgcVD3QP335G9oHj27FlJ0pUrV/aMX7ly5fbfOZ/4xCe0tbV1+8/Fixfv6/MEcG9Q88Dioe6BxXM3dU/NA/OLtR6YXUf2nzw//vjjOnv2rJ577jm9973vlfTGrzl/9atf1a/+6q8mb9dqtdRq+eabd7LNmSUf0ND3oQX5KDbvzEyf9Mz3PredXlP9QBumOfFSI97xqXZszixJj7RvhbFhGU+fddNkVZKO5/Hxc/NeSdKjjdjU/eI4BrWs1/v29mc7sRn0reGSPbbRim940TINeGuJRrEmuGHSSQQ02FHcK/e75rW/0f4PuaKb+GbBju0nfpDMnro/uDRN3ddMONG5TgxGkKSlPIayuCCmddPYWZLa5oU1Es3Tb5pgmR9vXg1j/7fhN43ueW2PfGDCZi82mB6Z97BKBGwUrTg+Xk3U/P51wjTMxttz/9f6RN27PUBiTSta033uNZ+JljjYP5Zb004tx3X5keVNe/szrfjPwRpm/V6p+YCHE3l8rFSjdvv4jTgfjZf8++ee6+7If6bfn8T7mCzFuq13E3VvtnGTZV/3jX3nVVZlkp8mcZfupu7fds07iYA9u2d0Q6kANpeZZNb01P26IEIXviL5OloxYWs1+S8YqyZwIRXAtmr2Fas1v5efViMRztBsxDdxaPf3/vMuzP5+vO7T2hrtfTVfZpL/OoS7dN/3+ClFPL+ykf9iXh/GGslN0EqeCFgqTI1nqUnCONOO339/ctn/c/C2mWQaZqyV+9fqwtbWMn+9w9nI46L4cGvTHrszifv5rcQe336lcts1n6ujidnjJ/dwzX3zQWIPuAjm+hrH7u6uvvOd79z+/1deeUV/8Rd/oePHj+v8+fP62Mc+pn/zb/6N3vnOd+rxxx/Xb/zGb+jcuXP60Ic+dHhPGsBdo+aBxUPdA4uHugcWCzUPzKe5vqD4ta99TX/37/7d2///8Y9/XJL00Y9+VJ/97Gf1L//lv1S329Wv/MqvaHNzUz/7sz+rL37xi2q3/VVtALONmgcWD3UPLB7qHlgs1Dwwn+b6guLP/dzPqUr8cwNJyrJMv/Vbv6Xf+q3feoDPCsD9Qs0Di4e6BxYPdQ8sFmoemE9HNpQFAAAAAAAAwL3HBUUAAAAAAAAAU5vrf/L8QGXZG39+KJXyfAAuBc6Elao28mlQ2dAkR635XxU/tRrT3f7mxuthrFPzaU4uedElNzYTaY6bZXyuzcwnxrUV78MlT+WJKNy6eQ713D9WqxVfb3cp3m/R8Z+BC79yKbCSlLXejJRKvHTMkKxWU5ZNUeeZ+blMIiHYJUIe5Fxwx2Z5og5MsvtPrsfk5FRaelHF1zU2UWm9wqfnDVzKYyKtrjAxla7mJ2YekaRjjZgWl6r5Zj3eb3c5vldF2z+WC7edLCV+Nrc/Gdy8p5gx+9b6rJmIAjyAspGYD/ZJlJLKTjyX6x0XAyudWo9r/U9txJTHh5o+3d2lN7t01yLx82i3L9gwya4pG7VYyzfzFXuse67nV2/aY3eG8XO8uRETWyddn+Kaj03yYydRz/V9W+uSBf8oqFzaqxl7Y9ys9RM3ltorTJcSLUkb6zFO+F3H4lq/YdZJSTrZiHNGbjYbtyZL/vFNfadWuqaZS1zaq0uZlqS+iV5u1fxc2DIpz9v1+BmUvuTtcl2l9nZZ9qP/HzMna9SVZXfM1Qf4Xl+1/Unj0tntvt1/1VZmUp5bbX/wqeVY9z+1HL/Xu3VSks7WN8PYq6NTYWxc+ktFbo5YTSRCOw/XY7r8S4m9Qio13llqxuewsxI/mKqW2NuZh0ru8fd//3PfBxfE4r5yAAAAAAAAAAfGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNQIZZlWlu9ptpklGu5mNXONNnFsWY/jtglwok9s1YnNoDtLvpHxciM2Ol2rx0atq4nmre9sxabuN4rYKH1c+VOqbZq3pvrUL5mutmX9Vhj7Tn7W3t41hU8ZDGJjXXfzVJ/Z3BybbNp8ZyCHCefAjNlf881E5+48FmjV9ukK47V4H+PleFyqSXjZjOdN3vTn++pKDFt5tB3r6Hzzur39smmOPKjiE7s03rC3XzIBLM3EXLhh0qjcmAtfkXyAzJn2jj12ZxQ/m1tNH/rguFwZN5dL8ZzJSup+1mX1hrLsjs+tkdgm7Q/ekFS1fZPvyXKcIyZL8ZwZryTOj3pcP5cSa/3JTmzUfqwe6+ZYPR4nSSdqMaDBrfW5CU+T/Po9SoQRLZvgJBfQsJT717pVxJCIWiL4qVk3gRptF8bkP++yHz+v0bJ/XbHuCWWZafvW+qT9IVtScn/vQhfd2CRR8y6IKV/xG9G1dqyP9UZc/x9r37C3P16PNe9CEHbrbXt7l0M4Tkxl7l2umYDFlbqv+SvDtXifqbC30jyxt1mKk1QQ0/5Aj2kC/XCoslq+J3gxc/Ut+bW+6deJom3Cu8y2oOj4c7Yya1Kr4ev+/Ercz59rxLF24gusC0DbrMV9gQtjlKSm2QNsln4PdKrmwlbi7XuJ29vHd1/AJW27dDsTdpPiMmjGZr8mxWs+GaEsAAAAAAAAAPDWuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaoSxTyhp1Zdmbb1e21PEHmvFyLTYOl6TxqmnUbgIaJu1Uo/Y4Xpb+GvGpdmy6/BPtK2HsnAk/kaRH69thzDVq3zANXSUfwNJONLOuKY67psuFOU6Sdk1D1nHhm8q6p+AasiZ6yqswL6xMpc3c2diXJu0zL6tlexrsZs1Es2DTyLls+1SVkan58bJp4pxo2KzVGHjQ6bhmx9LJpdhw+XQj1vFjiVCW0pz0LpTlynjd3n7HzEWnaonm6WZ4bOq7lWgufXUUG7UPS1/zg4krcNNAP1HGbn6YmEbckpQ1CGWZO3m2Z2HIVsyiLKkyYS3lhj+2fzzWwvCYWdOWE+uCOb3qNd+Q/Ewn1vg7WrHG25mvpdU8hjnUTKja5UTdj83Pqc8lnqt7YS6ApUj87Ns1ix8n6r5dj3Nnlk9fj24+mHQSk0RYE/jZ/TxJrvWtuLesVvz+frgR5wezTNnAhpQqsSitNmPNnG7EULJTZh8vScdNENNmGV9XKsjJBbCktsFuhjtuwiBTj9WbnAtjQ7emK73v3y+1v3fjE5dAo3jOsNbPgWzvWq+WL8bKBDKmwrvGJrTHBi9NnxGiRs3vC861N8OYWz8fa9y0t98xASguwMWFNklS2wSwLZkwRUm6ZiY6H9Ti7Y590KUzdd2n8lNdsCpBqm+JXQ4AAAAAAACAqXFBEQAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaKc9Tymq5suyO5KBEynO50g5jxZJPfHVpYUW8ucpmIl3IDHeaPrnxeCMmpm3UYgrsskmIkqSxiTtzx67mMa1N8sluKTdNAnJp0hxdCq0kTUzKY6vmk6cykx4tk/yYSuIz4XTpFLg7El8zUp7nT9unjJXLcS4YH/fzw+BYPDcmMSxd43WfilpvxvGmSS+VpHPLW2HsbH0zjJ0wqa6StJTFx3p1EmMqzzV8MvxqHs/x1dy/hzXFeatbudv7+eVyFRNnOzU/F7rE+Fo7voelSfaTpLJuPkMzb0uK5wxlP/Oyek1Z9ubWqFz3yc3FSjyXhyf8+d0/Zc4Zk+hcLfm6z03dLyfW+lPNmMj4WCOmPOcmuVmSTuVxX3DNJL42TMKjJC2b8XY2/VZz1aRP1xKF41KeW4mUyVRCbjgumfwYx4rEWq/9CeBlKuUasyBv1pVnd+zPVs2iLMXPVVKx5tf6sUkAL92Skkgar+pxvNHw59GpVqz5R5o3wlhqrXaJ72PF2rpmby0N7F7c1+xGSEBPH+tMTM1PEt8FbHWaQ81dJu8geWxt3x1n/L7OrMvabWX5m1/uykRiu1O2/IkwWnXf68132tT3ejMfNGu+7s+bGj9di+nuKQ2zx3cGduKSulUcXzd7eUnayGOiczuL79WZRvzeIvl9u/3+LqluvnvYWk6lu5uPtmgm1vravoMXuO4X95UDAAAAAAAAODAuKAIAAAAAAACYGhcUAQAAAAAAAEyNC4oAAAAAAAAApkYoy5SyVktZdkfz1iXfhd81ap+s+Iamo7XY5HO8apq3LvmGxUsbMUxho+MDFk64UBbTfP1ULRXQEJufLmexyWoqKMU1X20kmpeum4aqhXyjdccFyKSatzpVLR6bbMRsJPrXSne+B+b9wIxpNKQ7GrVXiZCOyjRnnrT9CVO0TcPmljk3W77mM1MbjZo/9p1LV+OYCWf4iYYPkhhWsbnyzTKGomzmvpH1qVq831bm38PcNGpfMo3aV10KkqTdIj5Wd5IIgJlyLkjVvM1xInPhyMg6S3satU9W/Vo/Xonbp9GqX9Mqs9OqTFP2WisRymLqvpUIY1oyzc9TYUbOsnmsXhXvsydfX4MDLJYreXxvm1kMmNgp/Wdwaxznnm4iQW1YmGC3YRwzy78kX+NZmQrMq370/2O25PneZvqptd6EspTtROiiyWop2vE8KN36L9kTcX3V78/Pd27GsUYcO1uL3wMkX7Mn8njsjdyH1bg5Yymxx83dd4EDlEd/Et/v4cR/lXVBDqqb71iJKas8yDfksIfh93VmXdZqKrsjKLBY8WtHNo6T/3jFnzTj1TjmarxK7PHzxvRr/cMmZOlvNGJYqqs5SbpZxGM3zXWBcc0XwnGzrzhX9/uCndKFssT30AVEST5oJRW0VpSm9sz76kJwJclcLklfA6jv+4vUZLIAmPEAAAAAAAAATI0LigAAAAAAAACmxgVFAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDUSHmeVpZJ+ZuJQlXbv3WFGR8v+9SfSScmFFX5dKlkkpSbY2uZP/Z4PSYnnjKJby7NWZLcK8jNY61lMTVK8leu13MTgydp1yTJSjFlq0gkSvcmPqnLqbmEXHe3iRQ6l/KYpRJfx3ekV5XTp1bjcGRZpuzOdLSaP9+ywsX++vt0yY+liTjMDlDzqy1fc480b4SxUyY50iW4SlKvjCfyoIqpqoNErLlLkHuo7o/1idKxRq6M1+3tL3aPhbFxIm2tO4rPoRzFYxtDnyBXM0Gb9V5ighjvew3U/czL6jVl+ZvnQ2FS3CWpqpnE9qY/Z1yNV3VzzkyZQC5JnbpPQzzT2ApjGyb5eck/Vbl7bZi1fin3846TJybErTIW040ypkReHBy3t7/Uj/PBKBHNOppMl76Y2EIpc6Wb+rgm++ZOM5didmTNhrLszXWhWvLxn1UjnkOp+aE0c0Fl1t+qmVjr2/GE2+j4lOeHmpthrGFO2DOJPcyOWZeuFcthrJnY3LpV/WQt3j5lp4zfT2qJ4hqbtPaRGZOkiUt7Tcx7ljk2ub8vyx/9/5g9RSlVd3yg5vucJJPgLVW5P5FcGnDVjidN3vInUr0Rxxu5P7YwJ+igiufdQzWfzu7qrp3HHcBq5eedK0W839V82x47Nm/tTfO9frOI3zEk6UovxmdvD3yi9Ghs9gBFfK9Sa31unqx5W7APv6EIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaFxQBAAAAAAAATI1QlmlNJlJ2x/VXF8QgKS9il08X3CFJNlPEHWoaOUtSWcYmo3miqftZ06jd3mdivFfFx7o2WYvHJRq1N7JNMxpDYSTppnkS14qYZnFj7Js+3xjE8cHEn+rjceygmw/iB1NL9J+vm161za5/F6s7zo2Khs0zryoKVXd24K77n78UndiSfLSSCACYtiG4qTdJqsy4a1IuSTtlrJkrRXwN64mGz85mGRsmd02IgiRdc+EIk9gE+o37jc/r4iQGrbw29OEMN/vxeaVCGHqDGNpUjeLjmxwLSVJtOH1wRmzmzc/wZl3Z7arM3uzAXRv6+igbpkZT4V0Tc6xbAhJ1X5i1vjv24WODysxHZrMxSDzWwHSVv1zEtX5cHWD7OPFN3XPzhl0ydX91GBuyS9Lr3fi8mjX/edl50ryv6QC26cbeuF8CGuZJVZSq7vwwM18bk5VYc6P1xN7SbE+LjjkPGqkUIHPoAdbqtgllGZvABslPRQ2TPuLmFsmv36cTj3XDBDFdKeL7emUca1uSru/GNzZLfO8ZDs1nMzb7+8RaX+/FsdT+ngC2+VNVlarqzXOnSoQWlQcIYHOhLJrE+02tCGaLntTOYlKImyFc+JkkNRPz3H6psFcXCpOKPjNvoXZMcOL1iV/rd4fxe8bABCxKUuWmA7PfSa3flXlfUtdxNNr3GSxw3fPtBgAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaoSzTyrO9jZoTl2JdM89UE//6II7VhvH2qeatLqBhWPiP9KoJUDlXvxXG8kTj0S0TvHB5sh7GTtW37e1vmICIXKbjsaRrJvjBBcBsT+J9StJWvx3GhmP/vhQ2lMV9hvbmqo3i+1VPNW0uC//fmE1VpT0d+lMNfE234VQD35qreXO+ld1Eo3czVm74xsq9MjY6d4ELq7aNs9Q1jdYvjzfC2F8NTtvbP9q4EcbajU17rJtfrpkgiJujODdI0u4g3n7kGrJLmozie5ANTSiLe7Ml1Qfxs21tJYKY+nubYVdlovs7ZkdRSHcEEtQ3fUNzKa4/za5vSV4bplqV71UWiUbvJkhgmAgae320Ecb+uhnDjFZzMxlJqpmJbrOIQQhFItTFWc78eb9p9gWXx3FfcWvg6/7mTnxe7aYv3H4vzhFZL34ujR3/uhq7se6bZkySquHeDQN1P+PKck+H/qo1Xb1KiXBFJcIZzNiUuQiSpJVGYiNquNo6Vfnz0K31N4uVMHZpFAOTJOmlWtzLL+eX7bEuDOpaEYMYtidxHy9Jg37c1+R5IjTChGFkI7NfS2zHXWhDPk6EM4QgpgOEt+FwTCYmOC+qGvGYopUIUGuaz92EBmWJMKbUuey4QMTrRQwq6VU+KKRtnpf7Xr9jQlEl6Z2tWOO9xGnvvntcnGyEsf/b9d8nuiZMcThIhLKYsLXsIMGL5nt9Mmx1tPdOFnmt5zcUAQAAAAAAAEyNC4oAAAAAAAAApsYFRQAAAAAAAABTm9sLis8884x++qd/Wqurqzp9+rQ+9KEP6aWXXtpzzGAw0IULF3TixAmtrKzoIx/5iK5cuXJIzxjA20XdA4uHugcWCzUPLB7qHphPc3tB8fnnn9eFCxf0la98RX/8x3+s8Xisn//5n1e32719zK//+q/rD//wD/W5z31Ozz//vC5duqQPf/jDh/isAbwd1D2weKh7YLFQ88Dioe6B+TS3Kc9f/OIX9/z/Zz/7WZ0+fVovvvii/s7f+Tva2trSf/kv/0W/+7u/q7/39/6eJOkzn/mMfuqnfkpf+cpX9DM/8zNv6/Hzvk8SzFZiElEqDNGlw9m0sURC5CCPj9Vb9qlHrw1PhLETtd0wtpr7RMsdkxi3W8QUttTtL41jOty47l+Xe6y/Hp0KY6/3YwqsJO3sxtuXJvVJksp+LIGGSdp2ya6SlJvwrPogERlX3DFekfJ8Nx5o3ddqUvbmOZrtT/H7gXwUP0sTnpbk0iCr3N9Blhh3xmU8t3fKWLNLmU+A26niXOJuPzSPI/mU5mYiTnHb3O+1iUl+HPm0uYFJeytNmrPkE3NrpuZdIrck1YfxM2js+vdQxb5zppo+wQ9veqB1n2V7o1erRM2Z8XySqFvzsWfmPKwGiXRZk/6cSnm+NorprNcmsRbd/kGSaubJfmdwJoyNbYyttF6Pia+bhU9pLswm6HWTJH91N74mSRpsxnljvOTfl6IXx5vb8X1tbvnP0CU6N7dTaz11/3Y9yJrPWi1ld9RDlYhezg6Q3OuWOpcwXCbSYqsi1tfuOKa6StKwdGt1XCtvFrE2JelGGetzZOq7nfvvPQP7+H5+uGYS4787OhnGrg99zRdmjixcfLYkmY8rN3Np4mWpPoh129j1NV+N995JVSbuFD/SA13ry2LPd7F8nPhsm2bPaJKAJak2NMniJm1c8o81GcZ1apyopYvj+L3erd8nqm4YS3Hf1V8fbdhjeyZletC6ZI913wdeGcbv9TeHcX6QpEHXXFsxa7okyUyptYHZ4ycCmZs7Zo+/ndjj718TUvvFBTC3v6G439bWliTp+PHjkqQXX3xR4/FYTz311O1j3vWud+n8+fN64YUXkvczHA61vb295w+A2XQv6p6aB+YLdQ8sFmoeWDzUPTAfjsQFxbIs9bGPfUwf+MAH9O53v1uSdPnyZTWbTW1sbOw59syZM7p8+XLyvp555hmtr6/f/vPoo4/ez6cO4C7dq7qn5oH5Qd0Di4WaBxYPdQ/MjyNxQfHChQv6xje+od/7vd972/f1iU98QltbW7f/XLx48R48QwD32r2qe2oemB/UPbBYqHlg8VD3wPyY2x6KP/T000/rj/7oj/TlL39ZjzzyyO3xs2fPajQaaXNzc89PMq5cuaKzZ88m76/VaqnV8n1KAMyGe1n31DwwH6h7YLFQ88Dioe6B+TK3FxSrqtKv/dqv6fOf/7z+9E//VI8//viev3/f+96nRqOh5557Th/5yEckSS+99JJee+01Pfnkkwd/vPFEVfbmL3Rm+5tu/0A+jI1W84b/RVDXtNkFtbjGwpJUmaCRVs03enUN1F3z1jLxS6sDE9DQK2OT1O+NYpPY1GO55q+p+32lF5s27478AjEZmNM61Sd1Yho0m96rtaG/eW0YX1eeCGWp7jhnKpq035UHXfd7jH1T3qyItVHv+s+30Y31NVqP52A2TjRqH8Xb7wx8HXxvGOvrtebxMFa4DsaSNk3zdNec+crQhyP9n/zhMHatGYNWJOnqKN7Hd7qxYfNf34rPX5KK3fgZZH3fyLpmPsbGbnxfXWPmN46Nn219JzFBFPvmAsKY7soDrfui2Ls4p+p+Es+DRL6RXT9qfRPQkGi+npl1arfv6/7aIIYZXGrHuaDhFjpJS3nsVH5rEkMbakrMcVl8XlfsxkbaMcFu3+3FPURv4ANksn6838LMx5J/D3Mzz6aCN7LCNGrvJj7w/es76/2BPdCa3x/EZD7r28ftHzrIR+uW2lRqo1kqUuEMNydxrT5ej6GLowP8ozQXtOL25pIPXfruxO/vL5vQpW/2zoWxGwMfziAXemGCViTZf4Pnwxn8513vx/F6NxG2Mtk3F1SJuQE/0gOt+7Lak6CYClstG7Hu8nEiqNPdhVl7KhMImtIf+zXtlqn75TxuNora9HW/Zdb67sTvNbZqMfjpUqLuL43i+P/tng5jV7s+jEk78T2omfVfkmTCK91+q95LBbCZ6ziJwD3W+jfN7QXFCxcu6Hd/93f1B3/wB1pdXb3dO2F9fV2dTkfr6+v6Z//sn+njH/+4jh8/rrW1Nf3ar/2annzyybed8AzgcFD3wOKh7oHFQs0Di4e6B+bT3F5Q/M//+T9Lkn7u535uz/hnPvMZ/eN//I8lSf/hP/wH5Xmuj3zkIxoOh/rgBz+o//Sf/tMDfqYA7hXqHlg81D2wWKh5YPFQ98B8mtsLilWV+jesb2q323r22Wf17LPPPoBnBOB+o+6BxUPdA4uFmgcWD3UPzKcjkfIMAAAAAAAA4MHggiIAAAAAAACAqc3tP3l+0KpJoeqOCMc8lfxoUp5rJiFKkmoDkyDWM8mPTX/dtzQpz8PCP5ZLafq+SVk+UYvJcJJPfLs1jmlQKXkWX+vJhn+s6+OY8nRrFNOkthPptlnXJHKNfAqcG3dPq2mSXSWpsWM+72kSX0l7nX370l6zif/MsrFJBEukRLpEyNogjjW2fc1PTJrhdivWhiS9vBJTks80t8PYlklzlnwC6/VhrM3Xez7leXscb/9Qxz/W1ji+hte24/zU3Yn3KUn5bqz5xm4iKdsMm0DMZM03N2N959t9/1j7kh8rkh9nX55L2Zv1lyXW+rwX4xzrfZ+CWhvE87Nu0kblxiSVtTifjAZ++3bTpKO6xPeNes/e/pbi7d3+4cbQr/9ura/nvpYGk7ivuNyNSfCjnk+5bG7FebLyWyA799q1PpHu3roVz4P6ll/rq9Hec6OqEsmwmAlVv6/qjrW+tun3pllp0s7X/blZ78cTsWb291Xu13qXSr418OvftVGsmZONnTB2s/AJqpcn62Hs1eHJMPbS7hl7++V6TGZ/vb3hH2sY9wvf3Ym3v9b1e4VaL75fLq1dksqGSXsdmrT3RMqzS3HPd0f22GrMWj93ajUpu6NOR36edudcfeDX+obZi7rv9UWV+H0ucyruJL7rvtqPddPI4vcR9/1dksZV3EPcMinPm2Z/Lkn9YvrrAjfHsZ5vDuNYf+Sfa24Snd37KknurXXHplKea4O4WaiZ/Z5E3d+J31AEAAAAAAAAMDUuKAIAAAAAAACYGhcUAQAAAAAAAEyNC4oAAAAAAAAApkYoy5SyTMqyO5p6Jpq35j3TpLvur9vWTG/f3NxtLdGo3aULbHV989Sba7FR6st5bLA8bPmGqC6goV/EprTD0ndEL02X1NKlI8g3gN0xAQ+T0r+vuWm6nHoPXYPmxm5s1NrY9YEcddOgORskGrWX5Z3/Y4/B7KhG4z0lVvV88IY7C+srvolyoxun3EnHnJtZouaN0aqvuc2+CTrpHw9j47a/vW24bMKRru365umDtnmtiZrdHcX3a3M3PlaZCKJomQCWWn/699AFMbjQLEnK+3GSzvq+5sti77xRUffzZ+ib8GetuP7lI//51s3UUTNjLjhEksp6PJdHPV8Lt3qxbi63Y2iD/FZBu5P4ur7f3Qhj3ZFvSl+YGl9uJt5DE+Cy6xrQm4ALSWpumxC7A+xq7VrfT3yGJqAh2/VrQhkatRPCNsuq8d7QxWozhpdJUm6C2ZrLvg6aW/FELNpmnRr6czszvf1vbfm19uV2DGAbmkK42vYBai7U5XI/jr26FcOdJGm5GdfE7op/X1xY2/Ve/H6y2/UBNI1dF85gD9XEvN+tzXhc50Zif+8C2LZ8YE8RgpgWN5xhXuwPY8pHPrTI7cfzoV8nakMTStZ1de/3p67ud0/6WvjuatzP52YTca61ZW9fKj6Hq4NY965mJaluHmsrcaz7vt8dm2sIg0QAm1nrXaDlG6Y7ttFLrfVxPqtt+kmm2rfHX+TAVX5DEQAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaoSxTqopK1R0NSKtUo/Z6bLCcjXyTUdf8u96Lty+bqVCW2Py1v+PDIF5d8c2Uw2MlglJ2JrHR6ivbJ6a6T0mq5fG19ib+fbk1jA2aN02j+Z3rvkF1Z8tcJ/f5CjYYp943TXV3fAhPbSd2es2G/tjyjs/LfHSYNVn+xp8f6vsOwFVpAj22feJB61ZsQuxKLtWweWKCRgoTfiJJtzqxPv6qeTKMdU24Usort2LN79xMhLJ04v0OVvxznRRx3ht24+1r276BfWMnvi/1rj3U/hjNBzH5pur5TgxiqLZ37LFVCGegUfusK/sDldlbN9bOyrim1Zb8+tvaiWvdaOcA2y8zHYxv+tt3V+NzeCWLdbtlApYkaTiJ9+vW334vMW+Yta2/7Nd6tw72NuNj1RN139yKd+ACbCSpNB+NC8tpbPvPvtaNAQ1Z14eyYL5Uk30BbCO/v1c/Lh61rj+2YWpm4sLDEsECubnb/q6vo4vNjXis2V/vJMLidsdx/EY/7sN3EkEpIzNnuD2/JFVmw+Pud7zln2vbLLXNTb+hri1NF7rY3PSfYW0zBrBUu35jsT+cgSCm2Re+1yc+28zs8es9v5ermbAy9z2zTJweLpitTAQ37QxjjbxeXw9jnZr/TtqdxNvvmrHrPb/H75trG+udZFJKsNU3dd9NhLKY9zA5d07i5+Xm00Y3EaxzKwawJIMXJwSw/RC/oQgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBoXFAEAAAAAAABMjQuKAAAAAAAAAKZGyvO0qlLSHYlA40QK3CBeo82aPrWo7lKeze0rkwwnSfUsjpcNn7z4em0jjPWG8djllk+D7o9N8uOmSX5KBFLneUxdarV98tRoFBOtxiZRsn49kZ5tUuAqH5Kl3DwFl8iVj3yil0t+qnoxIUram/hK2uvsC8mPJslQkrI8nvTZyJ/bLi0uN6FgdX8KKStMHd30Pxfqt2PNfD/bCGODxOsaF/F+N02ic76VuL2Zy3wWslSWZt7cNcmRvcRcaN6vpklzlKTSzAUNk+xe6/nPsNqJSYDl0CfAhSi/BU6AmxtVpTujisu+T/LNbcqzT05uHI9phq1tc84nTg+3fo1XfN33TJLr1iQeO5r4RXE8nm79zXr+9lU91pIJp//BwXEoN+nXjcQeqNEzKY0uOlo+/bm5a/Zgu35vl2/Fuq+6ibV+snfuqCo/l2BGhJr38aGu4rJ+IiF4ZJJhu2b9T20FzSlfS6Sd9xXnnatlvIPUWu/SWnu7cR4pTVq9JI1bsY5GI/9YrjxdonN9y79Wm9Js3ldJysywXeu7ifo050HFWn9kVEWhKnuzqqtB4rOtu72oP2fqA1f3pphTa6JZ0vJtX0vXO6thzNWyS3yXpNwswJd34n3u7vh0d5fYPhgmHstcAxj24rG52fdLUt1swxqJunf7Cjsf7ya+p5nzoErsA6t93+mqxP5jEfAbigAAAAAAAACmxgVFAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDUCGWZ0tTNW43MNHSVpMZWbAjaXDWNiE2TVsk3aq9M43FJ2l2Pz2HQ8c1TnYkLTTCXo8uxv0ZdmIasrvm7JMk0etUkjtUTAQ010xQ3S7yHLpSlsRubKee7/vOudk2j9tS5UZX+vzGb9jdqT4TtZKb5eN6KTcYlqbG9Eh/GhLqUTX9uF2a8aCXCFVZjLU7MmGviLEmFqXmZ+q4N/XMtTR9n18RZkkpT3/nI1Hwi3aG1FevJjUn+PaybcIdaqua7pubHhCwdWYkm21Vhzq9EGFOtF8+P5m6s21QoiwtzGq36WpjcijU6rJn13yUWSKpMGJPGJnjKjEk+lKUyARGSJDPujqwlllQXoJb6vGrmo6n34hte6/qQDbfWp8I7wnNY4Ebtc2l/wMYPuECOfHvXHtvoxoDDSdusc4mad2tS57L/LjE0a+WoGYOUujW/Jg5NkELZjWN1M2dJUmHW9UkzEdpkaj43AU/tG37OaN80+/PE8luZqaw+iO9BPvTzdrkTP9vyAN/9MOP2ha0eJIwp3/IBbJ2rceObm1AUFxIm+eDFMrHH383i94ztpThHDBMBSS4opb8T7zPrJi4VuYClNX+o/V5vAlg6r/trCEtXTN1O/LrqxvOxCWPqJ4IXbShLaq0vf/T/LxB+QxEAAAAAAADA1LigCAAAAAAAAGBqXFAEAAAAAAAAMDUuKAIAAAAAAACYGhcUAQAAAAAAAEyNlOdp7U98TaQ5ZpMYN5Yljm2M4/jGjfX40LVEGrK5HFw1EylwJ2Ly1ODEchhLJUc2TZhSx4Sd1UaJ5EjzXCdLPgm3ZsKUOjfj+9q6tmNvnw/jsVXdXzuvanG8fj3eb3Xzlr29TQUrErF9dyY9kvp4ZFSm5svNLXts/eV4bjQSidBWHs/X9bVYx5I0PhZT6IYnTfLj6Q3/UI04F5zqmqS0RM2X9ThvjVaW7LHuPlZeN8m4mz5prX4zJrBm/URKcyu+B26OLq/ftLcv+307jsVSTcw5k6j7hqnb2k5MfM8Sa0dmUkiXvuPX+mI91v3gtJkL1v28U5q6t6mJqWBzs9hXeaw5ydd953qs28Zlv9Zn3ViL1ZKJl5dUdeJzyLd78bgbfq0vTMpzKg0YR1Nl6rO4tWmP7XwrJru222btcWnxkjSOBdb5fvx+IEkTU8u9M/Gxhhu+Dl3F1M0y55JSJaloxpqfdHwdumT25Svxtbav+PTsfCvWbHI/3TBzpHlfdfWGvXnZO8BjYf7s+16vys/n9jx4/Yo9tmUSgptrca1PfU/MJnF89Tt+jz86GffT/VNx3ukfX7W3r8ylhaVePL/rw+nP+Unb7ysyM825um/d8PvrmtnjJ2vR7LfcHr/a9vuKcjvOPW6/Z5/DAs8P/IYiAAAAAAAAgKlxQREAAAAAAADA1LigCAAAAAAAAGBq9FB8C9UP/j38ROM9rRZU+b4nWRX7D2WJf1KflaaZSBH7L1RK9FA091sVvrGRafOmYhw//mLkeyi6x5J5+kr0WDFvi4p64rHM/U5M35PaxPdTy01viipL9FB0T6w0n0HlXqxUVqavQqIPR1W9+RomGv9gbHH7LcyqZM0fQOaahkrKTc273iJppj9Z4afxySSe25NxfLBi5OeX0tRG7volJmq+LOPtk/OLuV9X83mqj4mZNzNTx5JUFfGxstL0wztIzafsq2/qfnYdvO5NfSTOmdyci2URex0leyia89P1c5Okwta9q0U/R7m6r0wPxWT7QPfeJX50XZm5YzIxc6Spb8nXeFX4OcbVvftcUmt9cYC1fj/qfjbdi5p3e35Jquy56daexAagjOtfkaiDialPv9Yn1l8jM2Xg5gFJKsz7UiS+tky7v58Uqf29eQ+SvdRMfbrvSAeq+elqmJqfXfdmrfe15Pb4lTtnk2t9HC+Te3zTu3Rs+rwm1nr3NSUze3E3llLk/n1x33P89/rUvv0AdW9emN1DuWsw8nv8KrXvZ49/GxcU38LOzhtNO/9M/2PvX6QuArjxVPNy0+dVV6d8YjgSdnZ2tL7uG23jcCRr/iD8mpgex0Kh7mfPgeve7RdN3/AfOY6FQt3PlntS86k1/Xt39ZR+tPtxn7ivqPnZc0/q3l/vli5POYYjbRHrPqsW8TLqAZRlqUuXLqmqKp0/f14XL17U2traYT+te2Z7e1uPPvoor+sBq6pKOzs7OnfunHKTSIXD88OaX11d1c7OzkyfR3dr1uvjbs3666LuZ9dRr/tZr427NQ+vi7qfTUe95qX5qI+7Meuvi5qfXdT9/Jr117XIdc9vKL6FPM/1yCOPaHt7W5K0trY2kyfx28XrevAW7acX8+KHNS9JWfbGr+/P8nn0dvC6HjzqfjYtSt0fxdckzf7rou5nz6LUvMTrOgzU/Gyi7uffLL+uRa37xbp8CgAAAAAAAOBt4YIiAAAAAAAAgKlxQXFKrVZLv/mbv6lWq3XYT+We4nUBaUf1POJ1AWlH8Tw6iq9JOrqvCw/WUT2PeF1A2lE9j3hdeNAIZQEAAAAAAAAwNX5DEQAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaFxSn9Oyzz+qxxx5Tu93WE088oT//8z8/7Kd0IF/+8pf1i7/4izp37pyyLNMXvvCFPX9fVZU++clP6qGHHlKn09FTTz2ll19++XCe7JSeeeYZ/fRP/7RWV1d1+vRpfehDH9JLL72055jBYKALFy7oxIkTWllZ0Uc+8hFduXLlkJ4x5sm817xE3VP3OKh5r3tqnprHwVH3s4e6x/1Ezc8m6n4+cUFxCr//+7+vj3/84/rN3/xN/c//+T/1nve8Rx/84Ad19erVw35qU+t2u3rPe96jZ5991v79b//2b+t3fud39OlPf1pf/epXtby8rA9+8IMaDAYP+JlO7/nnn9eFCxf0la98RX/8x3+s8Xisn//5n1e32719zK//+q/rD//wD/W5z31Ozz//vC5duqQPf/jDh/isMQ+OQs1L1D11j4M4CnVPzVPzOBjqfjZR97hfqPnZRd3PqQpv6f3vf3914cKF2/9fFEV17ty56plnnjnEZ3X3JFWf//znb/9/WZbV2bNnq3/37/7d7bHNzc2q1WpV//2///dDeIZ35+rVq5Wk6vnnn6+q6o3X0Gg0qs997nO3j/nWt75VSapeeOGFw3qamANHrearirqn7vFWjlrdU/PUPN4adT8fqHvcK9T8/KDu5wO/ofgWRqORXnzxRT311FO3x/I811NPPaUXXnjhEJ/ZvfPKK6/o8uXLe17j+vq6nnjiibl6jVtbW5Kk48ePS5JefPFFjcfjPa/rXe96l86fPz9XrwsP1iLUvETdA3dahLqn5oG9qPv5eY3UPe4Fan6+XiN1Px+4oPgWrl+/rqIodObMmT3jZ86c0eXLlw/pWd1bP3wd8/way7LUxz72MX3gAx/Qu9/9bklvvK5ms6mNjY09x87T68KDtwg1L1H3wJ0Woe6peWAv6n4+XiN1j3uFmp+f10jdz4/6YT8B4F64cOGCvvGNb+jP/uzPDvupAHhAqHtgsVDzwOKh7oHFQ93PD35D8S2cPHlStVotpAdduXJFZ8+ePaRndW/98HXM62t8+umn9Ud/9Ef60pe+pEceeeT2+NmzZzUajbS5ubnn+Hl5XTgci1DzEnUP3GkR6p6aB/ai7mf/NVL3uJeo+fl4jdT9fOGC4ltoNpt63/vep+eee+72WFmWeu655/Tkk08e4jO7dx5//HGdPXt2z2vc3t7WV7/61Zl+jVVV6emnn9bnP/95/cmf/Ikef/zxPX//vve9T41GY8/reumll/Taa6/N9OvC4VqEmpeoe+BOi1D31DywF3U/u6+Rusf9QM3P9muk7ufUoUbCzInf+73fq1qtVvXZz362+uY3v1n9yq/8SrWxsVFdvnz5sJ/a1HZ2dqqvf/3r1de//vVKUvXv//2/r77+9a9Xr776alVVVfVv/+2/rTY2Nqo/+IM/qP7yL/+y+qVf+qXq8ccfr/r9/iE/87Rf/dVfrdbX16s//dM/rV5//fXbf3q93u1j/vk//+fV+fPnqz/5kz+pvva1r1VPPvlk9eSTTx7is8Y8OAo1X1XUPXWPgzgKdU/NU/M4GOp+NlH3uF+o+dlF3c8nLihO6T/+x/9YnT9/vmo2m9X73//+6itf+cphP6UD+dKXvlRJCn8++tGPVlX1RsT8b/zGb1RnzpypWq1W9ff//t+vXnrppcN90m/BvR5J1Wc+85nbx/T7/epf/It/UR07dqxaWlqq/sE/+AfV66+/fnhPGnNj3mu+qqh76h4HNe91T81T8zg46n72UPe4n6j52UTdz6esqqrq3vyuIwAAAAAAAICjjh6KAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBoXFAEAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBoXFAEAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAU1uIC4rPPvusHnvsMbXbbT3xxBP68z//88N+SgDuM+oeWCzUPLB4qHtg8VD3wOzIqqqqDvtJ3E+///u/r3/0j/6RPv3pT+uJJ57Qpz71KX3uc5/TSy+9pNOnT7/l7cuy1KVLl7S6uqosyx7AM8YiqKpKOzs7OnfunPJ8Ia7rP1Bvp+6pedwv1P39w1qPWUXd3z+s9ZhF1Pz9Rd1jFi103VdH3Pvf//7qwoULt/+/KIrq3Llz1TPPPDPV7S9evFhJ4g9/7sufixcv3q9Tf6G9nbqn5vlzv/9Q9/ceaz1/Zv0PdX/vsdbzZ5b/UPP3B3XPn1n+s4h1X9cRNhqN9OKLL+oTn/jE7bE8z/XUU0/phRdesLcZDocaDoe3/7/6wS9w/qz+P9XVuL9P+KDyWhxq+o80f+hMGOv9+IkwNl6O9ylJk4650m5+sFMlLsiX5m4bvcoe29gtw9jS93biw1+65h9rOx5blf6xVBZ+/D6baKw/0//Q6urqoTz+UXbQuj/0mj/AT0izWiykrNO2x+YnjoWx/o+fjGMn/JwxXo7Py9V3ligtmfHUsc3t+BdLl4fxuO9etbcvN7fi2GCUeGLmeeXmtRaJueFt/FI/dX9/zOVa7+o+dW6ZY/NE3Wfnzoax7juPh7HB8cRab+62FkvRrv+SVDT9uNMydb/8fVP3f3XZP5ape6Xq1rD7giruP94Yp+5nzdyt9U5i/bdrfcsXV+b29z8W1//hRqrm43Nwa3WWKK3CzBn1nj+20Yv11b5mav77N/1jXbkexqpRYq0/xH+AR83fP9T9G/JjG2Fs9JjZ45/0t6/cvvcgv1Rnjs2HvuZqozjeuhXrtvFa4nv9zVthrJr4Ccnu3R/QXLDIdX+kLyhev35dRVHozJm9i+2ZM2f07W9/297mmWee0b/+1/86jNfVUD2bsQuKmbmgmHiOed4KY/V63AVUDb/hqJpv74Kieaqqj32B1xtxw1GvxYkny/0kWZr3oEpdycgO6VeSf/B0+HX7e++gdX/oNX+QC4qmkLIssdmYsuZriR9ClM0Hd0Gx3oh/Ua/Hx6+b1yRJpXkPyuQTM8/LfAZVcm54GxsT6v6+mMu13p4DB7igmKj7rGbqvuHqPrXWx7Gae1qpU/gAFxRrU9d94rW6z+kAa7rfFyQuKFL3M2fu1nondWHhAGv9tDU/Sdb827ug6Gq+NvGH1sdmf3+Atd7VfHJ//3Zq9u2i5u8b6v4Nbo9fmj1+vXF/Lii6Y2uJX96pmQt69Xq8g4Ps8avMTzJ+7/6A5oIFrvsF+wfeb+0Tn/iEtra2bv+5ePHiYT8lAPcRNQ8sHuoeWCzUPLB4qHvg/jvSv6F48uRJ1Wo1XblyZc/4lStXdPZs/GdBktRqtdRq+SvkD4T7TYSlJX/ow/E1DB6L/8xBkjZ/PP4UZuud8Yr9yo+Zf0Ik6dhSP4xNyng9uj/2p9RGZxDGBhN/7Gvfi/88q/NKHDvxzXV7++Xv7oax+uvxn0lIUnFr0wwe4J9MHeKvVsM7aN0/0Jo39Z3VY23myx1/c/Nr9OPz8Z84SNLVd8f7uPU3428HHHvc/9Oid6zHf2KQm98E2B37926pHn+ruEz8+PN/XzwXxmoX409aT3/tUXv7lVfj/FC/smmPrXa7cawf57dkmwT3G0zU/KGa+bXe1b35p03Jtf5kPL97P3nKHuvW+s2/FX+Sv3x6297+4fW4B1huxH+SOCr9+t2ujcPYzsj/8+y/vhLnrusX47x18i8et7dffTXWbeP1TXtstRlfr/unktUoPn9JqiZmnLo/VDOx1h/kN1HMb87ky77m81OxJdHoYb+/33481tfmO+Nx4/Oud4F07HjcMxdmf19W/rU263EfvDv0v/nVu7IcxpYuxvdg4zv+c1r9zloYS+3vXSuUytRsNU78OuUhtUTCjzYTdZ8y5R4/a/vn41oVjR6J678kbb7T7fFNG5GfmP57fXcUfxNwkPhef3Ytthfb7PvvLtevxe8urddi3R//1nl7+7W/ivNh7XsHaHs2MTWe+K6f3vu7B2OO+KEj/RuKzWZT73vf+/Tcc8/dHivLUs8995yefPLJQ3xmAO4X6h5YLNQ8sHioe2DxUPfA7DnSv6EoSR//+Mf10Y9+VH/7b/9tvf/979enPvUpdbtd/ZN/8k8O+6kBuE+oe2CxUPPA4qHugcVD3QOz5chfUPzlX/5lXbt2TZ/85Cd1+fJlvfe979UXv/jF0MwVwNFB3QOLhZoHFg91Dywe6h6YLUf+gqIkPf3003r66acP+2kAeICoe2CxUPPA4qHugcVD3QOz40j3UAQAAAAAAABwby3EbyjOk9rGRhir3vGQPXZwMqYpbT3mk9W2fzymFtUf7oUxl9YmSTvDmPzkTIqYXClJm/2YQpcnwvE2TsXEue2WSbOa+DSp8VJMk2qf9Ul6S9+NiXG6eiMMpZIfZVMi49gbf0Ei5KLLmrGO8tWVeODpmGgmSeNj8TzeOe8TVHcei2O1kzHlMVWzr27FtLnKpDwuNX1tFCbReZx4rJWVmAK/83B8rK1b/rVmVUyObHf8XNi4EtP1spubcWwnzkNSIhEyFfRJAhzkE51rJ2ONl2d8muPgTDy/dx7227fdR03K4+mYbL7U8uvU7jjOUVvDWHftuk9G7Wbx9rtDn2i5thr3IDdPxdfVO5Paf8Q9QHvV133ne2YPcmMzjJWJurcqk/iuRKIk5p9LdDbJzSm5SXbNzvq09tHZ9TDWPefraNeslaNH4lrfbPvzsjeI99s263ot9+d7f2RSbBNr4tKZOBf1q7gHanT9XqHRi3ugVuO0Pba2GufN7PqtMFYNffq1TYGntiElT3CX6JyvxfO7etifs/3T8ZwdnEwkpp+Nz6FYiXvOSeHnKJfo7Go5Vfc3urEWh4lEaGe8Fu+3d9o/16yIj7XU9tdGGpfjsbbuU7U88POBU7HHv43fUAQAAAAAAAAwNS4oAgAAAAAAAJgaFxQBAAAAAAAATI0LigAAAAAAAACmRijLIcrbJmDgodigeXjaB4rsPhSbp/bO+Uax5cnYXLjTjA1JU81bCxPGUMtM0EvNNyht1GLz1Xqi0WuWxWbM6+uxefutd/qmzUUrNpqdtP37UhvGUJZWGV9Xvp0IaOjH96ss/HtQ7RnPJDJajqys4UME8o6peRPAMjwbg4UkqX8q1vzuw75mx8difbuaT0kFNO2Xm3lA8gEsqebOK+3pmiDvnPfNqfNRfKyi6RvYL9Vjs/umCUyq1f3yWPX6YaxMNnXf/3qp+7mTShewx/pazNfjOlOejKFH/XMmoEnS7jkTVGIaskvS5EQMU1hrxLFU3TrLzbh/KM2eQJIGk/hcs8RjNfI4vnEirrU7j27Y25fN+H5P2n6OUBY/g7b5bLPCz1GqYphElVjrFcap+7mSqnlT31kqXdAEMeXHNsLY+JRf6wen4h6ie87PL4Mz8ZxtdGLNl4n9vRRv78IVclOvb4zH2xeJx6qZ7wKdsyaI0QS1SFJWxPpeT9RWsxE/g8bE1Oz2jr8D8xmmAhuqcSKMEfPPrRPu3FBij3/mZBganvXnd8+Ekg2O+1oaHTPfVVfMWp+o26KMr6s0Y3li2nB7/PHYvy/tlVgfo7oJZRn44EUp3m9Z93v8TieG29m1/tZ24rGiKhXUEu53cdd6fkMRAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBoXFAEAAAAAAABMjZTnByGRGJdvxLTR0fGY6Dw47j+m0Xq830nHxwtlJlnNpTym0hhdblO7GdOk2nWfIusea7XhU5NGZXy07WFMftpdjo8vSeO1+H4NB/7aea8fE+PycUzda5gUWEmSS4yrDfyxqURIzLXMpAFnTZ80mk1b8yf97QfHTc37EHib9uYSFscTn8o2qcdxNz+4tPeUVuYTVF1irE2ZXvU1PzQpeGXd13yVxfTMWj8m7tUSNe9m82zkEx4XNOxtvmXZ3jU7kdxsb5pIfsyWYpGOT3TC2OCEv/14zaQxthJnl0l0nJg0RjcmSa1GXMNdfa6Y5GdJapjE11SitLtfmxi75OeN8YqtRntsbtKnG9sxJbI+SKTLmhTXrPR7s3LfWp9VpeS3RpgjNtE5lexuar7aiHvLwSmfVNo/Ee93FLcPkqSyGevDVXez5dfPidkDTExaa5ZIi22Y7Yr7fiD5dd3ND4ONuE5LUv90nDdzk0gtSUstk8o9jmnv9VSq905Mdk/t40Pie1W68GzMssR5YNf11Fq/HOt+sha/v3bP+j3+cCM+h7FfklQ2Y900W2b9NsnNkjQxc5f7jpDc47tx8/ip55DX4u3H676++maOSu3x88Ks9ceXw1h97J9rVjPfJ6ate+ULu/HnNxQBAAAAAAAATI0LigAAAAAAAACmxgVFAAAAAAAAAFPjgiIAAAAAAACAqRHKcrdSTXxNI/+8E5sIS1K1Hhs0j47FRsQj23hcmpi7LTq+C3CjGRuK1kzz80nprzG7Z+Car3fqvhGz004c21Ycd83bh6v+9L2+EZvdjoa+AW5vbJrSDuNnkI9jQ1dJqg9No/auaeSshe3TevSZxsZZ2zdar5Zic+ZiyYQImcAlSRqvxvFiKRGkZJorOy6EQZJKd7emDm33d0lLjVgbx1s9/xxMmNPNfmxu3V72QRDDVd/A3ekP4+fVvhlv3yp8J+yaa+ScJ342t389SIU7YXZUle6crbNaYq03UmFMVSfOB0OzTk06/rFKc7dVou7cYj0ppmu+Lvl9QWXqfpwIdXF1vzvy82GrFvclPbP+quGf66QTn0Pus95ss/v+mTgfLw/9fFjrxzuuen3/YJhvqSAmE8SQt/y5nbXieTw24QzjZf9Ybi4oG4n1w4QblGYvP05tz0191xuxNjstv/46jcT84sKc+uM4wTWavg7Hq/F++6cS31vMe1Dvxc8rGyfmQjc49BNMlu99XVmVEcoy6/KalL35KWcN/53ShbJknVjLkg9eGh6P55wLWJSk0ix/hZ9iVHbM93pTd6ltpwtbqZvQJPtdQD5gaZgISMrqLgQ2Hlea7ziSNJ7E8SoRylIbxfGmCWDLB/57vQtlycx3fSkGMi5y3fMbigAAAAAAAACmxgVFAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDUCGW510yX0SzRtLnquACWeI3XNWSXpMKEslQt3w3UNVp1ASyuSask5aZR+0ozNifeaPom5YMinmonmz68pDRd5evZdI3iJWlwIj7W7sgHLGSmsXy9Zxo59/1nmPfj/Wbbu/ZYDe58v3JSWo4IG8RQ91NruWQata/Ec3CcCmIyfaAny77mMxPEUJYm1CURMFWa2ji2FOs7Fa600ojzQ56YX0604lwwMo8/bPv3tb8aG7iPGj40Ih/F8f7JeL/5xD/XbBgbOWe7fi5Tf//7lVH3sy7L0qFrdx5majxr+nAgt9ZP2iY0YWn6ALZkKIuZDgozF+S5PxELsy9omPAUt/5Lvu5TYUxuXzCYxLHxxsDe3u02xokNU9k0ezMzxzR2fLP99iA229fEB0fEUA9+dj9PkuEMrr4Tx2opFm3RMed2IojJ5QCWqW9s5i7cWlulQhfN/r7djOt6KmilbULVssRa74IbW7V4+97I1/Gt5Vif5W7qPYzjo/X4JtaGidQLE8hVG/n9TgxnKKXE9IDZlKXWfRfK0vbrxGQ1jg834u0nMXNQkv++P0kEL2bm+74LYEkFsLkadaFsy6a+U8cuNXx9uO/wozK+Lzdy/8bsmj3MuO43QT2zrrdumUCtsQ/MrTfNdQETyiZJ2tnx4wuIXQ4AAAAAAACAqXFBEQAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJgaKc93K6T4vSE3ia9Zyyc/jldjslhhkgiLlk+eKlomzqnp05xSicj71RNpUB2T3LRUH4Wx1YZPY3y4E8dPNnwa8k4RU7LqWUyZzE1qlCRNqvjZDPr+MxiV8TOoDWLCU3Pbp0k1b8X7rbvUX0lZ/uZnkFWZTePE7Moa/hzKXAJcI5E0apKHXcpjKs2xbJrkxkYimd2UvKvvpkmAf+PYOO7SGE+2fcLxQ+2tMFZOOQ9JUm6S7cYmFU6Stk2y3ij3n1dh0nXLhvkMGn6OL5bjnNFIfN6YQ1m+d31PrPUu+VE1f2xVj+NurS/9KavS1LhZ5pJcymMqhbUwSfAm9DCZ2L5ci/uC400/R2yb2PqdcRxzaZKSNBmb+bRIpNZ3TaJzN76Jk2U/x0zW4vNqdH3SZ5h8DzDv4RDsS3Z3a7rkk92V+2OrVlwTJkvx2KLtz43K7QEOcBq5PX+e2N+nUmD3c98DJJ/c7L4fSFLb7CHcXn647DdBu6YOR6NEerVJex12TXLzMLHhcunZ3UQ87/UbfhzzI0+cR25dT3zPq97mHt99r3f7fknKG25dj8ctmcR2ya+rDTN2suO/qzfz+B2hU/OP5b47XB/GKPvUvmI0im/Y0Hx/l6TJilnXl+IbM17xc7cq870+cR0Hb+I3FAEAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpEcpyl1JNm+Wa8yeOLTpxvDQ3TzZqTzRqdVyDZtffOdX83IUpjExXWTcmSaeb22Hs0cZNe2zXNFr9q+p0GGuYoBZJGhTxTby10rHH3hrE5zteNQ30E8E4k9X4WI1m4gPb09yfa/nzJmskpkuTflIt+/OtbJuGzSsuiMk/1GTZ1Hw+/TzgGh4vN33zdBfa0DBBLQ3TmFnyNZ+q2XFl3hczlnqspXZ8DXnifRmumnnL1LwLbJAkVbHm6yu+UXt2Y++xWSXJ96zGrKhK3ZmYldUSgTumgXsyjKkdx032mB2TJFMKB1r/XehCPbHWtxuxefpyw88RzplWrPv1et8e6/YVLuAhpd2JzysVQDcx45Ml07y94+t+vGbq/mYiqGtfZ3wiWeZMan/vQhcT+72iHcfdOpNa6wtT38mar5m1umnCTxJrolvrXYBbf+znt5/auBLGjjd8EFM7j/V9axzXzzKROjU8Htfvy4kgh6HiPsyFLrrwFskHZzVuJdaD/XN/VUk+oxKzyiWaSJIJY6rq/pwpm6bGTShLVffnbOnCVhPnt6vbpVZcE1MBbDUz7o693F2zt3/vie+HsY1Gzx67Xo/jffNdfZT4nnVsNd7+RpFYqyfx/R4cj49VGybCt8zWqEo8r/1BXVlVSnHqXQhc1QAAAAAAAAAwNS4oAgAAAAAAAJgaFxQBAAAAAAAATI0LigAAAAAAAACmxgVFAAAAAAAAAFMj5flumWRXSVJp4oEKn0yaFSZ5yQyZIKQ3DnWXgyf+GvFkHNOMmibN0aUuSj7dda0RI8zWGz7N0SU6P9a4bo8tTCbiVhFT4G5Olu3tV+vDMNZp+uTIrUZ8XWU9vuHD9cT70o3vayeVBoz5kmV7U99cbUtSw6Q81nwdVmbecAniLu1dkiqT5pg1/fOq1eO5vWwS4JYSCa4uBdbVfCrN8f9pxwS4IpHcODDJyUPzJlxqrPvbd+KxeSLFdrAUo3Rdsvt4xz/Xet9M0tMmgCfmV8wwk+Ysya/rJg1SkgqT7m5PhUSIq0t5TipNMqlZv12asyStt2KNrzXjWGqv8DMr3wljzUS6+9XGahjbNbG3W+OY1ir51NlUhe2M4ps4MZ/L4Ji/B5sImUj6DOdMYt7DjMjyN/788H8T6/f+9O4fydxFWTdpr6lTw90+sda7eaNh1v+6mQckqWESnVdbcR/dyP3tP7D2sn9eRjuLe/Fv6VwY65c+Pft4O6a97i75Y2+141wyWYo1m3goDddMYu+S35wdZIrGjEqt9Y5JfJekohXPBJfknqp7N16l0t2N5Wbcz48TKeadeqzF5Uas+1Hp9zX/78rFMFZTYo4yHm5vhrHuxBej25fsmvqWpMrsTYbH4mtobvvnVR/ED6Fc8o+Vke5+G7scAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDU5vqC4pe//GX94i/+os6dO6csy/SFL3xhz99XVaVPfvKTeuihh9TpdPTUU0/p5Zen7/UBYLZQ88Dioe6BxUPdA4uFmgfm01ynR3S7Xb3nPe/RP/2n/1Qf/vCHw9//9m//tn7nd35H//W//lc9/vjj+o3f+A198IMf1De/+U2127Ex/0EkmzO7pq4t32S0qsX7yE2f9JrPE1Hmep8merdmJqCgZsZc83ZJOtGOwQvLJvzkdGPH3v7Rxo0w1s58U/iWaeCe2xfrDU0D2VQD+cyEXFSNOFY2/O1HK6Zp87oPi8muvNm8NasqKfG5Iu2B1vy+Ru2q+cbGmWnMX9b9z2rKRhx3p6YLX5FkfwRUJQ5tmMChNdPYuJlotH6iFWv+eDOOnWzs2tu/09T8IJEu4cZP1+Jc8krvpL29q+9UzW8tx8Ibr8Q5Y7yUCGcwjdrb6z40It+3ThDJcncOte5T3HyQCm5y+WuulhOd/UuzJqXWeuXxL5omoME1OZekM51YdyebscbHiSf7t5pXw9gg0YH+lKnx19qxxhuJ9f9yvhbG3GuVpEYn1v3ENNZ3c7QkjZdj9U7W/blV33e/WVVJMUsCb+FB1X2WZ3v39Im13kotwO6UdQtAYlGw5ZVaQMxa5+pgxQStSD6coW2+eCyZ4yTpxxux5lNulHF/vF6LYY6X5QPY1prx2Fruj5XZR01W4gczNvt4SXJZUqN1/31uaV8gV1ZN/50Fb3qQa32o+4OYJMJWJ/Fzd8tX6iutXSoTU4wLXnT7+eVE8OL55Vvx2FqcIzbHMRRVkh5rXAtjlye+Ftt5nDseacaw1u/XN+zt3X7eBUdKUqMZry0MluOxLqBJkgbmbpeWfQhPI+zxF3eXP9cXFH/hF35Bv/ALv2D/rqoqfepTn9K/+lf/Sr/0S78kSfpv/+2/6cyZM/rCF76gf/gP/+GDfKoA7gFqHlg81D2weKh7YLFQ88B8mut/8vyjvPLKK7p8+bKeeuqp22Pr6+t64okn9MILLyRvNxwOtb29vecPgNlHzQOLh7oHFs/d1D01D8wv1npgdh3ZC4qXL1+WJJ05c2bP+JkzZ27/nfPMM89ofX399p9HH330vj5PAPcGNQ8sHuoeWDx3U/fUPDC/WOuB2XVkLyjerU984hPa2tq6/efixYuH/ZQA3EfUPLB4qHtgsVDzwOKh7oH7b657KP4oZ8+elSRduXJFDz300O3xK1eu6L3vfW/ydq1WS61W664fN6uZ0IWGf5urPDbvPEhDVjueCHNoNmOj1hPLsUv4qbYPWHj36qUw5pqyv6N13d7+lGm6vJT557qax/t9rOnv16mZ5qu9iW+oujuIn/WuCdEpOv7a+8QEN4xO+YCG9itvngc0bL737nXNv62GzQf4eF0ZJDIMbM3njURjYhOw5AIXlmu+YfNPLU9X82XiyZ4xc+FO6YOYtkoThGSCMc60pv+nKr2Jb57e6cTX212OzbxTQUwurCXVqL3d2DfvVJXkszBwl+75Wl+V2lPAqTnABLBUQx96kI9NKJopu3rMPJIkTTrxORRmnZOkrBnHH13dDGPvWIoN0SXp4VZs1L5bxPrIExuTtnm7yuSEGOeDhxqbYWxr4tfUVi3evpf5td5JbEGswswHkyW/tzuyG+sZcjd1P/X+3qxHktJzgWNCFwtzaqbW+qJpnoOpbUnKW9MFsDy8vGVv/9hSDFBzIQipIKbjtbe3qI2b8fFvTny4oXNq2X9v2VmJn/VwFN/w0XoigG1g1vo1/x4s7d/vlPy+zr12z9f6aQPYHPP9PXmoW+t7/vZuqSsSU1bThI+cX4nrdyMRvPiTS/G3Oq+OYtBZynJu5phGfHxJOpHH6w2DetyD9Er/Yl/qnQljV9ur9th6Lc6T/U7cw6RCWbLSrPUriVCW/QFeqWS9BXBkZ7zHH39cZ8+e1XPPPXd7bHt7W1/96lf15JNPHuIzA3A/UPPA4qHugcVD3QOLhZoHZtdc/yB1d3dX3/nOd27//yuvvKK/+Iu/0PHjx3X+/Hl97GMf07/5N/9G73znO2/Hy587d04f+tCHDu9JA7hr1DyweKh7YPFQ98BioeaB+TTXFxS/9rWv6e/+3b97+/8//vGPS5I++tGP6rOf/az+5b/8l+p2u/qVX/kVbW5u6md/9mf1xS9+Ue12/NVXALOPmgcWD3UPLB7qHlgs1Dwwn+b6guLP/dzPqarSTXCyLNNv/dZv6bd+67ce4LMCcL9Q88Dioe6BxUPdA4uFmgfm05HtoQgAAAAAAADg3pvr31B8oLJsuoQ3lxiV++u2JkRNMmPJxFdzbK3jU1RXOzGF7fxyTGM63/HJj3+j/XoYuzQ+Fsba2dje3iU6p7KQlrKYmHquHp/r983jS9IxE5V5rBlTpiVpzbwvLvF10vHPtmGSH0er/th2/Y5yMwmhmDH7EuCyRFq79qd8SVI9UfPmUFffWer0MMfWGz7B7fRKTD58uL0ZxpZcBJ18LbuUxyWT9PbGsfFFpF9WnB8aWXxdJxs+zdE9r2HpP68bvZgeuduOj1W2EhOvSeJNpsXV9z4H0t1nX1arKcvu+DwT6/dB5vDKJL66Gk+lDudmWZ00/MHHNuIJ+hPL18LYj7ev2tvbJFczlFrre+ZpjRKbmI3cJFI3YuLrlfG6vf1jq/HYSXXKHtsdxH3FxLyuwge2q2bGi3ZiF7N/TSgXN/lxLuxPe92f2PtD7jenEr9NVTbjZ16YCPQyEUpemZTnrO7nnM5SXMPfc/z7YSy1fj7eivNDzazW1yY+AXbVTFx+VyIt1f1efL/v1mMqrCTdmiyFsbWmT5neWImPdXUQ3/CykVi/zYuYdBLfA/fXfEbNz7yq1J5daWJNz0xCdNn0+8uyMd3vadnv/5LKdnwO+bJfa48vxfP7HZ24Jrr9teTX8NPN7TCWSndfNd8d2pW/BtEwG55WFr87HK/7OepsK8ZfX+us2GOvVjH9OTd7/MLMsZKUmXl6tOo/187+Pf0C7/H5DUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNS4oAgAAAAAAABgaoSy3K1GopNyqpmz4Rqw2zCGVPPWVrwD14RYks4sxUanD7W34lhz095+NY/3e8YEkrQTAQ9bpin5ep5q2xw1TYNo1zRaksamg3yZeBNHk1gC1Sh+hvVu4kMwn+HENHSVpOyOcyYrE933MbsaiW79RpUIZSlNzbjskMlKolnwWqyvVss3bD6zFJsrt026Q6oJ8ql6vP1qFeeBmxPfGNlV5/36CVYrj42gOzX/vnQaZrxpAmQSPdWLZvwMUzUf1oOSn+HNnYMEaLlQNkmFCfhxdZ/IEbLzQb7iz+8TyzHMYN0EIbi5QJLO1jbD2PfHx8NYr/Tz4Xoea8EFNEk+uOF0Lc5HqzUfuuBqvHGAfYVrgJ+au91aX7QSdb8vjIkQtjmTqGO14jlfmTFJKjqxmIuY96ei49f6qhPP40bTn9sudNGFraUC2B5rxFCWQRW/46RCWdyzGia2uEumZHLzxWc19zXv9v3LNf+63FpvQ+wSz7Vm8ubIVzq6MhewKKlaioVbJUJZxiaUc2TKZrKcqPvleH4uLfvz+/G1GMDiQkmXE8GJZ+vxGkC3NAE0iVC1d9Tja9gp/XPdMXvfpqn7jZoPYyqS6bRR7kJg6/F9zQu/fpuvEyrrU4YxLfAEwbcbAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDUuKAIAAAAAAAAYGqEskwry/c0as4SjZizleUwVi7FJqeSNF6O13NHa6aheSKgoarFcRcyIknHWrHR6flWbOj6k83L9vanarHR63gSm4/WEt2N21lsiNqrfJPTXhWbuo7MqTqu/Gu9ajrgXhv44IjB2CVixM/F9KeWJJVmfLSaaN7avuM8oEf73MlMY2ZJqlaWwlix7E+Y0Yqp+WOxZsp1H5hQMzU/duewpN4kzlEn6zth7GwjNmaWpIfrm2Hs4iSGM+yU/n25YRoeL+d+fqiZJspj09x4XPmGx/0ivt9d8/olqVOP722tFeenVLP8sh9fVyqcIdsX3kUY0+yrykrVHedj3vbrt/J4LmbLHXvocMOsX2adSK31ZScuGIlSUs00OneN2jfMmi5JD9fifODW9e+OTtrbj6t47PGafw9vFrFZ/Mj8nHuQWOt3xnHu6Y2nD89yyXipYBwXqDXpJOp+XyhLVk4fFIMHL6tlyu7c3zdToYux5qu2P3ayFI8tzKlZmHBFScrNmmSTHOVDCJZMUMkjzbjnl6QNE9rw8jjuo1NBTC6AxZTLG/dhjnXzi5vHUlo1k6IgqTLfMYoizi8Nf3Mbkpl4C6j5OZTVa8qyNz+3bMmv31XDBCy1/F50tGLW9TWzzjQSwYu1eNK1XJCgpPVGDFs7YULNHm34um+Y7+Xbif28c7OIt181oWySNDTF5H6j7UYi5HF7Ep/XJPF9oDuKc3JZmOsViT2Uq/tkAFvYBxLKAgAAAAAAAABviQuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNRIeZ5S3qwrz95MDspaPrWwMimPxbKPBXMJgZMYGCslwoWycfyLWu6T0U42Y/LTY41rYeycSYGVpLZJkWsoJjyNEwlHS+Y1pFLgGuY+mgeIRd60b+IBmOinKhWpaT6cqu5fWFV78/p9xbX8mZd3WsqzN2u3SqQ8l804jU46fmp1CeATlyZc+nOoHMXayFs+AW61EZMbXaLzo/Wb9vYbeUyJ/N/F9LV1wtRRnpjM3PzQKxPRi8ZuEedjl3wpSZNqutrLEp+BCcZL258QTLr7zAtr/ZI/56t2XNeLFZ8Sadd6c2iZCJS2j2/SSiXpx1ZjouO7WpfC2FoW5wdJWspj3bXLOMds1Hr29o0svtZ6Yl/QzuJrKE199kx9S1LXxOaWJtlV8omvbhkuEwG/buoqUpuY+r7XaxLrMTuyZlPZnWv92rI9rnQ1v+xPmOF6PLkKs9aXbb9O1U3aay0RS/rQ8nYY+4nWlTD2cP2Wvf05c7//exhfl0uFlaSTJv16J5FyvG5SYAvF+aWd+X1Ny8xPN8f+85qU8TPIzV4+ldzsyjaZ9tradydl6jsDZkXWbu2re58wXC7H9adMpDy7tb4y9ZWq+0Y7nt+dRAz5yUb8Xn+2Hvf4p2oxDVqSBiYl2dVdfoDE9RQ3R2yZOWI18VxXanG/slL3exi71pvvA2XdfwaVmaNS+4KstneOycyeZlEs7isHAAAAAAAAcGBcUAQAAAAAAAAwNS4oAgAAAAAAAJgaFxQBAAAAAAAATI1QlmnValL2ZlNRF74iSWU7vqXjFf82T9qmeesBmoRX7dgotdP0jYz/1tLFMPbjjdigOdVjvDC9S9fygT/YWM9j1+NW5t+Xmmlq2spiA/hB5W9/cxSb6G8PfaDGeGwa65r+s8mABterluCFIyHrdJTdcd6OjyUCSUwIwaTjf1ZjG3qbJuFZovl6oxPre7kdw1Mk6aFWbM58vBabOLvwlRTXlH01MQ+4d6Cd+UbWg2q6pJOTidCoi9nxMDZKBCEUplG7q+6ykWiqbj7vVM5L1dg7R1XFQRJdcBiyTmdvo/bVRChL3YQurPju/qVZquxYM3HOmTliac3X3TvaMZTlsXqs+xS31hemQrqJBJleFe9g1QS4SdJaHtflMybsxYUuSdKV3moY2+z5vdlwYDZSk/i6EllOyiZmnk6t9cW+vyjZFMy0RkPK3zw/itVEAJsJW0sFsI1N0pg7jauOrw0XLNBp+bX6J1euhrFHG3EeSIUzuBXQhTsUid9BKU3NP1Tz86bb32+VcX4aVP6LjwtdHBb+M+iP47h7X1M17zYGJsfijfF9QUxVQRDTzKvVpfzNc6Ra8utMYQJYyoavBRe25jJCqlQgiPmu2aj5OWKlFvcALlh1KXGCL2Ux7OW75ria/O038vgeHEvU/djs8cdZfP7LuQ9acXNPKmDRhTG59zU3678k5e4ySmoJ3x82QygLAAAAAAAAALw1LigCAAAAAAAAmBoXFAEAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAUyPl+W41/FtXdGIyWdFOpUHFhKHShEQWHR8v1NqICUnn12JysyRtmOREFzjbNgmmktRLpDztlydiD5dMynOv9Il1u2WMWLpWLoex6+OY8ChJg0n8DAYT/3mVLr25MGlQiSDcmhnPTOKdJGXjNxO1sjKma2G2VbmvjWIpnltlIi7dJcCVJq290fZp7Usm0TmVALdej4mOP2bSXpuJmncersf55bLW7bFuJlgxqa6S1DIJcJey+B7cLOI8IEnf622EsZ2xT+wrXcpjMuYxcol9ybTX/emupL3OvKzZ3JPuXrR82qhMyvN4JbEvaJrE104859xcIElZ26Srd3zK87F6N4y5HchGPv3271WTcNwwCZGS5N6tVubfw2EVa3xgkhtdzUpSPY/vV6qW6434Ho5qLmrb3tzKzfvygyfxo/8fsyXL96RzThJp7UXLJLt3Evt7l/JsEp1rprYlaWU51vfpFZ/W/nArrsvHc5MAuz+R9AfGVTzpu1V8D8aJiOOuuf2xRNqpq3m3XSoSCa5XByth7NbQJ8uOzL6/dPv7RHnmZopLfReg5ufQvrp3398lqTQpz5NE3Rdmi1ua7/BuTX/jKcU1xa1zkk9fHpu6aSdvH89Rl7LcsrHH0lJurneYuUDyde+OvDGJ9S1J3+9vhLFLu/67x6Af567K1H3S9F8HpOa+92CB9/j8hiIAAAAAAACAqXFBEQAAAAAAAMDUuKAIAAAAAAAAYGpcUAQAAAAAAAAwNUJZ7lLZTIR8NGPzVteQXZImpo/wxDRqr+q+Q2gxiY+1PfKhB4MqNk/dKU1T+US6wE4VX+/3J8fCWC1x+1v1q/GxDtD5tDSNZmuJ7ukTc2yVaOpemfcgM0EtiZvb5q2Z77UrTe74izJ1EGZFNR7vCWLJikQdNk2jdt/T3YYuyYQI1OvTN/Zt1304wroJYnL3upT5RusDE5Ryo4gNky9PfGPkG8X3w9iJRHPoW2VsIP/y6KEw9u3dOCZJ1/oxrGVc+Nc1HMe5bDKKx7ZGvuhro/h55eO3DmKSCGOaB9VotGe+T4VsFQ0THpJY60vT6710W4iGr4/czAcrzVQ6QNQzC9i4SISqmJfg9g83zVwgSReLGIa0nkgyeL2I4y+PT4exzbEPXdgZxsdyDdklqZjEzyvvxbp3QWuS5PrS14eJPUxIeSCgYaaVhaQ317us9J9rbvYAqZ2cyy9xe/k8Eao2MXtTFzgo+bCUsfl9ERe+IkkDM75pAtA2C1+HW2V8/OUi7j8kacc81ndNEMP/7j1ib3+9H4/tjf37MjHfkeSCGBOSe3mntv/95vd1Zt5ouGf/nQ/8mljV4jlTG/nPN3P7ThMIkthWqFaL9bHa8AFsSyZAZTWPJ20789crOllcK33Qi99L3yzi47cTYUwXCxe2Fp/X90Yn7O2/343fM/pmLy/5tb4amrU+Pn1JUr1vQuh6iQ+M4MXbmPEAAAAAAAAATI0LigAAAAAAAACmxgVFAAAAAAAAAFPjgiIAAAAAAACAqRHKcrdMk9YUk7kgScpN/1ebaZLsBRqfQzPR4PlEbTeMbSQCEhzXtHnZNIQtEs3Hr5km1+3EG+PyDUamKezQdrWXrvdiM+nuwDdqn3RjM+da3wTAJBq1u4CGVKPXavRmV/eKcIbZVxbSHcEktb7pyi+pNornUGYaEEtSvR/HsmE8dmKaCr8xHs/jdtM/ryvj2MT4ZTP2WH3L3r5rGiZfHB8PY6+PNuzte0vx9v3KF9JF02zePdatUcfefqsXx8dj30jaqXrxudZ8H2w14lSq1pafS6ve3jupyumDNHBIqlJ3xhdlQ19feSOeX6lwHrfWu7Ei0ei9MLWYCiJwLk1Ww9hq7k9wt4a74KXdwgfA9coYlHK93LbH7pi0Ghf8cGMY13RJurEZAxompvm6JGkQx+s902w/sX43XKP23cQearTvnGG9n2157Y0/P5AKYDsIF+SXmXCG0oSvSNJwYPamq/58c6GFPVdbmdmAJLgghi2XJClp09R8I/FY10x9//UoBjGNEvv77ijugUYufEX+O1I1iWOp8JXMlK0LbJCkbN9an5WJiQQzK0+s9ZUJYKv1/TnX6MaxybYJRcv9+T0w88aVlbh+S9K3+zGk8G+2YhjiTXciv/Eswsj/Gb4jjnUftrf+8WYMWz1urjVIfg/h1vq/6p2yt7/Zjcd2e3HekaRyN859ufmeldzjd2ONN3cSe/zB3jpf5D0+v6EIAAAAAAAAYGpcUAQAAAAAAAAwNS4oAgAAAAAAAJja3F5QfOaZZ/TTP/3TWl1d1enTp/WhD31IL7300p5jBoOBLly4oBMnTmhlZUUf+chHdOXKlUN6xgDeLuoeWDzUPbBYqHlg8VD3wHya2wuKzz//vC5cuKCvfOUr+uM//mONx2P9/M//vLrdNzui/vqv/7r+8A//UJ/73Of0/PPP69KlS/rwhz98iM8awNtB3QOLh7oHFgs1Dywe6h6YT3Ob8vzFL35xz/9/9rOf1enTp/Xiiy/q7/ydv6OtrS39l//yX/S7v/u7+nt/7+9Jkj7zmc/op37qp/SVr3xFP/MzP3Ogx8sadWXZHW/X2MeCZVVMB3Jpb2/8xZRjqcu+Lg258MlTlycbYeysSWMam7Q4SbpRxoSlbw9jwlRKQ/H92qj17LEu+embw5gy9a3ts/b2V6+thbFq7F9X1jPJjyacrrHrk91cGlQqBQ5v3wOt+1pduiOJrcp8IVe5i3P0d2nLy0wQk+H0U3ORSInslTENsWvSGK8VPjl5KY8JcC75cZJ4/BtFTGb962zHHvtX45jsdnEQU56v92OqqyT1duPrqkyipiS5j9ElwNX99KT6IKa9NbqJFL3JvvGKtNe78SDrvipKVdkdKc8HeaKpg90UYU6FWi+R8mxKNFX3LnX9dD2mLDcSyY81s7Fwa/LApMhKPiX6YiId9loR1+r/038kjF3u+pTLiUlnz7f93JmP4/Oqd81Yz6/fbl2v9/17WJXlj/x/vLUHutZPRntqNE/s74tWrLmynih6U54u5bkyScSSNB7F83h74JPVr4/juvj9ybEwNpL/fuCS2V8ZxjX5ld4Je/tHmufC2E7jlj3WzSXf6sfbv7QVk58l6cbN+FpT+3uNzLq+Fd+D5pb/DDo3Yt2m0l413JfuWvrEYPxoD/q7/R6pPX7N1H3Tn3Pu+75dKlPf6/O4zjRyf85tjmMt/d/RmTCW+q7dNPHm7nvD5sh/R3DJzal9xU4Z7+OKuf2txGMNhvFNLPqJtd7s5zOz/ueJQOb6wK31iWs++86Z/f+/SOb2NxT329rakiQdP/7Gl9AXX3xR4/FYTz311O1j3vWud+n8+fN64YUXDuU5Ari3qHtg8VD3wGKh5oHFQ90D82Fuf0PxTmVZ6mMf+5g+8IEP6N3vfrck6fLly2o2m9rY2Nhz7JkzZ3T58uXkfQ2HQw2Hw9v/v70df7IP4PDdq7qn5oH5Qd0Di4WaBxYPdQ/MjyPxG4oXLlzQN77xDf3e7/3e276vZ555Ruvr67f/PProo/fgGQK41+5V3VPzwPyg7oHFQs0Di4e6B+bH3F9QfPrpp/VHf/RH+tKXvqRHHnmz987Zs2c1Go20ubm55/grV67o7Fnfe0+SPvGJT2hra+v2n4sXL96vpw7gLt3LuqfmgflA3QOLhZoHFg91D8yXuf0nz1VV6dd+7df0+c9/Xn/6p3+qxx9/fM/fv+9971Oj0dBzzz2nj3zkI5Kkl156Sa+99pqefPLJ5P22Wi21WrFBscpKyt5s1Jn1fTfP+m58Sxtt3wi5sRuv545XYkPP0hwnSYXp9Lo7Ms9d0rVJbGp+o+GbnzquoaoLaOgV/vG/m8cGz2uFST+RdKOITZf/1078idL3t2JDV0mquqZRu2nOLEn5IL7ftb5p1J4IWmn0YrPc+q5v3qrxHedMlegGix/pftR9subH42ST5n1Paurnn5neym6sTDUZNx2fh2M/je9MYgP3QRXnjE0TuCRJV03A0+VhrLkrwxisIEkvj+LmzjVxlqRvu6bsO7G59LVtH8pSmXAG1wBfkirT9Lpu5oF84j/X2jiO58NEzVflj/5/TOWB1n1RSHc2Ky/8Z5aNYvPxWt8fWzNNvmvmnEuFumSTWIupuv/eIIYxPNK8GcbamQ8NyBVfg1vXU3X/v+rvCGMrtYE99rVhDHl4aTvWfX/kA2CyoQtVSyVi+eFwn4ncpJoJY6p1E8EL+8OYSsKYDupB1nw1Gu8JXavtDMMxkg9mS4Uz1PomGMCcBsntg9mzDs08IEmbJvTI7aOXc/+6XFibC10qE6GNr41iHbugF0naKeK+5OWd+P3g+m4MdZOkynzHyhLBNmYqU21o9vx+epLJpVO969f6arR3T1+V7PHvxgOt+6pSdcfCkCXCs1zYatmYPozJqWqJwh/EGh9M/Fo/MfXo6m45kT5SM18+XI0PisR3DJMW161Nfw3CfZ+42vMBbGMXVJkKW3WBd+YtSO7xh26/lqj7fWFM1QJ/t5/bC4oXLlzQ7/7u7+oP/uAPtLq6ert3wvr6ujqdjtbX1/XP/tk/08c//nEdP35ca2tr+rVf+zU9+eSTby8FCsChoe6BxUPdA4uFmgcWD3UPzKe5vaD4n//zf5Yk/dzP/dye8c985jP6x//4H0uS/sN/+A/K81wf+chHNBwO9cEPflD/6T/9pwf8TAHcK9Q9sHioe2CxUPPA4qHugfk0txcUqyn+mWG73dazzz6rZ5999gE8IwD3G3UPLB7qHlgs1DyweKh7YD7NfSgLAAAAAAAAgAeHC4oAAAAAAAAApja3/+T5QdufBpWPfLpf1o/j9YFPKKz3TSL0rrnPRLLaZBxTpq5v+2S0/7P7cBirmdjD1ZpPXt4sYorc/+3GFNd+4V+rS4Ruuwg1Sa/2Y2Lct2+dDmM72z6lurEZHytLhLC6pM3mdjyuuePTvxrb8Y4bOz7lqRq8mbC3yElQ8yLU/MB/Zo3tWMeTZZ/G6NIEGzsmubmVSi+Lx44TyY9Dk8x2kOTGwvy86eY4zi83hz4l+uV+TGs96SY4+ZTK7WFMgywmqbT2OJ6bNEdJquomwc0kw7qkN0mqm2T32nYiFXTfOlFViVRYzKwssdarHusuH/mFpmZODzeWjnmO52JhEt8lqTtphrGdMtZSKnHd+d4wJkdfGfg0xrV63EM81r5hjy3Na9gZx5TIUSLRurYb676+69+X3Hw0bj5ub/m1vnUrfmB5l7o/ErLsjT8/lKj5Ws+cb22//jZMGnFj2yQ3t2K9Sj6NuNeNdSxJ39qMa23dbHpvtfz3g8LsAVza+pVeTI6WfNrspfqGPXZrHF/DdzePh7Fuz6fF1nfMvJsoL7e1aey4Mb/Wt2/FuNjmJjV/ZJSldEfScTb0n1nei+dcvee/6+ajWPeulitzHr9xB/Fc7I38Y10bxHp8rRW/P4+r6S/1vDqIt3+9u2aP/Ub7XBjbMsnPkvTt3Xi94Pogzke3uv722ozvQaPrvw+4/Xzdffcye3lJam6Z6zi3evbYkO6+wN/t+Q1FAAAAAAAAAFPjgiIAAAAAAACAqXFBEQAAAAAAAMDUuKAIAAAAAAAAYGqEskyrKPYke1SmIbskqWaar+a+SXhWxearWRmPTTUcdo1Hh33fvPW13dhU3TVPb+WxCbEkXRvFBuzuPstUU3kjz3xD1Cu92AB2px8bOVc9f/q6kAvT016Sb4zfNA2aXRCDJNV3YwPWfMs3by2LN++jMp89Zsy+ms8SoSw1cx42txLn5nr8Gc542TQQ3vXzi5sL+lu+UfvLq6fC2PFmN4yt+HQIDcv4GlwT6FdvxnlAkooyvtZHljftsdeG8X6v78SGzeNd38C+2XXvoZ+LysbbC2Kq78YPIe+Zjs+SimJvY/yq8veJ2VGNC1XZm+tgtRtrRvLxKfmar8Xa2KwpZv1O9U6vTFP3Qd/Xwg3T6PziIIYeDJt+r7BTxNdwfRjvc2fkQxM2xzFg6bv2SOliP84dN7vx9oMt/1gtE6pWS/REd8FstYH5XLq+RnMTuJf1EwEN4/H+Af+kMBOq4UjVHZvEfNfv4WT2bfmyr8NGPx7b3HY1nwgaM6GL/VU/QWyvxfq4Oox79tT+3oUmunCkrURgwpV6vN/dhq/Z/iTOO7smbKbo+vmpY97DRuLjMhl0am3Fz6W9mVjru/F15Tt+rafmj4DCh6plAzP3F/47nBt3oSzpALY41N31+4rvZzFYbakeF0C3l5ekfhnnrte6cU3eHfha/u5ODHDZMaFLkvS6+V6/2YvzSX/H375uArEaZi6Q9uTs3OYC2FJ7hdog1n2W2OOXk73HVlUiAXYB8BuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNQIZZlSNRqruqP/Z7a1a4/LS9OQNdG0uTaMb3+9N11QS0o18GEOW8PY6PTaKAYhdGq+kfCWabS6bZqyjyaJsBojl29qe2tgGrX24nuYD/z1cJcxkehFrXzkGuiasVGiUbtr1jtKNGO+M5CBcIaZtz+cQX3flDcz4Qb1rj8HmqbR+MQ1Fs4SzYZNv9/xip/Gr27F+v6rzskwtt70r6tfxOd6ZTc2eu93fcPmq/X4+JPK1+z2IM4vw0F8/Kzn55e6CWVxQSuSb9Te2I0130gEMdV65rNNNPPG/Kkme9f6qhfDy1Jq276heMOEDoyXTECDCXWTfN0PEgFs13sx1OTaUqzFlN0i1vO1frz9DROeIkn1PNbNNTMXSD7YxQU0pOq+YbZhze1Us/w4VjehLM1tP3dn3ThPpgJ7Khq1z7UQsPEDmVkn6q1EKMtuPLfrvVjfRcvXvAsMGCXC2m7diOvyX5m73TVBK5I0MQFql7fMWn/Lh7JcKuLtWy3/Hk7Md4TxTnwP65t+X9PciWNuzy5JZd2EXJr3tTY8wP5+6JMcyn2BPeQuzr5qNFF1x167SgRvuAp1gZySVO/HGhubQ6vE1/raKP7FaNPPMVtFPPZicyOMDcxePuXiZrx9d8vX/XdHsUZvrfhje8P4GromUDLf9M+1bsJWG375lcugcd/1631f95kJYNMgFcC2f61PXGxYAPyGIgAAAAAAAICpcUERAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBopz1OqikJV9ub112rHRI1JNr233vBvc2spjld5TDiqTLKcJI1WTBrUhn+s6ysxsS3L4v226z6haHcYk6u2dmKa02TkU+h6g3h79/iSNBnH+yh34vvS3PUxWY2uSWxNvIdOaysmMja2faJXvhMTQJPJj3ckgFdEwM28/Wmv5U4i2d0kMtfqvg5qJm293p8+7dWlGU6W/M+FRrWYwvqt7GwYW1/2KbZjk9x465ZJa02ksm2Vy2FsOPbz02ho5r2bMRWukaj5uim5VM1PTAhdo2fmjC2fUplvxvOg6vbssSH9mbTX2VdVkt48H8pEup+r+7zra6m5GWth0ja3H/tarsx0Mjzm6+5mtRbGvmEiJU8s+3O2P473e80kxo96/vEHJp19uePXT5cuO9mOdd/c8e9La3P6tT6fuETnWI/1zUSq95ap+0QCeLWv7kl5nm1hf9/3aa9aMsnmE//ZNrpxL93oxfPYJRFLUtOcx6PVxFpvvjfcyE3NmoRlSSrN/NAzifW1LX/7URGPnaz4Y6vSzHsmvbqeWOtbt+L7Uhsn1noTat3aid/RWtf95127FTcWVWIfyFo/f0LddxOxweZ7fd72iemtbbPWd2Ld1oaJvazZi47WfN2Pi7hWXqvH9T+17x4Xse66pu7zG36tHy3H25slWZI0MYnQ2W4ca95KrPVbcSy5x48vQa0ts/5vJvb4u3FvVA0Sa8L+c8OcK4uC31AEAAAAAAAAMDUuKAIAAAAAAACYGhcUAQAAAAAAAEyNC4oAAAAAAAAApkYoy7T2N2ofJhq1u7G26RAqqbEbGzxX9XgPWZlqMh4/vsG2v0bcM6Em3eXY0LUyzZklaWiaOU+GJlRmmGgeWzeNlOu+aXExifeR9+NYKqChsWuaLm/7RqnuvXUBLPlmImjFNGhONWpXecfrpWHz3KkmPrCoGsXzJTNNfSWpfTXOBVUtjmUmrECSctN8PFUHExPaVBRxzDVkl6TSPIcsN3ORabIuSaV5rNzdXlJei/XgKrbeTTRqNw2X64PUvBnHmqZRe33XB0nYmh/55s7VvvmFMKY5VPq52s4Hw0R41zjehzsPXXCI5Pt8txLNy4tOXJe3mnGvUUvU4sA0cB/txL1C1vOhC64SEq3uVZqm8HUT/NC5nGhg3zfN8hPvYb3v5gjz2SZqWebzrsZ+TdD+OqfuZ9v+/X3Pr9/5/uANSXkr1oYk5YMYzuDWpKLhz42WCQzqXPM1pzzOBYOleGy/6cMV5PYAfVObvcRa3zT7ikTAlMy+oD6IY81tf/P2LROk1Pdz9GgtzmWNrvkMB4maN3NBKoCNIKY5VJW6c6eZnM/Nd7p8Jda35M8vFyBq8lTeuL0JZUmt9e6Cw8is/926D5BxwajVINZ9ngiQKVum7s2aLkmV+V5fG5m5IPH1uWbW76b5ri/5+cRdF6jv+Os41VYM3S1TQV24jd9QBAAAAAAAADA1LigCAAAAAAAAmBoXFAEAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAUyPl+W4lUvts+vPNW/bYurmP2s1OGMsSyZGdIqYWrX1z1R47ORHvd+fR9TA2XvZpTk0TWHamG5+/CY164/Hb8VQrE4F1DZPmtHQ5pq01b/o4qHzbpLAl0ruqJZOwa46tbm352/fjcyhTKZGYL/uSH1MJcOVuzDDNEudAw6SK1/prYWy55usw34lJY8faPrlxfDwmu3YfimP9kyv+sUyi9GmXpjz0Re9qfrQaX6skLZlpc+lqfL/b1xLpm9tmLqj7CaZsxueVD0xS9y0fM1mYz1vmc31jfN/ESfLjkeHS3Ytbm/bYehbrefVWrLuq4bdkbg+wsR5rWZJGGzHRsXsurnP9k3FPIEk1M82d2jZrvQ9YVGFSbycdnzJZM6m3q98zdX/lAHVv3us3Hsyk1pu6r7ZjwqPkk3+rsd+bYc6l9vcDk/R5/YY9tj6Oe4C1G2Z/nlin3PqzsuqTZSen4v0OTsU67B/zt3daOyYVtev3QOOVWFvjZR9j69LWl67GDUDjhq/57MpNO+60NuJ+w+3NUjXv1vrKfcdzSHafffv3+BO/b9+f4C1JunrdHtsxn3v7+3GtrhJ7/Mwkjq9/26+fk/U4PtyI3wcGG77uKzP1nNiNz7+RqPuyEV/DYD3uNSSp0YvzSfum+V5/PVH3fbPWln4TUrXj++K+1+uGvzZT7sT5wJ4DUqzzBa57fkMRAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1eii+heoH/x5+ovGdrRZ+hNhTIHeNCiTlZezFURWmz0+Z6NNj+geUhe9bMpnE51WM4gsqTE8EScpM+wDXYy31HhV5vN9UD0V3vxPT2yIvfC8T976qTPRQLOLzysyxVeU/AzdeVv6x7uyfNtH4B7df3H4LsypZ85Xv15GZzzDVS9Sdm6U5jyszj0j+nK9ML1VJmkziXFKM47HF0P9cqZqY+cHVvBuTVJgeMcUo0d/MlNfE9DyZFKaHlRJzQZbooWh6oeSF6aGYmHeLyvTZSdRxte9Y6n523Yu1Pqv8+V2Zc6lytZz7Pj2ZOT9Ls1eQpImr25Gr+8RzNcuX2yskeyiau3XrvyTJ3K+v+8Rab+s+8Vjm5+euxt1nJUmlqfv99Z1C3c+mg9d8lFe+Du36cYB1yp6bhf/KNpnEvmkTt9aPEptud5/m9nJjkiZjs9cYJX5fxe7vzfqbqPnk9yHH3EdWmjqm5hdKuu6nXzvyxFrvv9fHukvt8bPCnHOJ9n1urZ+M48GpuneXJiamPjNzn5JUmteQeqzMzB2TSVzrU9/r3R4o2UPRPN2sMBubA9X9dD0UF7nuuaD4FnZ+0Jzzz/Q/pruBO4d8j9H0+Nvx/ftwn7hvdnZ2tL4ew3FweJI1n/gCLbf+pfp2u97f35vyieHIoO5nzz1Z61N1f3nKMRxp1P1sOXDNO/5nXH786t0/zI/0nft0v/Pufr3fB0DNz55k3aeuAR3ke/1rd/uscJQsYt1n1SJeRj2Asix16dIlVVWl8+fP6+LFi1pb80ml82h7e1uPPvoor+sBq6pKOzs7OnfunPKczgOz5Ic1v7q6qp2dnZk+j+7WrNfH3Zr110Xdz66jXvezXht3ax5eF3U/m456zUvzUR93Y9ZfFzU/u6j7+TXrr2uR657fUHwLeZ7rkUce0fb2tiRpbW1tJk/it4vX9eAt2k8v5sUPa16Ssh/887lZPo/eDl7Xg0fdz6ZFqfuj+Jqk2X9d1P3sWZSal3hdh4Gan03U/fyb5de1qHW/WJdPAQAAAAAAALwtXFAEAAAAAAAAMDUuKE6p1WrpN3/zN9VqtQ77qdxTvC4g7aieR7wuIO0onkdH8TVJR/d14cE6qucRrwtIO6rnEa8LDxqhLAAAAAAAAACmxm8oAgAAAAAAAJgaFxQBAAAAAAAATI0LigAAAAAAAACmxgVFAAAAAAAAAFPjguKUnn32WT322GNqt9t64okn9Od//ueH/ZQO5Mtf/rJ+8Rd/UefOnVOWZfrCF76w5++rqtInP/lJPfTQQ+p0Onrqqaf08ssvH86TndIzzzyjn/7pn9bq6qpOnz6tD33oQ3rppZf2HDMYDHThwgWdOHFCKysr+shHPqIrV64c0jPGPJn3mpeoe+oeBzXvdU/NU/M4OOp+9lD3uJ+o+dlE3c8nLihO4fd///f18Y9/XL/5m7+p//k//6fe85736IMf/KCuXr162E9tat1uV+95z3v07LPP2r//7d/+bf3O7/yOPv3pT+urX/2qlpeX9cEPflCDweABP9PpPf/887pw4YK+8pWv6I//+I81Ho/18z//8+p2u7eP+fVf/3X94R/+oT73uc/p+eef16VLl/ThD3/4EJ815sFRqHmJuqfucRBHoe6peWoeB0PdzybqHvcLNT+7qPs5VeEtvf/9768uXLhw+/+LoqjOnTtXPfPMM4f4rO6epOrzn//87f8vy7I6e/Zs9e/+3b+7Pba5uVm1Wq3qv//3/34Iz/DuXL16tZJUPf/881VVvfEaGo1G9bnPfe72Md/61rcqSdULL7xwWE8Tc+Co1XxVUffUPd7KUat7ap6ax1uj7ucDdY97hZqfH9T9fOA3FN/CaDTSiy++qKeeeur2WJ7neuqpp/TCCy8c4jO7d1555RVdvnx5z2tcX1/XE088MVevcWtrS5J0/PhxSdKLL76o8Xi853W9613v0vnz5+fqdeHBWoSal6h74E6LUPfUPLAXdT8/r5G6x71Azc/Xa6Tu5wMXFN/C9evXVRSFzpw5s2f8zJkzunz58iE9q3vrh69jnl9jWZb62Mc+pg984AN697vfLemN19VsNrWxsbHn2Hl6XXjwFqHmJeoeuNMi1D01D+xF3c/Ha6Tuca9Q8/PzGqn7+VE/7CcA3AsXLlzQN77xDf3Zn/3ZYT8VAA8IdQ8sFmoeWDzUPbB4qPv5wW8ovoWTJ0+qVquF9KArV67o7Nmzh/Ss7q0fvo55fY1PP/20/uiP/khf+tKX9Mgjj9weP3v2rEajkTY3N/ccPy+vC4djEWpeou6BOy1C3VPzwF7U/ey/Ruoe9xI1Px+vkbqfL1xQfAvNZlPve9/79Nxzz90eK8tSzz33nJ588slDfGb3zuOPP66zZ8/ueY3b29v66le/OtOvsaoqPf300/r85z+vP/mTP9Hjjz++5+/f9773qdFo7HldL730kl577bWZfl04XItQ8xJ1D9xpEeqemgf2ou5n9zVS97gfqPnZfo3U/Zw61EiYOfF7v/d7VavVqj772c9W3/zmN6tf+ZVfqTY2NqrLly8f9lOb2s7OTvX1r3+9+vrXv15Jqv79v//31de//vXq1Vdfraqqqv7tv/231cbGRvUHf/AH1V/+5V9Wv/RLv1Q9/vjjVb/fP+Rnnvarv/qr1fr6evWnf/qn1euvv377T6/Xu33MP//n/7w6f/589Sd/8ifV1772terJJ5+snnzyyUN81pgHR6Hmq4q6p+5xEEeh7ql5ah4HQ93PJuoe9ws1P7uo+/nEBcUp/cf/+B+r8+fPV81ms3r/+99ffeUrXznsp3QgX/rSlypJ4c9HP/rRqqreiJj/jd/4jerMmTNVq9Wq/v7f//vVSy+9dLhP+i241yOp+sxnPnP7mH6/X/2Lf/EvqmPHjlVLS0vVP/gH/6B6/fXXD+9JY27Me81XFXVP3eOg5r3uqXlqHgdH3c8e6h73EzU/m6j7+ZRVVVXdm991BAAAAAAAAHDU0UMRAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBoXFAEAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNS4oAgAAAAAAABgalxQBAAAAAAAADA1LigCAAAAAAAAmBoXFAEAAAAAAABMjQuKAAAAAAAAAKbGBUUAAAAAAAAAU+OCIgAAAAAAAICpcUERAAAAAAAAwNT+f9e724rO/O7nAAAAAElFTkSuQmCC", | |
| "text/html": [ | |
| "\n", | |
| " <div style=\"display: inline-block;\">\n", | |
| " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n", | |
| " Figure\n", | |
| " </div>\n", | |
| " <img src='' width=1300.0/>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# the plot of first 5 batches's average, each batch has 256 images, the result is 5 average images.\n", | |
| "# first row is train set\n", | |
| "# second row is test set\n", | |
| "fig, axes = plt.subplots(nrows=2, ncols=5, figsize=(13, 4))\n", | |
| "\n", | |
| "import itertools\n", | |
| "\n", | |
| "for index, (row, col) in enumerate(itertools.product(range(4), range(5))):\n", | |
| " if row == 0:\n", | |
| " axes[row][col].imshow(images_train_in_batch[col].mean(axis=0))\n", | |
| " elif row == 1:\n", | |
| " axes[row][col].imshow(images_test_in_batch[col].mean(axis=0))\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "id": "0d9f1b5c", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "(5, 256, 28, 28)\n", | |
| "(5, 256, 28, 28)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# scale the images between -1 and +1\n", | |
| "images_train_in_batch_scaled = scale_neg_pos_one(images_train_in_batch, MAX_VALUE)\n", | |
| "images_test_in_batch_scaled = scale_neg_pos_one(images_test_in_batch, MAX_VALUE)\n", | |
| "\n", | |
| "print(images_train_in_batch_scaled.shape)\n", | |
| "print(images_test_in_batch_scaled.shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "id": "28a53f8a", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# generate an average list of images from scaled version. resuting. 5 images in train and test list.\n", | |
| "images_train_in_batch_scaled_average = np.array([batch.mean(axis=0) for batch in images_train_in_batch_scaled])\n", | |
| "images_test_in_batch_scaled_average = np.array([batch.mean(axis=0) for batch in images_test_in_batch_scaled])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "id": "3febc44f", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "(5, 784)\n", | |
| "(5, 784)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "images_train_in_batch_scaled_average_flatten = images_train_in_batch_scaled_average.reshape(images_train_in_batch_scaled_average.shape[0], -1)\n", | |
| "images_test_in_batch_scaled_average_flatten = images_test_in_batch_scaled_average.reshape(images_test_in_batch_scaled_average.shape[0], -1)\n", | |
| "\n", | |
| "print(images_train_in_batch_scaled_average_flatten.shape)\n", | |
| "print(images_test_in_batch_scaled_average_flatten.shape)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "4c3688a3", | |
| "metadata": {}, | |
| "source": [ | |
| "# Inference" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "id": "8105eb78", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "from netweaver import Model" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "id": "2598a475", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "path_modelfile = ( # repalce with your model path\n", | |
| " \"/home/keerthivasan_user/Documents/test_netweaver/logs/model_training/model-20250615-132411/model-20250615-132411.model\"\n", | |
| ")\n", | |
| "model_loaded: Model = Model.load_model(path=path_modelfile)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "id": "c816e569", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "confidences_train = model_loaded.predict(instances_prediction=images_train_in_batch_scaled_average_flatten)\n", | |
| "confidences_test = model_loaded.predict(instances_prediction=images_test_in_batch_scaled_average_flatten)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "id": "fdcc405f", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "np.set_printoptions(linewidth=500)\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "8c9eba38", | |
| "metadata": {}, | |
| "source": [ | |
| "### train set inference" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "id": "222f9900", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[[ 4.48852453 1.32046272 10.30139947 12.84676623 13.07689088 2.79542531 20.44492411 4.86804087 22.42200323 7.43556266]\n", | |
| " [ 4.29994221 1.33388379 10.31666314 13.01103694 12.89038552 2.90974779 20.57636709 5.64930761 20.4769001 8.53576581]\n", | |
| " [ 3.62268376 1.1624381 9.99247893 14.1496177 14.5228639 2.34689258 22.10678986 4.70170114 20.35966876 7.03486527]\n", | |
| " [ 4.44474469 1.31764389 10.73652461 12.35044601 13.57531864 3.00085674 22.06486051 4.97754544 19.11318523 8.41887425]\n", | |
| " [ 4.47102365 1.3320388 11.74994575 13.47598873 14.69774283 2.12557585 20.86487372 4.1692714 20.94352984 6.17000944]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(confidences_train*100)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "659e6ee3", | |
| "metadata": {}, | |
| "source": [ | |
| "# Interpretation\n", | |
| "classes (8 [Bag], 6 [Shirt], 4[Coat], 3[Dress] and 2[Pullover]) got top five maximum scores. \n", | |
| "- classees Bag and shirt scored almost equal probabitliy, ~20%. all inputs images pretty much looks similar. and they more resembles somewhere between shirt and bag I hope or they similar has similar sequence (flatten pixels) to bag and shirt. \n", | |
| "- by below cell output. though we shuffled the train or test set before sample out and average them. It turns out that the bag and shirt images has more heavier pixels (think of it as brighter or more in contrast)values than other candidates." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "cccb6c35", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[(np.uint8(0), 29), (np.uint8(1), 19), (np.uint8(2), 28), (np.uint8(3), 31), (np.uint8(4), 25), (np.uint8(5), 19), (np.uint8(6), 29), (np.uint8(7), 22), (np.uint8(8), 24), (np.uint8(9), 30)]\n", | |
| "[(np.uint8(0), 28), (np.uint8(1), 29), (np.uint8(2), 24), (np.uint8(3), 29), (np.uint8(4), 19), (np.uint8(5), 33), (np.uint8(6), 26), (np.uint8(7), 23), (np.uint8(8), 17), (np.uint8(9), 28)]\n", | |
| "[(np.uint8(0), 17), (np.uint8(1), 18), (np.uint8(2), 21), (np.uint8(3), 32), (np.uint8(4), 30), (np.uint8(5), 25), (np.uint8(6), 28), (np.uint8(7), 34), (np.uint8(8), 28), (np.uint8(9), 23)]\n", | |
| "[(np.uint8(0), 29), (np.uint8(1), 26), (np.uint8(2), 26), (np.uint8(3), 27), (np.uint8(4), 30), (np.uint8(5), 23), (np.uint8(6), 26), (np.uint8(7), 16), (np.uint8(8), 17), (np.uint8(9), 36)]\n", | |
| "[(np.uint8(0), 31), (np.uint8(1), 21), (np.uint8(2), 19), (np.uint8(3), 34), (np.uint8(4), 28), (np.uint8(5), 35), (np.uint8(6), 28), (np.uint8(7), 18), (np.uint8(8), 23), (np.uint8(9), 19)]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# here is the classification count of labes used to average an image from batch of imamges.\n", | |
| "# well, it looks like they are evenly spreaded out.\n", | |
| "labels_count_train = [count_labels(gtruth_train_in_batch[i]) for i in range(5)]\n", | |
| "print(*labels_count_train, sep=\"\\n\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "580aee2e", | |
| "metadata": {}, | |
| "source": [ | |
| "### test set inference" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "id": "c5d31de8", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[[ 4.39577884 1.44560068 9.54022548 12.38329941 12.43097557 3.66756341 18.81947139 6.57434503 20.87012296 9.87261722]\n", | |
| " [ 4.26484943 1.24689053 11.76830228 13.27916323 14.53916428 2.33394291 21.43784267 4.29999784 19.91618128 6.91366556]\n", | |
| " [ 4.67643553 1.45006976 12.85835781 14.2226685 14.19917173 2.27449336 19.74980496 4.769168 18.89793351 6.90189684]\n", | |
| " [ 3.49316887 1.2524821 8.4635766 12.78050424 12.47334976 3.99821857 18.84394807 7.35746434 20.62729352 10.70999393]\n", | |
| " [ 4.40643844 1.34327854 10.89564413 12.14786184 13.64002447 2.83581093 19.72011903 5.4258569 21.91403529 7.67093044]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(confidences_test*100)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "id": "49f8d0ff", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[(np.uint8(0), 28), (np.uint8(1), 26), (np.uint8(2), 22), (np.uint8(3), 31), (np.uint8(4), 30), (np.uint8(5), 22), (np.uint8(6), 20), (np.uint8(7), 26), (np.uint8(8), 16), (np.uint8(9), 35)]\n", | |
| "[(np.uint8(0), 20), (np.uint8(1), 33), (np.uint8(2), 23), (np.uint8(3), 24), (np.uint8(4), 27), (np.uint8(5), 27), (np.uint8(6), 25), (np.uint8(7), 24), (np.uint8(8), 32), (np.uint8(9), 21)]\n", | |
| "[(np.uint8(0), 29), (np.uint8(1), 29), (np.uint8(2), 27), (np.uint8(3), 38), (np.uint8(4), 16), (np.uint8(5), 22), (np.uint8(6), 20), (np.uint8(7), 24), (np.uint8(8), 21), (np.uint8(9), 30)]\n", | |
| "[(np.uint8(0), 15), (np.uint8(1), 31), (np.uint8(2), 23), (np.uint8(3), 26), (np.uint8(4), 22), (np.uint8(5), 28), (np.uint8(6), 28), (np.uint8(7), 26), (np.uint8(8), 25), (np.uint8(9), 32)]\n", | |
| "[(np.uint8(0), 27), (np.uint8(1), 32), (np.uint8(2), 19), (np.uint8(3), 25), (np.uint8(4), 24), (np.uint8(5), 24), (np.uint8(6), 26), (np.uint8(7), 28), (np.uint8(8), 30), (np.uint8(9), 21)]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "labels_count_test = [count_labels(gtruth_test_in_batch[i]) for i in range(5)]\n", | |
| "print(*labels_count_test, sep=\"\\n\")" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": ".venv", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.13.3" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment