Last active
December 8, 2017 08:15
-
-
Save porimol/5401cb2d3d266ad2828c1d04fc172ed9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 88, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 89, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "df = pd.read_csv('test.csv')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 90, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style>\n", | |
| " .dataframe thead tr:only-child th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: left;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>column1</th>\n", | |
| " <th>column2</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>No</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>No</td>\n", | |
| " <td>2.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>10</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>11</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>12</th>\n", | |
| " <td>No</td>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>14</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>15</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>16</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>17</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>18</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>4.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>19</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>20</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>21</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>4.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " column1 column2\n", | |
| "0 No 1.0\n", | |
| "1 yes NaN\n", | |
| "2 No NaN\n", | |
| "3 No 2.0\n", | |
| "4 No NaN\n", | |
| "5 No NaN\n", | |
| "6 No NaN\n", | |
| "7 No NaN\n", | |
| "8 No NaN\n", | |
| "9 No NaN\n", | |
| "10 No NaN\n", | |
| "11 No NaN\n", | |
| "12 No 5.0\n", | |
| "13 yes NaN\n", | |
| "14 yes NaN\n", | |
| "15 yes 3.0\n", | |
| "16 yes NaN\n", | |
| "17 yes NaN\n", | |
| "18 yes 4.0\n", | |
| "19 yes NaN\n", | |
| "20 yes NaN\n", | |
| "21 yes 4.0" | |
| ] | |
| }, | |
| "execution_count": 90, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 91, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# df['column2'] = df.apply(lambda cols: df['column2'].mean() if cols[0]=='yes' else cols[1], axis=1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 92, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "df['column2'] = df['column2'].fillna(df.apply(lambda cols: df['column2'].mean() if cols[0]=='yes' else cols[1], axis=1))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 93, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style>\n", | |
| " .dataframe thead tr:only-child th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: left;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>column1</th>\n", | |
| " <th>column2</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>No</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.166667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>No</td>\n", | |
| " <td>2.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>10</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>11</th>\n", | |
| " <td>No</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>12</th>\n", | |
| " <td>No</td>\n", | |
| " <td>5.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.166667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>14</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.166667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>15</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>16</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.166667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>17</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.166667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>18</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>4.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>19</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.166667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>20</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>3.166667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>21</th>\n", | |
| " <td>yes</td>\n", | |
| " <td>4.000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " column1 column2\n", | |
| "0 No 1.000000\n", | |
| "1 yes 3.166667\n", | |
| "2 No NaN\n", | |
| "3 No 2.000000\n", | |
| "4 No NaN\n", | |
| "5 No NaN\n", | |
| "6 No NaN\n", | |
| "7 No NaN\n", | |
| "8 No NaN\n", | |
| "9 No NaN\n", | |
| "10 No NaN\n", | |
| "11 No NaN\n", | |
| "12 No 5.000000\n", | |
| "13 yes 3.166667\n", | |
| "14 yes 3.166667\n", | |
| "15 yes 3.000000\n", | |
| "16 yes 3.166667\n", | |
| "17 yes 3.166667\n", | |
| "18 yes 4.000000\n", | |
| "19 yes 3.166667\n", | |
| "20 yes 3.166667\n", | |
| "21 yes 4.000000" | |
| ] | |
| }, | |
| "execution_count": 93, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.5.2" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment