Last active
May 31, 2019 17:39
-
-
Save lesolorzanov/50000c4631d994292e25d8a2dea73dce to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 93, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import numpy as np\n", | |
| "import json\n", | |
| "import IPython.display\n", | |
| "import os" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "images\n", | |
| "info\n", | |
| "annotations\n", | |
| "categories\n", | |
| "images\n", | |
| "info\n", | |
| "annotations\n", | |
| "categories\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "f=\"/home/leslie/Documents/Uppsala/courses/DLreadingCourse/iwildstuff/iWildCam_2019_iNat_Idaho/iWildCam_2019_iNat_Idaho.json\"\n", | |
| "with open(f) as json_file: \n", | |
| " idahodata = json.load(json_file)\n", | |
| " for p in idahodata:\n", | |
| " print(p)\n", | |
| " \n", | |
| "f=\"/home/leslie/Documents/Uppsala/courses/DLreadingCourse/iwildstuff/iWildCam_2019_CCT.json\"\n", | |
| "with open(f) as json_file: \n", | |
| " cctdata = json.load(json_file)\n", | |
| " for p in cctdata:\n", | |
| " print(p)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "25263\n", | |
| "25263\n", | |
| "23\n", | |
| "196157\n", | |
| "196157\n", | |
| "23\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "idaho_images_df=pd.DataFrame(idahodata[\"images\"])\n", | |
| "idaho_annotations_df=pd.DataFrame(idahodata[\"annotations\"])\n", | |
| "idaho_categories_df=pd.DataFrame(idahodata[\"categories\"])\n", | |
| "\n", | |
| "cct_images_df=pd.DataFrame(cctdata[\"images\"])\n", | |
| "cct_annotations_df=pd.DataFrame(cctdata[\"annotations\"])\n", | |
| "cct_categories_df=pd.DataFrame(cctdata[\"categories\"])\n", | |
| "\n", | |
| "print(len(idaho_images_df))\n", | |
| "print(len(idaho_annotations_df))\n", | |
| "print(len(idaho_categories_df))\n", | |
| "print(len(cct_images_df))\n", | |
| "print(len(cct_annotations_df))\n", | |
| "print(len(cct_categories_df))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "-idaho_images_df\n", | |
| "['file_name', 'height', 'id', 'inat_year', 'license', 'rights_holder', 'width']\n", | |
| "\n", | |
| "\n", | |
| "-idaho_annotations_df\n", | |
| "['category_id', 'id', 'image_id', 'inat_species']\n", | |
| "\n", | |
| "\n", | |
| "-idaho_categories_df\n", | |
| "['id', 'inat_species_list', 'name']\n", | |
| "\n", | |
| "\n", | |
| "-cct_images_df\n", | |
| "['date_captured', 'file_name', 'frame_num', 'height', 'id', 'location', 'rights_holder', 'seq_id', 'seq_num_frames', 'width']\n", | |
| "\n", | |
| "\n", | |
| "-cct_annotations_df\n", | |
| "['category_id', 'id', 'image_id']\n", | |
| "\n", | |
| "\n", | |
| "-cct_categories_df\n", | |
| "['id', 'name']\n", | |
| "\n", | |
| "\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(\"-idaho_images_df\")\n", | |
| "s= [str(x) for x in list(idaho_images_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| "\n", | |
| "print(\"-idaho_annotations_df\")\n", | |
| "s= [str(x) for x in list(idaho_annotations_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| " \n", | |
| "print(\"-idaho_categories_df\")\n", | |
| "s= [str(x) for x in list(idaho_categories_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| "\n", | |
| "print(\"-cct_images_df\")\n", | |
| "s= [str(x) for x in list(cct_images_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| " \n", | |
| "print(\"-cct_annotations_df\")\n", | |
| "s= [str(x) for x in list(cct_annotations_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| "\n", | |
| "print(\"-cct_categories_df\")\n", | |
| "s= [str(x) for x in list(cct_categories_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| "\n", | |
| "keepids=['file_name', 'height', 'id', 'width']\n", | |
| " " | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Idaho dataset" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 40, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "idahocols=idaho_images_df.columns\n", | |
| "for c in idahocols:\n", | |
| " if c not in keepids:\n", | |
| " idaho_images_df=idaho_images_df.drop(c,axis=1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 47, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/6e...</td>\n", | |
| " <td>532</td>\n", | |
| " <td>1</td>\n", | |
| " <td>800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/dc...</td>\n", | |
| " <td>533</td>\n", | |
| " <td>2</td>\n", | |
| " <td>800</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height image_id width\n", | |
| "0 train_val2017/Mammalia/Marmota flaviventris/6e... 532 1 800\n", | |
| "1 train_val2017/Mammalia/Marmota flaviventris/dc... 533 2 800" | |
| ] | |
| }, | |
| "execution_count": 47, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "idaho_images_df.rename(columns={\"id\":\"image_id\"},inplace=True)\n", | |
| "idaho_images_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 48, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>inat_species</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>3</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>Marmota flaviventris</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>3</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>Marmota flaviventris</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " category_id id image_id inat_species\n", | |
| "0 3 1 1 Marmota flaviventris\n", | |
| "1 3 2 2 Marmota flaviventris" | |
| ] | |
| }, | |
| "execution_count": 48, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "idaho_annotations_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 61, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/6e...</td>\n", | |
| " <td>532</td>\n", | |
| " <td>1</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>1</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/dc...</td>\n", | |
| " <td>533</td>\n", | |
| " <td>2</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>2</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height image_id width \\\n", | |
| "0 train_val2017/Mammalia/Marmota flaviventris/6e... 532 1 800 \n", | |
| "1 train_val2017/Mammalia/Marmota flaviventris/dc... 533 2 800 \n", | |
| "\n", | |
| " category_id id \n", | |
| "0 3 1 \n", | |
| "1 3 2 " | |
| ] | |
| }, | |
| "execution_count": 61, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "idaho_merged=pd.merge(idaho_images_df,idaho_annotations_df,on=\"image_id\")\n", | |
| "idaho_merged=idaho_merged.drop(\"inat_species\",axis=1)\n", | |
| "idaho_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 70, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>dataset</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/6e...</td>\n", | |
| " <td>532</td>\n", | |
| " <td>1</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>1</td>\n", | |
| " <td>idaho</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/dc...</td>\n", | |
| " <td>533</td>\n", | |
| " <td>2</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>2</td>\n", | |
| " <td>idaho</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height image_id width \\\n", | |
| "0 train_val2017/Mammalia/Marmota flaviventris/6e... 532 1 800 \n", | |
| "1 train_val2017/Mammalia/Marmota flaviventris/dc... 533 2 800 \n", | |
| "\n", | |
| " category_id id dataset \n", | |
| "0 3 1 idaho \n", | |
| "1 3 2 idaho " | |
| ] | |
| }, | |
| "execution_count": 70, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "idaho_merged.insert(6, \"dataset\", \"idaho\")\n", | |
| "idaho_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 127, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>dataset</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/6e...</td>\n", | |
| " <td>532</td>\n", | |
| " <td>1</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>1</td>\n", | |
| " <td>idaho</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/dc...</td>\n", | |
| " <td>533</td>\n", | |
| " <td>2</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>2</td>\n", | |
| " <td>idaho</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height image_id width \\\n", | |
| "0 train_val2017/Mammalia/Marmota flaviventris/6e... 532 1 800 \n", | |
| "1 train_val2017/Mammalia/Marmota flaviventris/dc... 533 2 800 \n", | |
| "\n", | |
| " category_id id dataset \n", | |
| "0 3 1 idaho \n", | |
| "1 3 2 idaho " | |
| ] | |
| }, | |
| "execution_count": 127, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "len(idaho_merged)\n", | |
| "idaho_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# CCT dataset" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 42, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "cctcols=cct_images_df.columns\n", | |
| "for c in cctcols:\n", | |
| " if c not in keepids:\n", | |
| " print(c)\n", | |
| " cct_images_df=cct_images_df.drop(c,axis=1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 54, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>2048</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>2048</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height \\\n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg 1494 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b.jpg 1494 \n", | |
| "\n", | |
| " image_id width \n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b 2048 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b 2048 " | |
| ] | |
| }, | |
| "execution_count": 54, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "cct_images_df.rename(columns={\"id\":\"image_id\"},inplace=True)\n", | |
| "cct_images_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 52, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>image_id</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>19</td>\n", | |
| " <td>2a545480-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>19</td>\n", | |
| " <td>2a5455b6-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " category_id id \\\n", | |
| "0 19 2a545480-cbf1-11e8-819c-970a9450cdbc \n", | |
| "1 19 2a5455b6-cbf1-11e8-819c-970a9450cdbc \n", | |
| "\n", | |
| " image_id \n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b " | |
| ] | |
| }, | |
| "execution_count": 52, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "cct_annotations_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 66, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "cct_merged=pd.merge(cct_images_df,cct_annotations_df,on=\"image_id\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 67, | |
| "metadata": { | |
| "collapsed": false, | |
| "hide_input": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>2048</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a545480-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>2048</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a5455b6-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height \\\n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg 1494 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b.jpg 1494 \n", | |
| "\n", | |
| " image_id width category_id \\\n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b 2048 19 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b 2048 19 \n", | |
| "\n", | |
| " id \n", | |
| "0 2a545480-cbf1-11e8-819c-970a9450cdbc \n", | |
| "1 2a5455b6-cbf1-11e8-819c-970a9450cdbc " | |
| ] | |
| }, | |
| "execution_count": 67, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "cct_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 68, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "cct_merged.insert(6, \"dataset\", \"cct\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 128, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>dataset</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>2048</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a545480-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>cct</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>2048</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a5455b6-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>cct</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height \\\n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg 1494 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b.jpg 1494 \n", | |
| "\n", | |
| " image_id width category_id \\\n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b 2048 19 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b 2048 19 \n", | |
| "\n", | |
| " id dataset \n", | |
| "0 2a545480-cbf1-11e8-819c-970a9450cdbc cct \n", | |
| "1 2a5455b6-cbf1-11e8-819c-970a9450cdbc cct " | |
| ] | |
| }, | |
| "execution_count": 128, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "cct_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Append them" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 129, | |
| "metadata": { | |
| "collapsed": false, | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>width</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>dataset</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/6e...</td>\n", | |
| " <td>532</td>\n", | |
| " <td>1</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>1</td>\n", | |
| " <td>idaho</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>train_val2017/Mammalia/Marmota flaviventris/dc...</td>\n", | |
| " <td>533</td>\n", | |
| " <td>2</td>\n", | |
| " <td>800</td>\n", | |
| " <td>3</td>\n", | |
| " <td>2</td>\n", | |
| " <td>idaho</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name height image_id width \\\n", | |
| "0 train_val2017/Mammalia/Marmota flaviventris/6e... 532 1 800 \n", | |
| "1 train_val2017/Mammalia/Marmota flaviventris/dc... 533 2 800 \n", | |
| "\n", | |
| " category_id id dataset \n", | |
| "0 3 1 idaho \n", | |
| "1 3 2 idaho " | |
| ] | |
| }, | |
| "execution_count": 129, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "extra_df=idaho_merged.append(cct_merged, ignore_index=True)\n", | |
| "extra_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Get values corresponding to complementary classes\n", | |
| " This is from the idaho dataset only!" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 78, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "idaho_needed=[2,5,6,7,9,12,15,20,21,22] #in idaho labels are still numbers\n", | |
| "#idaho_needed=[\"2\",\"5\",\"6\",\"7\",\"9\",\"12\",\"15\",\"20\",\"21\",\"22\"]\n", | |
| "try_anno_from_these=idaho_merged.loc[idaho_merged[\"category_id\"].isin(idaho_needed)]\n", | |
| "try_anno_from_these.to_csv(\"/home/leslie/Documents/Uppsala/courses/DLreadingCourse/iwildstuff/idaho_necessary.csv\",index=False)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## So, bad news, this dataset is messy AF.\n", | |
| "\n", | |
| "CCT bboxes are actually the bounding boxes of what they call iWild. CCT without bboxes is what they call CCT big. and CCT small has no json or csv. Basically CCT small is useless.\n", | |
| "\n", | |
| "bboxes are of the type: [x, y, width, height]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 83, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "images\n", | |
| "info\n", | |
| "annotations\n", | |
| "categories\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "f=\"/home/leslie/Documents/Uppsala/courses/DLreadingCourse/iwildstuff/iWildCam_2019_CCT_Bboxes.json\"\n", | |
| "with open(f) as json_file: \n", | |
| " cctbboxdata = json.load(json_file)\n", | |
| " for p in cctbboxdata:\n", | |
| " print(p)\n", | |
| " " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 95, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "-cctbbox_images_df\n", | |
| "['date_captured', 'file_name', 'frame_num', 'height', 'id', 'location', 'rights_holder', 'seq_id', 'seq_num_frames', 'width']\n", | |
| "\n", | |
| "\n", | |
| "-cctbbox_annotations_df\n", | |
| "['bbox', 'category_id', 'id', 'image_id']\n", | |
| "\n", | |
| "\n", | |
| "-cctbbox_categories_df\n", | |
| "['id', 'name']\n", | |
| "\n", | |
| "\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "cctbbox_images_df=pd.DataFrame(cctbboxdata[\"images\"])\n", | |
| "cctbbox_annotations_df=pd.DataFrame(cctbboxdata[\"annotations\"])\n", | |
| "cctbbox_categories_df=pd.DataFrame(cctbboxdata[\"categories\"])\n", | |
| "\n", | |
| "print(\"-cctbbox_images_df\")\n", | |
| "s= [str(x) for x in list(cctbbox_images_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| "\n", | |
| "print(\"-cctbbox_annotations_df\")\n", | |
| "s= [str(x) for x in list(cctbbox_annotations_df)] \n", | |
| "print(s);print(\"\\n\")\n", | |
| " \n", | |
| "print(\"-cctbbox_categories_df\")\n", | |
| "s= [str(x) for x in list(cctbbox_categories_df)] \n", | |
| "print(s);print(\"\\n\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 119, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>date_captured</th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>frame_num</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>location</th>\n", | |
| " <th>rights_holder</th>\n", | |
| " <th>seq_id</th>\n", | |
| " <th>seq_num_frames</th>\n", | |
| " <th>width</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>2011-05-13 23:43:18</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>33</td>\n", | |
| " <td>Justin Brown</td>\n", | |
| " <td>6f084ccc-5567-11e8-bc84-dca9047ef277</td>\n", | |
| " <td>3</td>\n", | |
| " <td>2048</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " date_captured file_name frame_num \\\n", | |
| "0 2011-05-13 23:43:18 5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg 1 \n", | |
| "\n", | |
| " height image_id location rights_holder \\\n", | |
| "0 1494 5998cfa4-23d2-11e8-a6a3-ec086b02610b 33 Justin Brown \n", | |
| "\n", | |
| " seq_id seq_num_frames width \n", | |
| "0 6f084ccc-5567-11e8-bc84-dca9047ef277 3 2048 " | |
| ] | |
| }, | |
| "execution_count": 119, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "cctbbox_images_df=cctbbox_images_df.rename(columns={\"id\":\"image_id\"})\n", | |
| "cctbbox_images_df.head(1)\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 105, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>bbox</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>image_id</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>[499.2, 711.68, 353.28, 199.68]</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a545520-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>[985.6, 783.36, 368.64, 230.4]</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a54562e-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " bbox category_id \\\n", | |
| "0 [499.2, 711.68, 353.28, 199.68] 19 \n", | |
| "1 [985.6, 783.36, 368.64, 230.4] 19 \n", | |
| "\n", | |
| " id image_id \n", | |
| "0 2a545520-cbf1-11e8-819c-970a9450cdbc 5998cfa4-23d2-11e8-a6a3-ec086b02610b \n", | |
| "1 2a54562e-cbf1-11e8-819c-970a9450cdbc 588a679f-23d2-11e8-a6a3-ec086b02610b " | |
| ] | |
| }, | |
| "execution_count": 105, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "cctbbox_annotations_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 96, | |
| "metadata": { | |
| "collapsed": false, | |
| "hide_input": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "#this was just to check that all images wuith bboxes are actually real files in the iwild folder\n", | |
| "#ps: yes, they are\n", | |
| "# arr=cctbbox_images_df[\"file_name\"].values\n", | |
| "# location=\"/media/leslie/CBAEXT4/iwildcam_2019/train_images/\"\n", | |
| "# existsIniWild=[]\n", | |
| "# doesnotexistiniWild=[]\n", | |
| "# for im in arr:\n", | |
| "# exists = os.path.isfile(location+str(im))\n", | |
| "# if(exists):\n", | |
| "# existsIniWild.append(im)\n", | |
| "# else:\n", | |
| "# doesnotexistiniWild.append(im)\n", | |
| "\n", | |
| "# print(len(existsIniWild))\n", | |
| "# print(len(doesnotexistiniWild))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 107, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "list" | |
| ] | |
| }, | |
| "execution_count": 107, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "type(cctbbox_annotations_df.iloc[0][\"bbox\"])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 114, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "#convert the bbox list into different columns\n", | |
| "def bboxtocols(row,num):\n", | |
| " bboxlist=list(row[\"bbox\"])\n", | |
| " return int(bboxlist[num]//2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 115, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>bbox</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>x</th>\n", | |
| " <th>y</th>\n", | |
| " <th>w</th>\n", | |
| " <th>h</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>[499.2, 711.68, 353.28, 199.68]</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a545520-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>249</td>\n", | |
| " <td>355</td>\n", | |
| " <td>176</td>\n", | |
| " <td>99</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>[985.6, 783.36, 368.64, 230.4]</td>\n", | |
| " <td>19</td>\n", | |
| " <td>2a54562e-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>492</td>\n", | |
| " <td>391</td>\n", | |
| " <td>184</td>\n", | |
| " <td>115</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " bbox category_id \\\n", | |
| "0 [499.2, 711.68, 353.28, 199.68] 19 \n", | |
| "1 [985.6, 783.36, 368.64, 230.4] 19 \n", | |
| "\n", | |
| " id image_id \\\n", | |
| "0 2a545520-cbf1-11e8-819c-970a9450cdbc 5998cfa4-23d2-11e8-a6a3-ec086b02610b \n", | |
| "1 2a54562e-cbf1-11e8-819c-970a9450cdbc 588a679f-23d2-11e8-a6a3-ec086b02610b \n", | |
| "\n", | |
| " x y w h \n", | |
| "0 249 355 176 99 \n", | |
| "1 492 391 184 115 " | |
| ] | |
| }, | |
| "execution_count": 115, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#convert the bbox list into different columns\n", | |
| "cctbbox_annotations_df[\"x\"]=cctbbox_annotations_df.apply(lambda row: bboxtocols(row,0), axis=1)\n", | |
| "cctbbox_annotations_df[\"y\"]=cctbbox_annotations_df.apply(lambda row: bboxtocols(row,1), axis=1)\n", | |
| "cctbbox_annotations_df[\"w\"]=cctbbox_annotations_df.apply(lambda row: bboxtocols(row,2), axis=1)\n", | |
| "cctbbox_annotations_df[\"h\"]=cctbbox_annotations_df.apply(lambda row: bboxtocols(row,3), axis=1)\n", | |
| "cctbbox_annotations_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 117, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>id</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>x</th>\n", | |
| " <th>y</th>\n", | |
| " <th>w</th>\n", | |
| " <th>h</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>19</td>\n", | |
| " <td>2a545520-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>249</td>\n", | |
| " <td>355</td>\n", | |
| " <td>176</td>\n", | |
| " <td>99</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>19</td>\n", | |
| " <td>2a54562e-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>492</td>\n", | |
| " <td>391</td>\n", | |
| " <td>184</td>\n", | |
| " <td>115</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " category_id id \\\n", | |
| "0 19 2a545520-cbf1-11e8-819c-970a9450cdbc \n", | |
| "1 19 2a54562e-cbf1-11e8-819c-970a9450cdbc \n", | |
| "\n", | |
| " image_id x y w h \n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b 249 355 176 99 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b 492 391 184 115 " | |
| ] | |
| }, | |
| "execution_count": 117, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#drop the bbox column\n", | |
| "cctbbox_annotations_df=cctbbox_annotations_df.drop(\"bbox\",axis=1)\n", | |
| "cctbbox_annotations_df.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 123, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>date_captured</th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>frame_num</th>\n", | |
| " <th>height</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>location</th>\n", | |
| " <th>rights_holder</th>\n", | |
| " <th>seq_id</th>\n", | |
| " <th>seq_num_frames</th>\n", | |
| " <th>width</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>dataset</th>\n", | |
| " <th>id</th>\n", | |
| " <th>x</th>\n", | |
| " <th>y</th>\n", | |
| " <th>w</th>\n", | |
| " <th>h</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>2011-05-13 23:43:18</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>33</td>\n", | |
| " <td>Justin Brown</td>\n", | |
| " <td>6f084ccc-5567-11e8-bc84-dca9047ef277</td>\n", | |
| " <td>3</td>\n", | |
| " <td>2048</td>\n", | |
| " <td>19</td>\n", | |
| " <td>iwild</td>\n", | |
| " <td>2a545520-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>249</td>\n", | |
| " <td>355</td>\n", | |
| " <td>176</td>\n", | |
| " <td>99</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>2012-03-17 03:48:44</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1494</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>115</td>\n", | |
| " <td>Justin Brown</td>\n", | |
| " <td>6f12067d-5567-11e8-b3c0-dca9047ef277</td>\n", | |
| " <td>3</td>\n", | |
| " <td>2048</td>\n", | |
| " <td>19</td>\n", | |
| " <td>iwild</td>\n", | |
| " <td>2a54562e-cbf1-11e8-819c-970a9450cdbc</td>\n", | |
| " <td>492</td>\n", | |
| " <td>391</td>\n", | |
| " <td>184</td>\n", | |
| " <td>115</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " date_captured file_name frame_num \\\n", | |
| "0 2011-05-13 23:43:18 5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg 1 \n", | |
| "1 2012-03-17 03:48:44 588a679f-23d2-11e8-a6a3-ec086b02610b.jpg 2 \n", | |
| "\n", | |
| " height image_id location rights_holder \\\n", | |
| "0 1494 5998cfa4-23d2-11e8-a6a3-ec086b02610b 33 Justin Brown \n", | |
| "1 1494 588a679f-23d2-11e8-a6a3-ec086b02610b 115 Justin Brown \n", | |
| "\n", | |
| " seq_id seq_num_frames width category_id \\\n", | |
| "0 6f084ccc-5567-11e8-bc84-dca9047ef277 3 2048 19 \n", | |
| "1 6f12067d-5567-11e8-b3c0-dca9047ef277 3 2048 19 \n", | |
| "\n", | |
| " dataset id x y w h \n", | |
| "0 iwild 2a545520-cbf1-11e8-819c-970a9450cdbc 249 355 176 99 \n", | |
| "1 iwild 2a54562e-cbf1-11e8-819c-970a9450cdbc 492 391 184 115 " | |
| ] | |
| }, | |
| "execution_count": 123, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#merge images with annotations\n", | |
| "cctbbox_merged=pd.merge(cctbbox_images_df,cctbbox_annotations_df,on=\"image_id\")\n", | |
| "#create a column called dataset to know from which one it comes\n", | |
| "cctbbox_merged.insert(11, \"dataset\", \"iwild\")\n", | |
| "cctbbox_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 124, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "date_captured\n", | |
| "frame_num\n", | |
| "height\n", | |
| "location\n", | |
| "rights_holder\n", | |
| "seq_id\n", | |
| "seq_num_frames\n", | |
| "width\n", | |
| "id\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>dataset</th>\n", | |
| " <th>x</th>\n", | |
| " <th>y</th>\n", | |
| " <th>w</th>\n", | |
| " <th>h</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>19</td>\n", | |
| " <td>iwild</td>\n", | |
| " <td>249</td>\n", | |
| " <td>355</td>\n", | |
| " <td>176</td>\n", | |
| " <td>99</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>19</td>\n", | |
| " <td>iwild</td>\n", | |
| " <td>492</td>\n", | |
| " <td>391</td>\n", | |
| " <td>184</td>\n", | |
| " <td>115</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " file_name \\\n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b.jpg \n", | |
| "\n", | |
| " image_id category_id dataset x y w \\\n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b 19 iwild 249 355 176 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b 19 iwild 492 391 184 \n", | |
| "\n", | |
| " h \n", | |
| "0 99 \n", | |
| "1 115 " | |
| ] | |
| }, | |
| "execution_count": 124, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#drop all useless columns. Keep: category, image_id, file_name, dataset, x, y, w, h\n", | |
| "keepids=[\"category_id\",\"image_id\",\"file_name\",\"dataset\",\"x\",\"y\",\"w\",\"h\"]\n", | |
| "cctbboxcols=cctbbox_merged.columns\n", | |
| "for c in cctbboxcols:\n", | |
| " if c not in keepids:\n", | |
| " print(c)\n", | |
| " cctbbox_merged=cctbbox_merged.drop(c,axis=1)\n", | |
| " \n", | |
| "cctbbox_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 125, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>category_id</th>\n", | |
| " <th>image_id</th>\n", | |
| " <th>file_name</th>\n", | |
| " <th>dataset</th>\n", | |
| " <th>x</th>\n", | |
| " <th>y</th>\n", | |
| " <th>w</th>\n", | |
| " <th>h</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>19</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>iwild</td>\n", | |
| " <td>249</td>\n", | |
| " <td>355</td>\n", | |
| " <td>176</td>\n", | |
| " <td>99</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>19</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b</td>\n", | |
| " <td>588a679f-23d2-11e8-a6a3-ec086b02610b.jpg</td>\n", | |
| " <td>iwild</td>\n", | |
| " <td>492</td>\n", | |
| " <td>391</td>\n", | |
| " <td>184</td>\n", | |
| " <td>115</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " category_id image_id \\\n", | |
| "0 19 5998cfa4-23d2-11e8-a6a3-ec086b02610b \n", | |
| "1 19 588a679f-23d2-11e8-a6a3-ec086b02610b \n", | |
| "\n", | |
| " file_name dataset x y w h \n", | |
| "0 5998cfa4-23d2-11e8-a6a3-ec086b02610b.jpg iwild 249 355 176 99 \n", | |
| "1 588a679f-23d2-11e8-a6a3-ec086b02610b.jpg iwild 492 391 184 115 " | |
| ] | |
| }, | |
| "execution_count": 125, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#now organize them as our colleague is expecting them\n", | |
| "cctbbox_merged=cctbbox_merged[[\"category_id\",\"image_id\",\"file_name\",\"dataset\",\"x\",\"y\",\"w\",\"h\"]]\n", | |
| "cctbbox_merged.head(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 126, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "cctbbox_merged.to_csv(\"/home/leslie/Documents/Uppsala/courses/DLreadingCourse/iwildstuff/cctWithBboxesForiWild.csv\")" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 2 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython2", | |
| "version": "2.7.13" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment