Created
October 18, 2016 20:42
-
-
Save mulloymorrow/aa91b01f18bd03ce648370f756e170d3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| print(__doc__) | |
| import numpy as np | |
| from scipy import interp | |
| import matplotlib.pyplot as plt | |
| from itertools import cycle | |
| from sklearn import svm, datasets | |
| from sklearn.metrics import roc_curve, auc | |
| from sklearn.model_selection import StratifiedKFold | |
| # import some data to play with | |
| iris = datasets.load_iris() | |
| X = iris.data | |
| y = iris.target | |
| X, y = X[y != 2], y[y != 2] | |
| n_samples, n_features = X.shape | |
| # Add noisy features | |
| random_state = np.random.RandomState(0) | |
| X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] | |
| print X | |
| from sklearn.linear_model import LinearRegression | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn import svm, datasets | |
| classifier = svm.SVC(kernel='linear', probability=True, | |
| random_state=random_state) | |
| # Run classifier with cross-validation and plot ROC curves | |
| cv = StratifiedKFold(n_splits=6) | |
| mean_tpr = 0.0 | |
| mean_fpr = np.linspace(0, 1, 100) | |
| colors = cycle(['cyan', 'indigo', 'seagreen', 'yellow', 'blue', 'darkorange']) | |
| lw = 2 | |
| i = 0 | |
| for (train, test), color in zip(cv.split(X, y), colors): | |
| probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) | |
| # Compute ROC curve and area the curve | |
| fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) | |
| mean_tpr += interp(mean_fpr, fpr, tpr) | |
| mean_tpr[0] = 0.0 | |
| roc_auc = auc(fpr, tpr) | |
| plt.plot(fpr, tpr, lw=lw, color=color, | |
| label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) | |
| i += 1 | |
| plt.plot([0, 1], [0, 1], linestyle='--', lw=lw, color='k', | |
| label='Luck') | |
| mean_tpr /= cv.get_n_splits(X, y) | |
| mean_tpr[-1] = 1.0 | |
| mean_auc = auc(mean_fpr, mean_tpr) | |
| plt.plot(mean_fpr, mean_tpr, color='g', linestyle='--', | |
| label='Mean ROC (area = %0.2f)' % mean_auc, lw=lw) | |
| plt.xlim([-0.05, 1.05]) | |
| plt.ylim([-0.05, 1.05]) | |
| plt.xlabel('False Positive Rate') | |
| plt.ylabel('True Positive Rate') | |
| plt.title('ROC curves') | |
| plt.legend(loc="lower right") | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment