Skip to content

Instantly share code, notes, and snippets.

@drcjar
Created August 28, 2020 23:27
Show Gist options
  • Select an option

  • Save drcjar/9fde7ed8a2c1f4673b11e4bf364dd58c to your computer and use it in GitHub Desktop.

Select an option

Save drcjar/9fde7ed8a2c1f4673b11e4bf364dd58c to your computer and use it in GitHub Desktop.
Hospital vs community controls and SSEC
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# quick look at the relationship between socio-economic class and hospital vs community control selection using data from two IPF case-control studies"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import xlrd\n",
"import matplotlib as plt"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_excel('cases_occupation.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"df1 = pd.read_excel('controls_occupation.xlsx')"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"df = df[df['Gender'] == 'Male']"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"df1 = df1[df1['Gender'] == 'Male']"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"223"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"196"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df1)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"ssec_lookup = pd.read_excel('nssec/nssecderivationtablessoc90.xls') "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"ssec_lookup = dict(zip(ssec_lookup.soc90, ssec_lookup.ssec))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"nssec_cases = df.iloc[:,1:11].applymap(lambda x: ssec_lookup.get(x)).median(axis=1).astype(int)\n",
"nssec_controls = df1.iloc[:,1:11].applymap(lambda x: ssec_lookup.get(x)).median(axis=1).astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 0.094170\n",
"2 0.089686\n",
"3 0.201794\n",
"4 0.107623\n",
"5 0.130045\n",
"6 0.188341\n",
"7 0.188341\n",
"dtype: float64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nssec_cases.value_counts(sort=False, normalize=True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 0.239796\n",
"2 0.234694\n",
"3 0.107143\n",
"4 0.127551\n",
"5 0.122449\n",
"6 0.122449\n",
"7 0.045918\n",
"dtype: float64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nssec_controls.value_counts(sort=False, normalize=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"a = pd.DataFrame(nssec_cases.value_counts(sort=False, normalize=True))\n",
"b = pd.DataFrame(nssec_controls.value_counts(sort=False, normalize=True))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"c = pd.concat([a,b], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cases</th>\n",
" <th>controls</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.094170</td>\n",
" <td>0.239796</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.089686</td>\n",
" <td>0.234694</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.201794</td>\n",
" <td>0.107143</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.107623</td>\n",
" <td>0.127551</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>0.130045</td>\n",
" <td>0.122449</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>0.188341</td>\n",
" <td>0.122449</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>0.188341</td>\n",
" <td>0.045918</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cases controls\n",
"1 0.094170 0.239796\n",
"2 0.089686 0.234694\n",
"3 0.201794 0.107143\n",
"4 0.107623 0.127551\n",
"5 0.130045 0.122449\n",
"6 0.188341 0.122449\n",
"7 0.188341 0.045918"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c.columns = ['cases', 'controls']\n",
"c"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cases</th>\n",
" <th>controls</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>9.417040</td>\n",
" <td>23.979592</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8.968610</td>\n",
" <td>23.469388</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>20.179372</td>\n",
" <td>10.714286</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>10.762332</td>\n",
" <td>12.755102</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>13.004484</td>\n",
" <td>12.244898</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>18.834081</td>\n",
" <td>12.244898</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>18.834081</td>\n",
" <td>4.591837</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cases controls\n",
"1 9.417040 23.979592\n",
"2 8.968610 23.469388\n",
"3 20.179372 10.714286\n",
"4 10.762332 12.755102\n",
"5 13.004484 12.244898\n",
"6 18.834081 12.244898\n",
"7 18.834081 4.591837"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c = c[['cases', 'controls']]*100\n",
"c"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100.0"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c['controls'].sum()"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Percentage')"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAExCAYAAADMRfMnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xm8VWXZ//HPVyBBwQHBASfU1ERBMMSp1CccUtO0RzM1pyzrV2qDDZaW1GNpDmmWZqaGppZmZU6VORKJKRYOJOUEiqIijpim4PX7474PrLPZe599Fhz2Pofv+/U6r7PXfK3xWuN9KyIwMzOzzlmu2QGYmZl1R06gZmZmJTiBmpmZleAEamZmVoITqJmZWQlOoGZmZiU4gXYhJT+X9JKke7p4WkMlhaTeXTmdsiRdIOmbDfT3B0mHL42Yymp0XpYWSUdImtjE6Te8ziRNl7RLJ8e/VLdtSf0kXS/pFUm/XhrT7AnKrNtmk7SzpJllh+9wg5Q0HVgDmA+8DtwEHBsRc8tOdEnLMX4yIm5pdiwV3gfsCqwTEa83O5ilRdIRpPXxvrZ2EfGZRoaNiD26Kq4iSeOBmRFxUmeHbXRelhVLa50tRfuTjnmrRcS8Zgdj1UnaGbg8ItZpVgyNXoHuHRH9ga2ArYFOH3Ra9cqoi60PTF/GkueyuJ6tZ1kf+HeZ5Ontv7V0+fqIiLp/wHRgl0LzGcAN+ffKwMXALOBp4BSgV+52BPBX4GzgReCU3P5TwMPAa8A/ga1y+yHAb4DZwBPAcYVpjgOuBi7Lw00FRuduvwDeAd4A5gJfze1/DTwLvAJMADYvjG814HrgVeDeHPfEQvf3AH/Ocf8L+Gid5TMEuC73+yjwqdz+KOBN0pX7XODbVYYtLqOXgceB7XP7p4DngcML/e8F/CPH/RQwrtBtKBBA747WTZU4xgHXAFfl5ft3YMtC9xOAxwrrbL8a8/BiXofF+X459ze+bRvIzR8GpuR5eQz4YG5/B+nqtTjuH+X1OA0YWxjHkSzclh4HPl3otjMwEzg+L8dZwJG529HA28BbOcbrc/uv5WX1Wl7vY2ssrwXzUm86NYatt89sBNwGzAFeAK4AVikMuy7wW9I+Mgf4cWE5TQTOBF4i7T971Imh6nwCywPnAM/kv3OA5Tu5zjqah+kUjicVcfUDzgJm5PU9MbcbSvttu956HwTcQNqfXgT+AizX6PoFvp23i7fztnEU6ULjpBzX86Tj0MoV+91RwJPAhBrzVmvZlZ2XesfLMcDkPK3ngB/UiGnVPP7Zebu5gXS3rK37HcD/kfbB14CbgUGF7ofmZTIHOLHMus3d9iEd01/O09ysYnv5MvBAHu4qoC+wIumY/05eT3PzMhlHOpZdnuf/k9TZrsn7b0f7Rs19qV7Hyg2etANPBf4vN18L/DTPzOrAPW0bAGmnngccS7pV3A84IAe3NSDg3aSzveWA+4BvAe8CNswb0+6FA/ybwJ5AL+BU4O56OyXwCWBAYeFNKXT7Vf5bARhGSkYTc7cVc/OROe6tSAeCzWssnzuB8/NKHUnaGMcWlsHEOsu2bRkdmefrFNJOeF6Oe7e8IvsXVvbwvLxGkHaOfSt25N4drZsqcYwjHTD2B/qQNtgngD65+wGkjXM54EDSrfy16qznReab9klnDGln2DWPc23gPVUOxm3j/mKO68A83MDcfS/SAVvATsB/WHhCtnMe9jt52D1z91Ur48nNm+b1PqSwPDeqsbyK81J3OlWGrbfPvDsvk+WBwaQTv3Nyt17A/aQTlRVJ29v7CsvpbdLJaS/g/5EOFKoy/Zrzmefh7hzXYOAuFu7rja6zmvNQa18tdDsvj2vtPB/b5/EMpf22XW+9nwpckNdFH+D9ub/OrN9xpFuDxWPJo6TjUn/SScwvKva7y/J66VdlfPWWXZl56eh4OQk4NP/uD2xbYz5XA/6XdBwcQLrouLbQ/Q5Sst+EtF/fAZyWuw0jJa0d8zr6AWk/6Oy63YR0PNk1z+NX87J+V2F7uYd0/BlIOtn4TLXkV3Es2zcvp37U364XjKMz28iC6dXrWJiBuaSzgxmkZNGP9Izgv8UNBjgIuL2wUz9ZMa4/AZ+vMo1tqvT7deDnhYVyS6HbMOCNRnbK3H0V0ka+cl55bwObFrovuAIlHaT/UjH8T4GTq4x3XdKV1oBCu1OB8YVl0FECfaTQPDzHuUah3RxgZI3hzwHOrtiRe3e0bmocMIonJMuRrpDeX6P/KcCH66znReab9knnp21xVxn3HbRPoO0SAWlnOrTGsNe2bV+kHeMN8kE3t3uefDBh0QT67tx9F/KJQ531VpyXutOpGK6z62Vf4B/593akk7PeVfo7Ani00LxC3hbWrNJvzfkkHSz3LDTvTnoE0fA6qzcPUWdfzdvcGxTufBS6DaWQQDtY798Bfg+8u9H5rrE/FBPorcBnC82bko4hvQuxbVhnfDWXXcl56eh4OYF0JT2okWkWxjESeKlivZ5UaP4s8Mf8+1vArwrdViRduXd23X4TuLqi36eBnQvby8cL3U8HLijse9US6ISKdvW26wXj6Mw20vbX6DPQfSNilYhYPyI+GxFvkK4c+wCzJL0s6eW8oaxeGO6pivGsm2em0vrAkLbx5HF9g3TAafNs4fd/gL617m9L6iXpNEmPSXqVtBIg3RIZTNrwi7EVf68PbFMRyyHAmlUmNQR4MSJeK7SbQTrLatRzhd9vAEREZbv+eb62kXS7pNmSXgE+k+epUiPrptKCZRAR75BuSw7J0z1M0pTCuLaomG7leu5Ire2gmqcjb93ZjEJce0i6W9KLOa49K+KaE+2fY/2HvCwrRcSjwBdIO+Dzkn4laUiDMTY6nbrrRdLqebpP5+328sL8rAvMiNrP5RbsHxHxn/xzkRg6mM8hpOXbZsGypsF11sE81DOIdFXdyDTqrfczSFcwN0t6XNIJsNjrt9pyaTtRbVNvH6i57MrMCx0fL48iXdlNk3SvpA/VmPYKkn4qaUZeVxOAVST1KvRWedxt26aG0P6Y8TrpZL+aeuu23bLNx56naH8MrRVDLZXrot52vUCZbWRxPmN5inQ2PSgn11UiYqWI2LwYU5VhNqoxricK41klIgZExJ4NxlI5nYNJzxx2IV11Ds3tRTqLnwcU39xatyKWOyti6R8R/6/KdJ8BBkoaUGi3HukMqitcSXreum5ErEy6vaMq/TWybiotWAaSliMtn2ckrQ/8DDiG9FbiKsBDFdOtXP6VzdXiq7YdVLO2pOK01stxLU96BnQm6Yp9FdIb4tWWRzWLxBgRV0Z6c3j93P37DY6rUR2tl1PzdEdExErAx1k4P08B6y2JlyLqzOczuV2b9XK7tuk3ss7qzUM9L5Ae09SdRkfrPSJei4jjI2JDYG/gS5LG5m5l12+15TKP9ie/9bb5qstuMeal7vEyIh6JiINIJ2bfB66RtGKVuI4nXU1vk9fVjm2h1VsY2SzaHzNWIN0Srqbeum23bPO+vi6NHUNrLfPK9vW26/YDdnIbKZ1AI2IW6aHyWZJWkrScpI0k7VRnsIuAL0t6r5J35wP0PcCrkr6Wv8HqJWkLSVs3GM5zpOcAbQaQDlRzSLezvleIez7pGca4fAb2HuCwwrA3AJtIOlRSn/y3taTNqiyDp0j300+V1FfSCNLZ3xUNxt1ZA0hXvG9KGkM6UVhEyXXzXkkfyQfoL5CW392kWzNBOvFA0pGkK9B6ngPWkfSuGt0vBo6UNDbHtnZeD9WsDhyX18MBwGakg8y7SM9QZgPzJO1BembcqHbbjKRNJX0gH9TeJF35z+/E+DrUwHoZQH5cImlt4CuFwe8hHbROk7Ri3t526GwMHcznL4GTJA2WNIh0m+7y3K3RdVZvHmrKVx6XAD+QNCQfA7bLcRbVXe+SPpSPKyK9RDIfmL+Y6/eXwBclbSCpP+l4clWduwGVai27UvNCB8dLSR+XNDgv05fz6KrN64C8HF6WNBA4ucH5gfSizockvS/v59+hRj7pYN1eDeyVl00fUlL/L+m42pHngNUkrdxBf/W26wXKbCOLW5DCYaSN4J+kt7iuAdaq1XNE/Br4LulK6jXS/f6BOantTboH/wTpjOUi0tVjI04lLaCXJX2Z9EB/Buks5p+kRFB0TB73s6S3eH9JWmnk27G7AR8jnaU8SzoLqdyR2xxEusJ9Bvgd6VnpnxuMu7M+C3xH0mukjeDqOv12at2QnrUcmPs9FPhIRLwdEf8kvT03ibTBDie9lVfPbaSXzZ6V9EJlx4i4h/Ti1NmklyvupP0ZYtHfgI1J28R3gf0jYk5eT8eRlsFLpJOJ6zqIq+hiYFjeZq4lrd/T8nSeJSXub3RifI2qt16+TXpp7RXgRtKJHrDgxG9v0nOaJ0m32A8sMf1683kK6e3NB4AHSW9jn5Kn3+g6qzkPDfhynu69pLdOv0/FMaqB9b4xcAspiU8Czo+IOzqY745cQjpOTCAdn94kvTTXkFrLruy8NHC8/CAwVdJc4IfAxyLizSqhnUN6n+UF0jHyj52Yp6nA50jH8lk5/noFElRdtxHxL9Jdih/lOPYmfTb5VgMxTCMdux/P+3Gt2601t+sKnd5G1P7x0rJJ0vdJL1wc3uxYmkHSONKLCh9vdixFqlIgg5lZq1gmi/KT9B5JI/Jt5DGk266/a3ZcZmbWfSyrpWYMIF36DyG9tnwW6RammZlZQ3wL18zMrIRl8haumZnZ4nICNetG1OSqy8xsISfQFqVUossvJT2jVC/hXyVtU+i+l6SJ+fXtZyX9TIUCHSSdLukpSa8qlTRyYnPmZMnJ37r9SdILkhZ59iBpM0m35eX1qKT9KrqvIOn8PPwrkiYsvehbK/kp1a/5oFKhGW3tTlGq5q2lSBonaZHv9pqho/0y93Nw3udel3Rt/sayrdsxkiZL+m+9ZS3p5LyOulX9mssaJ9DW1Z/0zdR7SYUoXwrcmD/khvTN1ymkF6E2I5UcdEZh+ItJBVavRCq4+WBJH1lKsXeVt0nfzB1V2UGpAIjfkwrCGEiqceVySZsUerswd9ss//9iVwfcWWpfjFpXG0L63rlp1P2q/6q7X0ranFQ846GkovX+Qyo/vM0zpP32kloTkLQRqWKHWV0Qvy1JjRSY67/W+COVRvLeGt0+AjxYo9vapA+Iv1pn3C1X3VKdWN+dNt127bYgfXBeLHj+ZhbWurBpnt5KDU5jIPBz0gHvJdrXUvEpUhmlL5I+fB9S6BakMoofycOdRyoabTNqV/P2E1LpSq+zsPjJy/Kym0GqSqttuR7BwooPRPo4/3nSB/oPAFs0OH9BqrrpERbWcnIKuSKE3Fy1SkBg29y+V6Hf/YAHCut3Ut4uZgE/JteuUZj25/K0n8jtfkgqou5VUk0j78/tP0j76sXuz+3voH5VW/WqMxxPSmp/yOP8K6ms63PyOpsGjCqzX5JKKbqy0G2jHP+AimHaLeuKbn8glYk7nTqVZPiv+X++Au0mJI0klWDzaI1ediSV/lMc5oRcGslMUpF8V9YY9xjSAfsrpJprdmRhAfzPAx8CViKXpiJpq9zt+DzuwaSz7W8AkW8LXk+qfmttYCzwBUm75+F+CPww0tXxRtQvUalR1crvFAuLHdyGlIy+nW/hPijpf+uM7xekYiA3J5VIcjaApA+QSr76KKkEoRmkqvGKPkSqsm/L3N/uEfEwKbFOilS28iqF/g8mlbI0gFRP4o9ISXRDUhVXh5GWfaXdSOtqE9J6O5DaBXpX81vSwf+IGt3/QCoNZ3VS6S1XAETE3aRk/4GKeWjbvuaTru4HkWqRGUsqRatoX9I6GZab7yWVrDMwj+fXkvpGxB9ZWHRe/4jYsmKaR+b43kUq7aZu7AUfJZ2YDCKVQjYp9zeIVDrUD2osk3aq7Jebk7Z7ACLiMVIC3WTRoauO7wDgrYi4qZH+rcmancH91/EfKXk9CHy9RvddSWfOm1TpJmAUqYi1ATWG7xbVLRXGVe0KtA/pCvmr+fdupAPXn3L3b5CufMaRDng7ka4+Nqsy/rVIFfUuUqcn6db46YXm/qSro6G5Ocj1dObmq4ET8u8jqF7N22WF5l6kA/qwQrtPA3dUjoOUwP5NuiJcrpPLMPJy3JNUNODy1L8qWlAlYG4+Bbgk/x5ASqjr1xj2C8DvKqb9gQ7ie4lc/RUV1YvldndQo6qtBmIfD/ys0P1Y4OFC83DyHYIOYlxkvyRVffaZiv4WVM9VaLfIss7b0iPABrl5Or4Cbek/X4G2OEn9SFdzd0fEqVW6b0s6Y98/Iv5d2T2Sf5AKRv52jcm0ZHVLnRERbZXo7kW6dXc8KXm1lc/5BinRnRIRb0XEncDtVC+Afl1Sof0vVelWWf3SXNJV35KqfmkQKcFXVr+0SBV5EXEb6fboecBzki6UtFIH06ocx02kBHp0sb3qVwkIaZv7SC54+yPA3yNiRh52E0k35JfbXiVdQVZWadauyilJx0t6OL+Y8zLpCryjatCqLucGYodFqxGsWoVgLXX2y7mkxFq0Euk2c0e+Taqo+4kG+rUW4ATawvLB6VrSGeynq3QfRXoG94mIuLWD0fWmdlVRrVrdUqdExAMRsVNErBYRu5Nugd6TOz/QiVE9RaqmbpUq3SqrX1qRVI3Tkqp+6QVSoq+sfqnq+CPi3Ih4L+nW4SY0WPtJhZOAE0m3rNvUqxKQSJUMzAD2oP3tW0jPdKcBG0e6Tf8NFr3FvmCeJb2f9Dz2o6Sr/lVIzy5V2W+D6sa+uDrYL6eSbt239bsh6ep+kZPbKsaSah56VtKzpBO5qyV9bUnEbUueE2iLUqra5xrS2fBhkaoEKnbfglR7wrERcX1Ft+UkfVrSqkrGkF7aqJVkW6a6JUnTlQqRr7ZMJKlvjgulKr2WL3QfkdutoFQrz1qk23WQbhs/CXxdUm+lqsB2Bv5UOZ1I1Y79ATg/L8M+ktrqSrwyL6uRedrfA/4WEdNrLNuijqp5I1JNG1cD35U0QKm6vy9RvfqlrZUqWe9DuoXa9pJS2yczjcREpNpKHgSKlSnUrBKw4EpSbSI7kl7aKQ77KjA3b0fV6tKlov95pO2st6Rv0f4q7jlgqAqf3DQwvo5iL6Wj/ZL0rHVvSe/PJ1ffAX4bqeYV8rbXl3SrvlfeXtveRB5LemY/Mv89Q0rQ5y2p+G3JcgJtXduTXkbZjVRf39z89/7c/XjSyzsXF7oVXyLaj3Rb9jXSwfdH+W8R0SLVLeXEshqLVj/XZn3SgattPt8A/lXofijprc/nSQejXSOirZq6t0lXJXvmefwZ6QA4rca0DiVdCU7L4/tCHs+twDdJV+azSFfujX4KUreat4JjSQnxcdJLRVdS/bOHlfJ8vES6GpxDulsA6eqlo2rnik4ivcDTpqMqASGVJ70zcFtEFOfny6Rt5bUc31UdTPtPpBOWf+dpvkn7W7xtyXmOpL83MC+NxF5W3f0yUjVfnyEl0udJybz4AtVJpO32BFI1Xm/kdkSqpu/Ztj/SydBL+TGBtSCXhWstQ9L7gM/l27u2GCTdTHrZ6+Fmx2LWUzmBmpmZleBbuGZmZiU4gZqZmZXgBGpmZlaCE2iLyZ9xdMsaGJRqj3h3s+OoJOkOSZ9cQuM6JL+gY9Zp+VOsn0t6SdI9DfQ/XtIp+ffOkmZ2NIwtPU6g3US1nUddXM2TpHcplRvbv7J5SSal7iQiroiIaqUXLVWV66YLxr9Eq14rJoKK9kOK27WkjymVSPS6UklC7y90+6RSNXVzJf1R0pAq4/u3UklIX1AqHetVparHzlZFzS+Stpd0lxa/irK5FX/zJVX9ZAx4H6nozXUiYkzDC9BakhOo1bMjMKXwHVplc5eoPNBZVUtlXSwFe5IKBEHSrqSSqY4kfT+5I+lbWCTtRCoQ4cOk71WfIH2HuoBSNWDL5SItrwe2yiUhbUEqHei4KtO+icWsoixSIff9I6J/7v4G7QuWKFofmB4Rrze8hKx1NbswXv+1/yOV2/llUtFzr5A+Ql+RtFO+Qyq0YC7pQ/Va1TydSioN6BVSYe8Dc7e+pEIV5pBKALqXVERfrVh+AHypsplUc8h80gfvc4Ef5+5Vq/LK3ZYjfTA+g/SB+WUsLNx7aB72KFJpQRNy+1rVab2LVPXasbm5F6nQgG/VmI96y6Rt2keSPt5/Kc/D1nkdvNw2f7n/I6goEL5iWrWqhRtCKoTiRVL5wZ8qDDMuz+vlpMIHHiQVy/f1vKyeAnartW5YelWvLU8qqOFJUulAFwD9credSeUOH59jngUcmbsdTdpO38rju74Qw2+Bj+TfdwFH1ViuZwLnFZqH5Pg3KrQ7Dji3yrCrkQr8OL+i/d9JSbba9DpdRVnudjgp6atKt6Mqluu3q21Peb7enX+PJ5XfvGAZN/sY5b/Cump2AP6rWCEpgd6TDxADSXVxfqbazkPtWiqeJp11r0gqMefy3O3TpDPzFUhJ573k+jFJJaPcUDGuacCm1ZrzdD5Z0X+Q6gddhVR+62wWJpBPkA7kG5LO+H9LKjgbFiaxy3LM/QrDDCAduM8hXXG1TWsL0kF/M1I5rndTqJ+yE8ukbdoXkE4wdssHuWtJZfWuTUoIO+X+FzngFaYzhpSgdyWdMKxNqtQcUulO5+dpjMzLZmxhPb4J7E4qs/gy0hXWiaSaZT5Frjezxrq4kXSitWruvy3WD5BKgdoqL8MfkU9OGlhfi8xnXgfXkbbLAaRt6dTcbWdScXzfyTHsSbpSWzV3H09OBIXx9cnxDSBtj2+RtsNHScn4x4Vt4SwKCTAv2wA+XGj3R1LVcW3NB5MSYeR527LQba28TVRLdCPz+mg7wfs98LWKfuZSpW5eUmlT4+rs3+2Wa43l7ATaTf6aHoD/KlZISqAfLzSfTjq4L7LzUDuBnlZoHpYPTL1ICekuYEQDcWwIPFan+Q6qJ9BaVXndCny20G1T0lVJbxYmsQ3rxNOuSqrc7nhSInmJVHB5rWHrLZO2aa9d6D4HOLDQ/BvgC/n3Ige8Qn9Vq4UjFas3n8IVC+mKeHxhPf650G3vfIDulZsH5BhXqVwXLKWq10hXpq/T/opvOxZWiL0z6S5J70L354Ft8+/xLJpAxwK35t9tV5ST8zwNIt1V+G6h3xeAEUC/vKzfAQ7K3VfI661vleWwMany7TUL7Y4CLq7S7+JUUbZeXs8b1NkWK5frItsTTqDd5s/PQFtTZ6vDqlQsR3QG6Ux/EKmS6D8Bv8ovTJyeC8euZi/S86FazbXUir1dNWD5d28WVnHWLm41ViXVpaQEeFNEPNJBXLWWSZvFqt4qq1Ut3BBS9WjFKq0qqyirnN4LkcoUbmumEENxXSytqtcGk5LUfVpYRd0fc/s2cyJiXoPjg4XPIGHhPP4oImZFKlv3B7kfIpVBfDLpZGYGaXt4jYXV1Y0F7oqINysnkreNqRSeW1ZMG1giVZQdRkqGT9SeZetJnEC7j2iwHaSDapv1SFcdL0TE2xHx7YgYxsJCsQ+rMY49SbcGazXXmnYt7aoBy3HNo33iKI6zkSqpzifdgtw9l6NbT9Vl0mDsjapaLRxp3gdKGlARQyNVoFVTXBdLq+q1F0hJbvNYWEXdypFenGlEte1lwXzkE4CZNfoj93NeRGwcEauTEmlv4KHKcdWwoDq/fNK4E/Dnto5aMlWUHUY6qeuM1ylUIydpzU4Ob03kBNp9PAesJmnlinbVqnn6uKRhklYgPZO6JiLmS/ofScMl9SI9G3qbXP1VUT4TH0O69blIc2HaG3Yi/l8CX5S0QX678XvAVRVXLEV1q6SSdCjpGe4RpJdHLu3gk46qy6QT8TeiarVwEfEU6db5qUrVV40g3UK8orMTqFwXsZSqXotUbdfPgLMlrZ5jWVvS7g2G3m57kbQBsHy0rw3n58Cx+bOSVUk14NyQ+++rVCWeJK0HXAj8sHDlvQeFK8r8yUtbnMNIL2S1Vef3fuCBiHg1d1+sKsryOLYnXdnXevu2lvuBzfM66ku6nW/dhBNoN5EPNL8EHs+30IZQu5qnX5CenTxLemml7fX9NUkHildJLyfdSa5nUtI3JP0h9zcWmFS4HVbZDKkasv2VPgg/t4FZuCTHNYH0gsybpGq7aqlZJVU+gJ5DOtjNjYgrSc/Ozs7dD1H7qt2g9jJZLJKmSjoEalcLl3s9iHQV/QzwO+DkiPjzIiPsWLV1sbSqXvsa6QWfu/Nt9VtIz7IbcTEwLG+711L9kcD/kd4M/zdp+/wH6Y1vSOvsStLt1HtI1ed9ExbUjTs3Ip4sjGsH4EFJr+fp3ESq2BsWvX27uFWUQXr7tl1SzbGtl8e1XrWFEumTm++QluUjpOrrrJtwbSw9jKQ7SC8WXbQY4zgfeCgizq/WvCyT9AnSS14faNL0e8S6kHQT6fOgRp6rdzSurwKDIuKrDfb/T2D/iPjn4k7blm3+YN2qmUJ6maJW87Jsc9IVdLP0lHVxB3D7EhrXdBpcJvmW9GVOnrYk+Aq0h1kSV6BWXb71uDFwgA/AZuYEamZmVkK3fYlI0rqSblcqeHqqpM/n9uMkPS1pSv7bs9mxmplZz9Ntr0AlrQWsFRF/z9/X3QfsC3yU9EbemU0N0MzMerRu+xJR/v5tVv79mqSHaV/CSsMGDRoUQ4cOXYLRmZn1fPfdd98LETG44z57pm6bQIskDQVGAX8jff91jKTDSN8GHl+jmLMFhg4dyuTJk7s6TDOzHkXSjI776rm67TPQNrn0mbbCvl8FfkL6YHwk6Qr1rBrDHS1psqTJs2fPXmrxmplZz9CtE2gugus3wBUR8VuAiHguIuYXih6rWut7RFwYEaMjYvTgwcvsHQgzMyup2yZQSSIVD/ZwRPyg0H6tQm/7sbCwaTMzsyWmOz8D3YFUBuiDkqbkdt8ADpI0klSrw3QWrVnBzIy3336bmTNn8uabi9SAZhX69u3LOuusQ58+tWo/XDZ12wQaERNpX7VVm8UuW9PMer6ZM2cyYMAAhg4dSrqhZdVEBHPmzGHmzJlssMEGzQ6npXTbW7hmZovjzTffZLXVVnPy7IAkVlttNV+pV+EEambLLCfPxng5VecEamZmVkK3fQbarYxbuZP9v9I2CsHoAAAXIUlEQVQ1cZhZTUNPuHGJjm/6aXst0fFZ6/EVqJlZk1x22WWMGDGCLbfckkMPPZTrr7+ebbbZhlGjRrHLLrvw3HPPAXDnnXcycuRIRo4cyahRo3jttdcAOOOMM9h6660ZMWIEJ598MgCvv/46e+21F1tuuSVbbLEFV111VdPmr6fzFaiZWRNMnTqV7373u/z1r39l0KBBvPjii0ji7rvvRhIXXXQRp59+OmeddRZnnnkm5513HjvssANz586lb9++3HzzzTzyyCPcc889RAT77LMPEyZMYPbs2QwZMoQbb0xX1K+84jtaXcVXoGZmTXDbbbex//77M2jQIAAGDhzIzJkz2X333Rk+fDhnnHEGU6dOBWCHHXbgS1/6Eueeey4vv/wyvXv35uabb+bmm29m1KhRbLXVVkybNo1HHnmE4cOHc8stt/C1r32Nv/zlL6y8cicfIVnDnEDNzJogIhZ5u/XYY4/lmGOO4cEHH+SnP/3pgk9HTjjhBC666CLeeOMNtt12W6ZNm0ZE8PWvf50pU6YwZcoUHn30UY466ig22WQT7rvvPoYPH87Xv/51vvOd7zRj9pYJvoVrHfNLUGZL3NixY9lvv/344he/yGqrrcaLL77IK6+8wtprp1oZL7300gX9PvbYYwwfPpzhw4czadIkpk2bxu677843v/lNDjnkEPr378/TTz9Nnz59mDdvHgMHDuTjH/84/fv3Z/z48U2aw57PCdTMrAk233xzTjzxRHbaaSd69erFqFGjGDduHAcccABrr7022267LU888QQA55xzDrfffju9evVi2LBh7LHHHiy//PI8/PDDbLfddgD079+fyy+/nEcffZSvfOUrLLfccvTp04ef/OQnzZzNHk0R0ewYmm706NHRpfWBdvcruO4ev1kVDz/8MJtttlmzw+g2qi0vSfdFxOgmhdR0fgZqZmZWghOomZlZCU6gZmZmJTiBmpmZleAEamZmVoITqJmZWQlOoGZm3dT06dO58sorSw23xRZbdEFEyxYXpGBmBp3/3rnD8XX999BtCfTggw9epNu8efPo3duH+K7kK1AzsyaprM5sxowZjB07lhEjRjB27FiefPJJAI444giOO+44tt9+ezbccEOuueYaIJWR+5e//IWRI0dy9tlnM378eA444AD23ntvdtttNyKCr3zlK2yxxRYMHz68atVmU6dOZcyYMYwcOZIRI0bwyCOPLNVl0J359MTMrAmqVWd2+OGHc9hhh3H44YdzySWXcNxxx3HttdcCMGvWLCZOnMi0adPYZ5992H///TnttNM488wzueGGGwAYP348kyZN4oEHHmDgwIH85je/YcqUKdx///288MILbL311uy4447t4rjgggv4/Oc/zyGHHMJbb73F/Pnzl/qy6K58BWpm1gTVqjObNGnSgtuxhx56KBMnTlzQ/7777styyy3HsGHDFlS0Xc2uu+7KwIEDAZg4cSIHHXQQvXr1Yo011mCnnXbi3nvvbdf/dtttx/e+9z2+//3vM2PGDPr167ekZ7XHcgI1M2uCatWZVSp2X3755dsNW8uKK67YUH9tDj74YK677jr69evH7rvvzm233dbhMJY4gZqZNcHYsWO5+uqrmTNnDgAvvvgi22+/Pb/61a8AuOKKK3jf+95XdxwDBgzgtddeq9l9xx135KqrrmL+/PnMnj2bCRMmMGbMmHb9PP7442y44YYcd9xx7LPPPjzwwAOLOWfLDj8DNTNrgmrVmZ177rl84hOf4IwzzmDw4MH8/Oc/rzuOESNG0Lt3b7bcckuOOOIIVl111Xbd99tvPyZNmsSWW26JJE4//XTWXHNNpk+fvqCfq666issvv5w+ffqw5ppr8q1vfasrZrdHcnVmuDqzDnX3+M2qcHVmnePqzBblW7hmZmYlOIGamZmV4ARqZmZWghOomS2z/A5IY7ycqnMCNbNlUt++fZkzZ46TQwcigjlz5tC3b99mh9Jy/BmLmS2T1llnHWbOnMns2bObHUrL69u3L+uss06zw2g5TqBmtkzq06cPG2ywQbPDsG7Mt3DNzMxK6LYJVNK6km6X9LCkqZI+n9sPlPRnSY/k/6t2NC4zM7PO6rYJFJgHHB8RmwHbAp+TNAw4Abg1IjYGbs3NZmZmS1S3fQYaEbOAWfn3a5IeBtYGPgzsnHu7FLgD+FoTQrQuMvSEGzvV//TT9uqiSMxsWdadr0AXkDQUGAX8DVgjJ9e2JLt68yIzM7OeqtsnUEn9gd8AX4iIVzsx3NGSJkua7NfYzcyss7p1ApXUh5Q8r4iI3+bWz0laK3dfC3i+2rARcWFEjI6I0YMHD146AZuZWY/RbROoUlXtFwMPR8QPCp2uAw7Pvw8Hfr+0YzMzs56v275EBOwAHAo8KGlKbvcN4DTgaklHAU8CBzQpPjMz68G6bQKNiImAanQeuzRjMTOzZU+3vYVrZmbWTE6gZmZmJTiBmpmZleAEamZmVoITqJmZWQnd9i1cM7PO6u7lKHf3+HsaX4GamZmV4ARqZmZWghOomZlZCU6gZmZmJTiBmpmZleAEamZmVoITqJmZWQlOoGZmZiU4gZqZmZXgBGpmZlaCE6iZmVkJTqBmZmYlOIGamZmV4ARqZmZWghOomZlZCU6gZmZmJTiBmpmZleAEamZmVoITqJmZWQlOoGZmZiU4gZqZmZXgBGpmZlaCE6iZmVkJTqBmZmYlOIGamZmV4ARqZmZWQsskUEn9JG3a7DjMzMwa0RIJVNLewBTgj7l5pKTrmhuVmZlZbS2RQIFxwBjgZYCImAIMrTeApEskPS/poUK7cZKeljQl/+3ZhTGbmdkyrFUS6LyIeKWTw4wHPlil/dkRMTL/3bT4oZmZmS2qVRLoQ5IOBnpJ2ljSj4C76g0QEROAF5dKdGZmZhVaJYEeC2wO/Bf4JfAq8IWS4zpG0gP5Fu+qSypAMzOzopZIoBHxn4g4MSK2jojR+febJUb1E2AjYCQwCzirVo+SjpY0WdLk2bNnl4zczMyWVb2bHQCApOuBqGj9CjAZ+GmjyTQiniuM82fADXX6vRC4EGD06NGV0zYzM6urJa5AgceBucDP8t+rwHPAJrm5IZLWKjTuBzxUq18zM7PF0RJXoMCoiNix0Hy9pAkRsaOkqdUGkPRLYGdgkKSZwMnAzpJGkq5mpwOf7tqwzcxsWdUqCXSwpPUi4kkASesBg3K3t6oNEBEHVWl9cRfFZ2Zm1k6rJNDjgYmSHgMEbAB8VtKKwKVNjczMzKyKlkigEXGTpI2B95AS6LTCi0PnNC8yMzOz6loigWYbA5sCfYERkoiIy5ock5mZWVUtkUAlnUx6IWgYcBOwBzARcAI1M7OW1CqfsewPjAWejYgjgS2B5ZsbkpmZWW2tkkDfiIh3gHmSVgKeBzZsckxmZmY1tcQtXGCypFVIhSbcRypU4Z7mhmRmZlZbSyTQiPhs/nmBpD8CK0XEA82MyczMrJ6WuIUr6da23xExPSIeKLYzMzNrNU29ApXUF1iBVBzfqqRvQAFWAoY0LTAzM7MONPsW7qdJ9X4OIT37bEugrwLnNSsoMzOzjjQ1gUbED4EfSjo2In7UzFjMzMw6o9lXoABExI8kbQ8MpRCTSyIyay1DT7ixU/1PP22vLorErPlaIoFK+gWwETAFmJ9bBy6JyMzMWlRLJFBgNDAsIqLZgZi1lHErd7L/V7omDjNbREt8xgI8BKzZ7CDMzMwa1SpXoIOAf0q6B/hvW8uI2Kd5IZmZmdXWKgl0XLMDMDMz64yWSKARcaek9YGNI+IWSSsAvZodl5mZWS0tkUAlfQo4GhhIeht3beACUhVnZtZddfeXoLp7/NalWuUlos8BO5BKICIiHgFWb2pEZmZmdbRKAv1vRLzV1iCpN+k7UDMzs5bUKgn0TknfAPpJ2hX4NXB9k2MyMzOrqVUS6AnAbOBBUgHzNwEnNTUiMzOzOlriJSKgH3BJRPwMQFKv3O4/TY3KzMyshla5Ar2VlDDb9ANuaVIsZmZmHWqVBNo3Iua2NeTfKzQxHjMzs7paJYG+LmmrtgZJ7wXeaGI8ZmZmdbXKM9DPA7+W9ExuXgs4sInxmJmZ1dX0BCppOeBdwHuATQEB0yLi7aYGZmZmVkfTE2hEvCPprIjYjlStmZmZWctregLNbpb0v8BvXam29WRDT7ixU/1P79tFgZjZYmuVBPolYEVgvqQ3SLdxIyJWam5Y1iO4QHAz6wItkUAjYkCzYzAzM+uMlviMRcnHJX0zN68raUwHw1wi6XlJDxXaDZT0Z0mP5P+rdnXsZma2bGqJBAqcD2wHHJyb5wLndTDMeOCDFe1OAG6NiI1JpRudsARjNDMzW6BVEug2EfE54E2AiHiJ9GlLTRExAXixovWHgUvz70uBfZdwnGZmZkDrJNC3cwHyASBpMPBOifGsERGzAPJ/V8ptZmZdolUS6LnA74DVJX0XmAh8rysnKOloSZMlTZ49e3ZXTsrMzHqgVnkL9wpJ9wFjSZ+w7BsRD5cY1XOS1oqIWZLWAp6vM80LgQsBRo8e7W9PzcysU5qaQCX1BT4DvJtUmfZPI2LeYozyOuBw4LT8//eLHaSZmVkVzb6FeykwmpQ89wDObHRASb8EJgGbSpop6ShS4txV0iPArrnZzMxsiWv2LdxhETEcQNLFwD2NDhgRB9XoNHZJBGZmZlZPsxPoghpXImKepGbG0jCXZ2pmZs1OoFtKejX/FtAvN7ssXDMza2lNTaAR0auZ0zczMyur2S8RmZmZdUvNvoVrTeBnuGZmi89XoGZmZiU4gZqZmZXgBGpmZlaCE6iZmVkJTqBmZmYlOIGamZmV4ARqZmZWghOomZlZCU6gZmZmJTiBmpmZleAEamZmVoITqJmZWQlOoGZmZiU4gZqZmZXgBGpmZlaCE6iZmVkJTqBmZmYlOIGamZmV4ARqZmZWghOomZlZCU6gZmZmJTiBmpmZleAEamZmVoITqJmZWQlOoGZmZiU4gZqZmZXgBGpmZlaCE6iZmVkJTqBmZmYl9G52AF1B0nTgNWA+MC8iRjc3IjMz62l6ZALN/iciXmh2EGZm1jP5Fq6ZmVkJPTWBBnCzpPskHd3sYMzMrOfpqbdwd4iIZyStDvxZ0rSImFDsISfWowHWW2+9ZsRoZmbdWI+8Ao2IZ/L/54HfAWOq9HNhRIyOiNGDBw9e2iGamVk31+MSqKQVJQ1o+w3sBjzU3KjMzKyn6Ym3cNcAficJ0vxdGRF/bG5IZmbW0/S4BBoRjwNbNjsOM7OmG7dyJ/t/pWvi6KF63C1cMzOzpcEJ1MzMrAQnUDMzsxKcQM3MzEpwAjUzMyvBCdTMzKwEJ1AzM7MSnEDNzMxKcAI1MzMrwQnUzMysBCdQMzOzEpxAzczMSnACNTMzK8EJ1MzMrAQnUDMzsxKcQM3MzEpwAjUzMyvBCdTMzKwEJ1AzM7MSnEDNzMxKcAI1MzMrwQnUzMysBCdQMzOzEpxAzczMSnACNTMzK8EJ1MzMrAQnUDMzsxKcQM3MzEpwAjUzMyvBCdTMzKwEJ1AzM7MSnEDNzMxKcAI1MzMrwQnUzMysBCdQMzOzEnpkApX0QUn/kvSopBOaHY+ZmfU8PS6BSuoFnAfsAQwDDpI0rLlRmZlZT9PjEigwBng0Ih6PiLeAXwEfbnJMZmbWwygimh3DEiVpf+CDEfHJ3HwosE1EHFPR39HA0blxU+BfXRjWIOCFLhx/V3P8zdOdYwfH32xdHf/6ETG4C8ff0no3O4AuoCrtFjlLiIgLgQu7PhyQNDkiRi+NaXUFx9883Tl2cPzN1t3jb3U98RbuTGDdQvM6wDNNisXMzHqonphA7wU2lrSBpHcBHwOua3JMZmbWw/S4W7gRMU/SMcCfgF7AJRExtclhLZVbxV3I8TdPd44dHH+zdff4W1qPe4nIzMxsaeiJt3DNzMy6nBOomZlZCU6gZmZmJTiBWjuS3iNprKT+Fe0/2KyYOkPSGElb59/DJH1J0p7NjqssSZc1O4ayJL0vL//dmh1LIyRtI2ml/LufpG9Lul7S9yWt3Oz4OiLpOEnrdtynLSl+iWgpknRkRPy82XHUIuk44HPAw8BI4PMR8fvc7e8RsVUz4+uIpJNJZSD3Bv4MbAPcAewC/Ckivtu86DomqfJzKwH/A9wGEBH7LPWgOkHSPRExJv/+FGlb+h2wG3B9RJzWzPg6ImkqsGV+k/9C4D/ANcDY3P4jTQ2wA5JeAV4HHgN+Cfw6ImY3N6qezQl0KZL0ZESs1+w4apH0ILBdRMyVNJR08PhFRPxQ0j8iYlRTA+xAjn8ksDzwLLBORLwqqR/wt4gY0dQAOyDp78A/gYtIpWeJdCD8GEBE3Nm86DpW3EYk3QvsGRGzJa0I3B0Rw5sbYX2SHo6IzfLvdieMkqZExMjmRdcxSf8A3ks6YTwQ2Ae4j7QN/TYiXmtieD1Sj/sOtNkkPVCrE7DG0oylhF4RMRcgIqZL2hm4RtL6VC8isdXMi4j5wH8kPRYRrwJExBuS3mlybI0YDXweOBH4SkRMkfRGqyfOguUkrUp6NKS2q5+IeF3SvOaG1pCHCneJ7pc0OiImS9oEeLvZwTUgIuId4GbgZkl9SHdkDgLOBJbZMmu7ihPokrcGsDvwUkV7AXct/XA65VlJIyNiCkC+Ev0QcAnQ0lcP2VuSVoiI/5DOxAHIz69aPoHmg9/Zkn6d/z9H99pHVyZd8QgISWtGxLP5eXp3OAH7JPBDSSeRCmCfJOkp4KncrdW1W8YR8TapFLbr8l0YW8J8C3cJk3Qx8POImFil25URcXATwmqIpHVIV3HPVum2Q0T8tQlhNUzS8hHx3yrtBwFrRcSDTQirNEl7ATtExDeaHcvikLQCsEZEPNHsWBohaQCwIenkZWZEPNfkkBoiaZOI+Hez41iWOIGamZmV4M9YzMzMSnACNTMzK8EJ1KyTJJ0oaaqkByRNkbRNiXGMlnRuB/3sLOmGTozzDkmuPNlsKelOb/iZNZ2k7YAPAVtFxH/zC0rv6ux4ImIyMHlJx2dmS4+vQM06Zy3ghba3fSPihYh4BiAXgfgPSQ9KukTS8rn91pLuknS/pHskDSheXebiB+/Kw94ladN6AUjqJenMPJ0HJB1bpZ+fSJqcr5S/XWh/mqR/5uHOzO0OkPRQjm/CEltSZj2cr0DNOudm4FuS/g3cAlwVEXdK6guMB8ZGxL9zGbb/T9L5wFXAgRFxby5r9Y2KcU4DdsxFyO0CfA/43zoxHA1sAIzKwwys0s+JEfGipF7ArZJGADOB/YD3RERIWiX3+y1g94h4utDOzDrgK1CzTsglNb2XlMRmA1dJOgLYFHii8B3epcCOuf2siLg3D/9qRFSWyrMy8GtJDwFnA5t3EMYuwAVt44mIF6v089FcNOA/8viGAa8CbwIXSfoIqaxXgL8C43P5tb06XgpmBk6gZp0WEfMj4o6IOBk4hnS1WKukHZHKta3n/4DbI2ILYG+gbwf91x2npA2AL5OuhkcANwJ9c8IdA/wG2Bf4Y56fzwAnAesCUySt1sH0zQwnULNOkbSppI0LrUYCM0i3YYdKendufyhwZ24/RAurWBsgqfLRycrA0/n3EQ2EcTPwmbbxVLmFuxKpVo5XJK1BKg+VXKTeyhFxE/CFHDuSNoqIv0XEt0hF2LlKLLMG+BmoWef0B36UnxXOAx4Fjo6INyUdSboV2xu4l3Sb9S1JB+Zh+pGef+5SMc7TgUslfYlcdVkHLgI2AR6Q9DbwM+DHbR0j4v5cM8dU4HHSLVqAAcDv8/NaAV/M7c/IJwUCbgXu78TyMFtmuSg/MzOzEnwL18zMrAQnUDMzsxKcQM3MzEpwAjUzMyvBCdTMzKwEJ1AzM7MSnEDNzMxKcAI1MzMr4f8DSI3T9EIIq5gAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ax = c.plot(kind='bar', title ='Percentage of male participants in each social class for cases and controls\\n 223 cases, 196 controls, Navaratnam 2014 \\nhttps://thorax.bmj.com/content/69/3/207.full')\n",
"ax.set_xlabel(\"Social class\")\n",
"ax.set_ylabel(\"Percentage\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('flat_dataframe.csv')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"df.median_ssec = df.median_ssec.astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"d = df.groupby('case').median_ssec.value_counts(sort=False, normalize=True)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"d = pd.DataFrame(d).unstack().transpose()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"d.columns = ['controls','cases']"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"d.index = [1,2,3,4,5,6,7]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"d = d[['controls','cases']] * 100"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"d = d[['cases','controls']]"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0, 25)"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAEiCAYAAAChhzY5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xm8VWW9x/HPVyBBRZQhFFHRHFEQDXG86r1opqXpzSEtc6i83VK8aaWmGVaWKWXptXIecsihMqdbpKlIaQqGA0nhgIqgIiiIigr+7h/Pc3Cz2Weffc7Zh33W4ft+vc7r7L2GZ/3WsNdvjc+jiMDMzKwoVml0AGZmZq3hxGVmZoXixGVmZoXixGVmZoXixGVmZoXixGVmZoXixNWBlFwh6TVJDzUohm9JurSG4X4p6dsrIqa2qnVeVhRJe0ia2cDp17zOJN0r6YttmEZI2qT10bVeZ/i9FFFb120jSRqSt63ubRm/xZEkzQAGAkuAN4E7geMjYmFbJtgRcoxfjIi7Gh1LmV2BvYDBEfFmR09M0h7ANRExuKlbRPyglnEj4ssdFVcpSWOBTSLic60dt9Z5WVmsqHW2Aq3Q34u1jaQhwLNAj4hY3IgYaj3j2i8i1gC2A7YHTm/thNqaWQtuQ2DGCkpaK+Pyta6lzb8Xb/+dS4evj4io+gfMAPYs+X4ucHv+3Ae4DJgNvAh8H+iW+x0F/AU4D5gHfD93/xLwJPAG8A9gu9x9EPAbYA4pm48pmeZY4Ebg6jzeVGBk7vcr4H3gbWAh8M3c/SbgJWA+MAHYqqS8fsBtwALg4Rz3xJL+WwB/ynH/EzikyvIZBNyah30K+FLu/gVgEelMdSFwZoVxm5bRBTnOacDokv5HlyyrZ4D/Kum3BzATODnP5015Gbyfp7cwxzaWdBbWNN6uwF+B14EXgKNy9ytL1lFT2d8CXs3bwGdLyvgE8Pe8/F4Axpb0GwIEcCTwfB7/tNzv48C7wHs5vkdLlsMzeT6fLZ1W2fJaOi/VptPMuKsC4/KwLwO/BHrlfmsDt5O2vdfy58El4/YFrgBm5f63lC2nk4BXSL+Do6vEUHE+SQeQpwPP5XKuBvq0cp21NA/3kq5KVIqrW17XT+fYJgPr535BOkNuab33BK4B5uY4HwYG1rp+aeb3QtpfPEX6fd0KDCoZJ4CvAtOBZ5uZt+aWXVvnpdo+bxPgPtJv+VXghirbQrX905XAhcAdeZn9DfhISf+9SPuK+cD/5mm2Zd3unOdtfv6/c9n28j3S/ukNYDzQP/d7Pi/7pv3MTlTY31Nlu+aD32/31uwDlsZXrWcucAY5cQHrk5LG9/L3W4CLgNWBDwMPkXeuOZDFwPGkS5K9gIPzyt4eUF7RG+YZnAycAXwI2DjPxN4lO6xFwL55RfwQeLBSjCXdjgF6k3ZYPwWmlPT7df5bDRhK2nAn5n6r5+9H57i3I22EWzWzfO4Dfk7a2EeQdhyjS5bBxCrLtmkZfQ3oARyaN6K+JT+uj+RltTvwFh8k+j3yuD/K89grd5tZZWe/Qd4wDsvT6weMqLATbCr7J7ns3UmXiTcv6T8sr7fhpERwQNkGeUmOaRvgHWDL8nhKlveCkrLXrbKsS+el6nQqjPtT0o6vb94ubgN+mPv1Az6dt4fepJ3KLSXj3gHcQEoOPYDdy5bTd3P3ffM6WrvC9JudT9K2+hRpu18D+C3wq1aus5bm4V6a37l9A3gc2Jy0rW0D9CtJDpuUzG9z6/2/8jJdjfQb/SiwZivX71EsewD5H6Tf3nak7fACYEJJ/yAdYPYlH4SUlVdt2bV6XmrY510PnJbL7AnsWuW3X23/dCVp5z+KtA+6Fvh17tc/L8+D8jx9jbQNtmrd5mX2GnBEnsZh+XvTer+XlOw2I/2+7gXOrpR0quzvq23XS8tozTbS2sS1kHTk8RxpJ92LdN/rndINJs/8PSUz8nxZWX8ETqgwjR0qDHsqcEXJDuuukn5DgbfLYtyzyjyslRdSH9KG+F7TQsr9l55xkZLH/WXjXwR8p0K565OOEHuXdPshcGWlH2IzP9RZgEq6PQQc0czwtzQtP9IP712gZ0n/PaieuE4FftdM2VeyfOJavaT/jcC3mxn3p8B5ZRvk4LJ5+kx5PPn76nnb+jQVdj5V5qXqdMrGEynxlh617kTzR+kjgNdKfkTvUzkZ7UE6yy39Ab8C7Fhh2GbnE7gb+ErJ983zNtq91nVWbR7y93tpfuf2T+BTzfRbmrhaWO/HkM5shtc63838HkoT12XAOSXf18jLZUhJbP9Rpbxml10b56Wlfd7VwMWl22SN0166fypZr5eW9N8XmJY/f55lD9pFOutv1bolJayHyro9wAdnpPcCp5f0+wrwh1j2t1eeuMr34dW266VltGYbafqr9R7XARGxVkRsGBFfiYi3SWdKPYDZkl6X9DppB//hkvFeKCtnfVIWL7chMKipnFzWt0gbSpOXSj6/BfRs7jqqpG6Szpb0tKQFpMQG6WhlAGlhlcZW+nlDYIeyWD4LrFNhUoOAeRHxRkm354D1KsXVjBcjr9WS8Qfl+dhH0oOS5uU49s3z0GRORCxqxbSaW/6VvBbL3msojWsHSfdImiNpPvDlsrhg+fW1RqWJ5GkcmsuYLekOSVvUGGOt0xlAOnqeXLJO/5C7I2k1SRdJei5vLxOAtSR1Iy2zeRHxWjPTnxvL3qCuGEML8zmItHybPEfaRgdS4zprYR5aUus0qq33X5EOTH8taZakcyT1aOf6XWa5RHogbC7L/r7K9zE1zVdb5oWW93nfJCWShyRNlXRMM9Outn9q0tx2Pah0nvO+oy3LoHybg+X3XTX9hkuUx1Ftu16qLdtIex6Hf4F09NE/J7W1ImLNiNiqNKYK43ykmbKeLSlnrYjoHRH71hhL+XQOBz4F7Ek6yxqSu4t0KW8xMLhk+PXLYrmvLJY1IuK/K0x3FtBXUu+SbhuQLofWaj1JKht/lqRVSff8xpGur69FeqKzdNjy+S7/Xq655V/J2pJWL48rf76OdNlt/YjoQ7pfJGqzXIwR8ceI2It0djONdPmvnl4lnRltVbJO+0R64AjSParNgR0iYk1gt9xdpGXWV9Ja7Q2iynzOIu0Um2xA2kZfpvZ1Vm0eWlLrNJpd7xHxXkScGRFDSfdOPkk6O2jP+l1mueTtsR/L/r6qbfPV5qst81J1nxcRL0XElyJiEOly48+beZWg2v6pJbMp2V/lfcf6zQ/e7DIo3+ag9n1Xc8u8vHu17XrZEVu5jbQ5cUXEbNINux9LWlPSKpI+Imn3KqNdCnxd0kfzOxubSNqQdIlngaSTJfXKRyRbS9q+xnBeJl1HbdKbtIHNJR1pL32MOiKWkK61js1HqVuQf2DZ7cBmko6Q1CP/bS9pywrL4AXSJYUfSuopaTjpJvO1NcYN6WhtTJ7OwcCWpAT1IdL17znAYkn7AB9roayXgX6S+jTT/1pgT0mHSOouqZ+kEVXKO1PShyT9G+nHe1Pu3pt0FrJI0ijSD7FWLwNDJK0CIGmgpP3zTukd0mXpJa0or0UR8T7ph3CepA/n6a4nae88SG9SYntdUl/gOyXjzgb+j7QTWjuvp91opRbm83rga5I2krQGaXu9IZ/J1brOmp2HGlwKfE/Spvl3OVxSv2amUXG9S/p3ScPyGd4C0iWhJe1cv9cBR0sakQ/kfgD8LSJm1Dh+tWXX6nlpaZ8n6WBJTQfEr5F25JXmtdn9Uw3uALaS9J9KV5zGUPlqUJPm1u2dpP3c4XnZHEq6BXN7DTHMIV0+37iF4apt10u1ZRtp7wvInyftYP9BWlE3kzJmRRFxE3AWaYN8g3TPpm9OJvuRrss/SzpCvpR0NFKLHwKnK52+f510rfk50tHDP4AHy4Y/Lpf9EumywPWkBUa+7Pcx4DOkI4aX+OABiEoOIx0xzQJ+R7oX9qca44b0xNCmpHk+CzgoIubmOMaQ7i29Rvph3VqtoIiYluflmbwsBpX1f550ufEk0s3fKaSbtZW8lKc7i7QD+HIuH9L17u9KeoP0QM2NrZjfpuQ3V9IjpG3wpDydeaQHQb7SivJqdTLpRvGDSpdn7iKdoUC6v9GLtA4eJF1GLHUEaec1jXQP63/aMP1q83k5aTucQNr+F5FucrdmnbU0D9X8hLQOx5N21JflsspVW+/rkH7/C0hPwt5HejKvzes3Iu4Gvk268jCbdObwmVpnqoVl15Z5ger7vO2Bv0laSPqtnhARz1YIraX9U7V5epX0kNvZpMS3KelpvuZUXLcRMZd0MHpSLuebwCdz+S3F8BZpX/WXvJ/ZsZlBm92uy7R6G9Gyt1dWTpJ+BKwTEUeu4OkeRbqpuuuKnG5LVOFFZjOzzmKlrPJJ0hb5lFn5MsEXSGdLZmbWya2sb5v3Jl1SG0S69PNj4PcNjcjMzGriS4VmZlYoK+WlQjMzKy4nLrOCUwGbtTBrDyeugpK0u1J7Nt8v6baqpPOU3vZ/TdLPld74Lx93U0mLJF1T3q+oJPVVqgVhYln31fJyeFXSfEkTyvpvJ2mCpIWSXpZ0wgqOu1MkHUlHlS47STMkvV2yXK7I7+I0xbwo92v626lkvD1LylxSNtzCptc0JO0q6a95vcyT9Bc18+6mpCMlTZa0QNJMpdosupf07yvpd5LeVKo9pPS9rE9Impgf3X5J0iUqqTQg/24uz2W/JOnEei9fqy8nrgLKyehnpHfASp0CjAS2JlWOuR2Vm6C5kFQbdFfyI9I7N+UuJlUoumX+/7WmHpL6k953uohUI8MmpPddOg01trmOas0ZHZdrlGn6e6CZMh4oG26NiJglaU3Sy64XkNbLesCZ5PcpK1iN9P5cf1LdpqOBr5f0v5BUd+dAUhVtv5DUVItPH1J9pINI28FgUisXTcaS3ofaEPh34JuSPl5twVhjOXEV00mkHey0su77AedHxLyImAOcT6owdClJnyFVaHl3tQko1V7yLaX61N7IR7vr534/k/RCPkKdrFSzRtN4oyRNyv1elvSTkn475iPs1yU9mt8Xa+p3lKRn8rSelfTZWhdGPtrfmtT0SGn3zYH9gWMjYk5ELImIySWDnAj8MSKujYh3IuKNiKiU/JrK27Uk/heU3sNDUh9JV+czvuckna4PagY5Kh/tj8tnwc8q1YKCpLOAfwP+N5+J/G/uHpK+Kmk6qckOJO0s6eF8dvKwpJ2biXETSffl4V6VdEOty7E5EfEiqfaQrdtbVonNctnX5/XydkSMj4jHmonhFxFxf0S8m+O5FtgFllYF9WlSJdALI2Ii6QXgI/K410XEHyLirVzn5CVN42afJ7V48Vpe/5eQKo21TsqJq2CUqsg6htSUxnK9Wba+MwGDlauAyke53yUlvpacSKoVZF9S8xTHkCrahHS2NoJ0pHwdcJOknrnfz4Cf5fryPkKukUDSeqTqar6fx/s68BtJA/KO53xgn4joTaofbkoNMaJULc+FpNpQyh+R3YFUQ8GZeSf+uKRPl/TfEZiXk9Erkm6TtEEz09mAtPO+gFQ574iSGC8gHdVvTHrr//OkZnFK4/gn6WzhHOAySYqI04D7+eDs5biScQ7I4w1VqsLpjryM+pFqQ7hDlatl+h7poGZt0pnFBZXmpzXyAcu+pPar6uVfpCqhrlKqTHrtVo6/G6mJJUhJcElE/Kuk/6PAVsuNVTZunu6gPHwt41on4MRVPOeTjywr9Ps/4IScDNYhVRkF6TILpJ3aZbmOxZZ8kdSswT8jeTRXE0NEXJOrpVocET8mVYfVVH3Se8Amkvrno9+m6mw+B9wZEXdGxPu5WqxJpB0ipLrPtpbUKyJmR8RUajOGVH/d5Ar9BpPOEuaTdk7HAVfpg3onB5MaojyBVAHos6T3+yr5LKlpnetzJaxzI2JKTpyHAqfmM7YZpPcCjygZ97mIuCRXbXYVqYqggeUTKPPDfOb8NqldtukR8au8zK8nnW3vV2G898itLUTEonz20Va3KNWAPpFU7VFpnXrn64MWFB6pUsaOJcO9LulpgIhYQGrkMUhnOHMk3SqppeWCpKNJl8TH5U5rkNZxqfmk9zXLx92LtM7PKBm3afiq41rn4cRVIJL2I7X91dzln7NIR8VTSJX/3kLakb2iVLnonqQWSmtRrUmIkyQ9mS9HvU4622hqkuELpCPgafmS1idz9w2Bg7VsczG7AutGG5u+ULrJP4bUeF8lb5Pm//v5EtN9wD18UFnx26T2mh6O1DzMmcDOqlxJcXPLoz+p7rry5hsqNg+R63mD1jURUUsTFE1qalqjRpWaM2oyJj6oIX27KmU8GMu2tLC0pvKIeDIijspVi21Nms+fVgtI0gGkevr2KalXbyHpqkCpNUn1oZaOuyPpCsFBJWdnC0uGb3Zc61xW1pozimo0MFJS046wD+lyy7CI+FTesRyX/5B0LDA5Ipbk+0lDgOeVWlFZA+gmaWgzO56m5hCeKO2Y72ednGOZGhHvS3qND5qEmA4clu/x/Cdwc76k9QKp9dMvVZqxiPgj8EdJvUiXEy8h3f+pZhTp7OUfeZ56Ab3y8lkPqHi/pMRjLHt5selzpeYlXsjTK/cqH5zl/CN3a03TNrU0EdFcExTLVaQbES+RmrtH0q7AXZImRMRTNcbTEBExTdKVpOZAKlJ6YOIS4BMR8XhJr38B3SVtmrc/SJXpTi0Zd1vSfa9jIlXe2zTd1yTNzsP/qdK41vn4jKtYvk06mxmR/24l/ZCPhqVNdQxSsmMevql5i4tJiahp3F+S7pvsTWXNNYfQm9SmzhzSzuIMSo5WJX1O0oBITYm8njsvIdWuvZ+kvZUe/OgpaQ9Jg1WlWQNJQ/LDCkMqxPh/pGTcNE9nkM44R+TLchOA54FTlZpu2IXUavEf8/hXAAcqNZvRIy+viRHxOsur2ERGns6NwFmSeud7kCfyQW3iLSlvkqeSmpugUJWmNZQeYx9bY1wdSqm+0JOaYs330Q6jmZrSJf0HaR18OiIeKu2Xz9h/S6rtffW8nj9FqpkcSVuTkvzxEXFbheKvJrUusXY+0/8SqRVi66yiFU1M+69z/VHWdDvppvMM0kMU/wQ+W2XcsaQa4Jvr3430+POzpMsmD5PuCXUjNY2wgNTUxDfzNPfM411Dqv9xIemo9YCSMncg3SuZR0p8d5DOHNbN3eeTkt29wNA8zr/l8nvUsDyOoqTp99xtK1KT5G+SzogOLOv/36Szo9eA20gNCzZX/r+RXkFYQDoDOzJ3XzvP95zc/QxglSoxBbBJ/rwT6YzhNdITocv0LxlnV2ByXkaTgV1L+t1Lbrqd9PDHi3n5P016orJpuKeBvWpZdqXrtMKwS6dXod8MYHRJmUtyLKV/25POiG/Msb6Z/18ErNlMufeQDphKy/m/kv59SZfG3yQdrBxe0u8K0j3U0nGnlvRfldQExwLSgcSJjf5t+6/6n+sqtE5N0unAnIi4qNGxFFk+s7kpInbq4OnMA/4jImp6KtSsLZy4zKwu8hN7N5OeaHyz0fFY19WQe1yS1pd0T34ybapyNTuSxkp6UdKU/LdvS2WZWeNJ+jXpPuqXnLSsozXkjEvSuqTHoB9RqjNsMumFy0OAhRExrmoBZma20mrI4/ARMZt0Y5+IeEPSk1R+J8XMzGwZDX8cPj/mvC0fVBh7nKTHlGprbm01MGZm1sU19OEMpWYS7gPOiojf5upeXiU9Dvw90uXE5d78zy/WHguw+uqrf3SLLVqsZMHMzEpMnjz51YgY0Og42qJhiSu/8Hk7qXbun1ToPwS4PSKq1kg9cuTImDRpUofEaGbWVUmaHBEjGx1HWzTqqUKRXmJ9sjRp5Yc2mhxIWXVDZmZmjaqrcBdS7dmPS2p6UfFbpDruRpAuFc6gSr1lZma2cmrUU4UTqVyR6Z0rOhYzMyuWLlk7/HvvvcfMmTNZtGhRo0Pp9Hr27MngwYPp0aNHo0MxM6tJl0xcM2fOpHfv3gwZMoTc3IVVEBHMnTuXmTNnstFGGzU6HDOzmjT8Pa6OsGjRIvr16+ek1QJJ9OvXz2emZlYoXTJxAU5aNfJyMrOi6bKJy8zMuqYueY+r3JBT7qhreTPO/kRdyzMzs9qtFImrUa6++mrGjRuHJIYPH84hhxzC97//fd5991369evHtddey8CBA7nvvvs44YQTgHTpbsKECfTu3Ztzzz2XG2+8kXfeeYcDDzyQM888kzfffJNDDjmEmTNnsmTJEr797W9z6KGHNnhOzTpeaw9AfYDZdTlxdZCpU6dy1lln8Ze//IX+/fszb948JPHggw8iiUsvvZRzzjmHH//4x4wbN44LL7yQXXbZhYULF9KzZ0/Gjx/P9OnTeeihh4gI9t9/fyZMmMCcOXMYNGgQd9yRfsTz589v8Jyama1YvsfVQf785z9z0EEH0b9/fwD69u3LzJkz2XvvvRk2bBjnnnsuU6dOBWCXXXbhxBNP5Pzzz+f111+ne/fujB8/nvHjx7Ptttuy3XbbMW3aNKZPn86wYcO46667OPnkk7n//vvp06dPI2fTzGyFc+LqIBGx3BN7xx9/PMcddxyPP/44F1100dLH0E855RQuvfRS3n77bXbccUemTZtGRHDqqacyZcoUpkyZwlNPPcUXvvAFNttsMyZPnsywYcM49dRT+e53v9uI2TMzaxgnrg4yevRobrzxRubOnQvAvHnzmD9/Puutl9rLvOqqq5YO+/TTTzNs2DBOPvlkRo4cybRp09h77725/PLLWbhwIQAvvvgir7zyCrNmzWK11Vbjc5/7HF//+td55JFHVvzMmZk1kO9xdZCtttqK0047jd13351u3bqx7bbbMnbsWA4++GDWW289dtxxR5599lkAfvrTn3LPPffQrVs3hg4dyj777MOqq67Kk08+yU477QTAGmuswTXXXMNTTz3FN77xDVZZZRV69OjBL37xi0bOppnZCtfQhiTroVJ7XE8++SRbbrllgyIqHi8vKwI/VVhfbo/LzMxsBXHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHi6sRmzJjBdddd16bxtt566w6IyMys8VaOF5DH1rk+v7ErpmLbpsR1+OGHL9dv8eLFdO++cqw+M7NSPuPqQFdffTXDhw9nm2224YgjjuC5555j9OjRDB8+nNGjR/P8888DcNRRRzFmzBh23nlnNt54Y26++WYg1WF4//33M2LECM477zyuvPJKDj74YPbbbz8+9rGPERF84xvfYOutt2bYsGHccMMNy8UwdepURo0axYgRIxg+fDjTp09focvAzKzefMjeQSo1a3LkkUfy+c9/niOPPJLLL7+cMWPGcMsttwAwe/ZsJk6cyLRp09h///056KCDOPvssxk3bhy33347AFdeeSUPPPAAjz32GH379uU3v/kNU6ZM4dFHH+XVV19l++23Z7fddlsmjl/+8peccMIJfPazn+Xdd99lyZIlK3xZmJnVk8+4OkilZk0eeOCBpZf9jjjiCCZOnLh0+AMOOIBVVlmFoUOH8vLLLzdb7l577UXfvn0BmDhxIocddhjdunVj4MCB7L777jz88MPLDL/TTjvxgx/8gB/96Ec899xz9OrVq96zama2QjlxdZBKzZqUK+2/6qqrLjNuc1ZfffWahmty+OGHc+utt9KrVy/23ntv/vznP7c4jplZZ+bE1UEqNWuy88478+tf/xqAa6+9ll133bVqGb179+aNN95otv9uu+3GDTfcwJIlS5gzZw4TJkxg1KhRywzzzDPPsPHGGzNmzBj2339/HnvssXbOmZlZY/keVwep1KzJ+eefzzHHHMO5557LgAEDuOKKK6qWMXz4cLp3784222zDUUcdxdprr71M/wMPPJAHHniAbbbZBkmcc845rLPOOsyYMWPpMDfccAPXXHMNPXr0YJ111uGMM87oiNm1rqi1T+OuoKdtzdysiXl5WWWdLHG5WZP6crMmZmZmK4gTl5mZFYoTl5mZFUqXTVxFv3e3ong5mVnRdMnE1bNnT+bOneudcgsigrlz59KzZ89Gh2JmVrMu+Tj84MGDmTlzJnPmzGl0KJ1ez549GTx4cKPDMDOrWZdMXD169GCjjTZqdBhmZtYBGnKpUNL6ku6R9KSkqZJOyN37SvqTpOn5/9otlWVmZiuXRt3jWgycFBFbAjsCX5U0FDgFuDsiNgXuzt/NzMyWakjiiojZEfFI/vwG8CSwHvAp4Ko82FXAAY2Iz8zMOq+GP1UoaQiwLfA3YGBEzIaU3IAPNzPOsZImSZrkBzDMzFYuDU1cktYAfgP8T0QsqHW8iLg4IkZGxMgBAwZ0XIBmZtbpNCxxSepBSlrXRsRvc+eXJa2b+68LvNKo+MzMrHNq1FOFAi4DnoyIn5T0uhU4Mn8+Evj9io7NzMw6t0a9x7ULcATwuKQpudu3gLOBGyV9AXgeOLhB8ZmZWSfVkMQVEROB5tq1H70iYzEzs2Jp+FOFZmZmreHEZWZmheLEZWZmheLEZWZmheLEZWZmheLEZWZmhdIl2+Mys+UNOeWOVg0/o+gNY4/t08rh53dMHFZ3PuMyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCceIyM7NCqUviktRL0ub1KMvMzKyadicuSfsBU4A/5O8jJN3awjiXS3pF0hMl3cZKelHSlPy3b3tjMzOzrqceZ1xjgVHA6wARMQUY0sI4VwIfr9D9vIgYkf/urENsZmbWxXSvQxmLI2K+pJpHiIgJkobUYdrW1Y3t08rh53dMHGbWadTjjOsJSYcD3SRtKukC4K9tLOs4SY/lS4lr1yE2MzPrYuqRuI4HtgLeAa4HFgD/04ZyfgF8BBgBzAZ+3NyAko6VNEnSpDlz5rRhUmZmVlTtvlQYEW8Bp+W/9pTzctNnSZcAt1cZ9mLgYoCRI0dGe6ZrZmbF0u7EJek2oDx5zAcmARfIHTd7AAAOBUlEQVRFxKIay1k3ImbnrwcCT1Qb3oppyCl3tGr4GT07KBAzK6x6PJzxDDCAdJkQ4FDgZWAz4BLgiPIRJF0P7AH0lzQT+A6wh6QRpCQ4A/ivOsRmZmZdTD0S17YRsVvJ99skTYiI3SRNrTRCRBxWofNldYjFzMy6uHo8nDFA0gZNX/Ln/vnru3Uo38zMbKl6nHGdBEyU9DQgYCPgK5JWB66qQ/lmZmZL1eOpwjslbQpsQUpc00oeyPhpe8s3MzMrVY8zLoBNgc2BnsBwSUTE1XUq28zMbKl6PA7/HdITgkOBO4F9gImAE5eZmdVdPR7OOAgYDbwUEUcD2wCr1qFcMzOz5dQjcb0dEe8DiyWtCbwCbFyHcs3MzJZTj3tckyStRXrZeDKwEHioDuWamZktpx5PFX4lf/ylpD8Aa0bEY+0t1+rEzYKYWRdTj4cz7o6I0QARMaO8m5mZtaGezrM/0UGRFF+bE5eknsBqpPoG1ya9wwWwJjCoDrGZmZktpz1nXP9FandrEOneVlPiWgBc2M64zMzMKmpz4oqInwE/k3R8RFxQx5jMzMyaVY+HMy6QtDMwpLQ815xhZmYdoR4PZ/wK+AgwBViSOweuOcPMzDpAPd7jGgkMjYjyVpDNzMzqrh41ZzwBrFOHcszMzFpUjzOu/sA/JD0EvNPUMSL2r0PZZmZmy6hH4hpbhzLMzMxqUo+nCu+TtCGwaUTcJWk1oFv7QzMzM1teu+9xSfoScDNwUe60HnBLe8s1MzOrpB6XCr8KjAL+BhAR0yV9uA7lmpmtvFxBdrPq8VThOxHxbtMXSd1J73GZmZnVXT3OuO6T9C2gl6S9gK8At9WhXKug1TVM9+ygQMzMGqQeZ1ynAHOAx0kV794JnF6Hcs3MzJZTjzOuXsDlEXEJgKRuudtbdSjbzMxsGfU447qblKia9ALuqkO5ZmZmy6lH4uoZEQubvuTPq9WhXDMzs+XUI3G9KWm7pi+SPgq8XYdyzczMllOPe1wnADdJmpW/rwscWodyzczMltOuxCVpFeBDwBbA5oCAaRHxXh1iMzMzW067EldEvC/pxxGxE6l5EzMzsw5Vj0uF4yV9GvitG5O0rqz1L38f3roJrERV9pi1Rz0S14nA6sASSW+TLhdGRKxZh7LNzMyWUY9mTXrXIxAzM7Na1KNZE0n6nKRv5+/rSxpVw3iXS3pF0hMl3fpK+pOk6fn/2u2Nz8zMupZ6vMf1c2AnoOmC/kLgwhrGuxL4eFm3U4C7I2JTUo0cp9QhPjMz60Lqkbh2iIivAosAIuI10iPyVUXEBGBeWedPAVflz1cBB9QhPjMz60LqkbjeyxXrBoCkAcD7bSxrYETMBsj/KzZIKelYSZMkTZozZ04bJ2VmZkVUj8R1PvA74MOSzgImAj+oQ7nNioiLI2JkRIwcMGBAR07KzMw6mXo8VXitpMnAaNKj8AdExJNtLO5lSetGxGxJ6wKvtDc+MzPrWtqcuCT1BL4MbEJqRPKiiFjcznhuBY4Ezs7/f9/O8szMrItpz6XCq4CRpKS1DzCuNSNLuh54ANhc0kxJXyAlrL0kTQf2yt/NzMyWas+lwqERMQxA0mXAQ60ZOSIOa6bX6HbEZGZmXVx7zriW1gBfh0uEZmZmNWnPGdc2khbkzwJ65e+uq9DMzDpMmxNXRHSrZyBmZma1qMd7XGZmZiuME5eZmRWKE5eZmRWKE5eZmRWKE5eZmRWKE5eZmRVKuyvZ7fLG9mnl8PM7Jg4zMwN8xmVmZgXjxGVmZoXixGVmZoXixGVmZoXixGVmZoXixGVmZoXixGVmZoXixGVmZoXixGVmZoXixGVmZoWy0lX5NOSUO1o1/IyeHRSImZm1ic+4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUJy4zMysUDpd7fCSZgBvAEuAxRExsrERmZlZZ9LpElf27xHxaqODMDOzzseXCs3MrFA6Y+IKYLykyZKObXQwZmbWuXTGS4W7RMQsSR8G/iRpWkRMKB0gJ7RjATbYYINGxGhmZg3S6c64ImJW/v8K8DtgVIVhLo6IkRExcsCAASs6RDMza6BOlbgkrS6pd9Nn4GPAE42NyszMOpPOdqlwIPA7SZBiuy4i/tDYkMzMrDPpVIkrIp4Btml0HGZm1nl1qkuFZmZmLXHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQnHiMjOzQul0iUvSxyX9U9JTkk5pdDxmZta5dKrEJakbcCGwDzAUOEzS0MZGZWZmnUmnSlzAKOCpiHgmIt4Ffg18qsExmZlZJ6KIaHQMS0k6CPh4RHwxfz8C2CEijisb7ljg2Px1c+CfHRhWf+DVDiy/ozn+xily7OD4G62j498wIgZ0YPkdpnujAyijCt2Wy6wRcTFwcceHA5ImRcTIFTGtjuD4G6fIsYPjb7Six9+ROtulwpnA+iXfBwOzGhSLmZl1Qp0tcT0MbCppI0kfAj4D3NrgmMzMrBPpVJcKI2KxpOOAPwLdgMsjYmqDw1ohlyQ7kONvnCLHDo6/0Yoef4fpVA9nmJmZtaSzXSo0MzOryonLzMwKxYnLzMwKxYmri5G0haTRktYo6/7xRsVUK0mjJG2fPw+VdKKkfRsdV1tJurrRMbSVpF3z8v9Yo2OphaQdJK2ZP/eSdKak2yT9SFKfRsfXEkljJK3f8pAGfjijZpKOjogrGh1HNZLGAF8FngRGACdExO9zv0ciYrtGxleNpO+Q6qjsDvwJ2AG4F9gT+GNEnNW46Fomqfy1DQH/DvwZICL2X+FBtYKkhyJiVP78JdJ29DvgY8BtEXF2I+NriaSpwDb5yeSLgbeAm4HRuft/NjTAFkiaD7wJPA1cD9wUEXMaG1Xn5cRVI0nPR8QGjY6jGkmPAztFxEJJQ0g/3F9FxM8k/T0itm1ogFXk2EcAqwIvAYMjYoGkXsDfImJ4QwNsgaRHgH8Al5JqexFpB/QZgIi4r3HRtax0+5D0MLBvRMyRtDrwYEQMa2yE1Ul6MiK2zJ+XOUiTNCUiRjQuupZJ+jvwUdKB2qHA/sBk0jb024h4o4HhdTqd6j2uRpP0WHO9gIErMpY26hYRCwEiYoakPYCbJW1I5eq0OpPFEbEEeEvS0xGxACAi3pb0foNjq8VI4ATgNOAbETFF0tudPWGVWEXS2qTbB2o62o+INyUtbmxoNXmi5KrIo5JGRsQkSZsB7zU6uBpERLwPjAfGS+pBugJxGDAOKGSdgh3FiWtZA4G9gdfKugv464oPp9VekjQiIqYA5DOvTwKXA536iBl4V9JqEfEW6cgTgHx/otMnrrzTOU/STfn/yxTr99WHdIQvICStExEv5Xulnf2gB+CLwM8knU6qmPYBSS8AL+R+nd0yyzgi3iPVGnRrvupgJXypsISky4ArImJihX7XRcThDQirZpIGk85cXqrQb5eI+EsDwqqJpFUj4p0K3fsD60bE4w0Iq80kfQLYJSK+1ehY2kPSasDAiHi20bHUQlJvYGPSQcPMiHi5wSHVRNJmEfGvRsdRFE5cZmZWKH4c3szMCsWJy8zMCsWJy1Yqkk6TNFXSY5KmSNqhDWWMlHR+C8PsIen2VpR5ryQ3GmhWgyI99WTWLpJ2Aj4JbBcR7+QHPz7U2nIiYhIwqd7xmVltfMZlK5N1gVebnl6MiFcjYhZAribr75Iel3S5pFVz9+0l/VXSo5IektS79GwqV1P11zzuXyVtXi0ASd0kjcvTeUzS8RWG+YWkSfnM8MyS7mdL+kceb1zudrCkJ3J8E+q2pMw6MZ9x2cpkPHCGpH8BdwE3RMR9knoCVwKjI+JfuY7B/5b0c+AG4NCIeDjXhfd2WZnTgN1yVUN7Aj8APl0lhmOBjYBt8zh9KwxzWkTMk9QNuFvScGAmcCCwRUSEpLXysGcAe0fEiyXdzLo0n3HZSiPXKvJRUvKYA9wg6Shgc+DZkvdorgJ2y91nR8TDefwFEVFei0Qf4CZJTwDnAVu1EMaewC+byomIeRWGOSRXIfX3XN5QYAGwCLhU0n+S6uID+AtwZa5fsFvLS8Gs+Jy4bKUSEUsi4t6I+A5wHOnsqLmaIUSqd7Ca7wH3RMTWwH5AzxaGr1qmpI2Ar5PO/oYDdwA9c6IbBfwGOAD4Q56fLwOnA+sDUyT1a2H6ZoXnxGUrDUmbS9q0pNMI4DnS5b4hkjbJ3Y8A7svdB+mDplZ6Syq/vN4HeDF/PqqGMMYDX24qp8KlwjVJtYTPlzSQVF8dueqlPhFxJ/A/OXYkfSQi/hYRZ5CqOnLTGNbl+R6XrUzWAC7I94IWA08Bx0bEIklHky75dQceJl3Oe1fSoXmcXqT7W3uWlXkOcJWkE8lNmLTgUmAz4DFJ7wGXAP/b1DMiHs01hU8FniFdCgToDfw+348T8LXc/dycjAXcDTzaiuVhVkiu8snMzArFlwrNzKxQnLjMzKxQnLjMzKxQnLjMzKxQnLjMzKxQnLjMzKxQnLjMzKxQnLjMzKxQ/h/5gJQ06FnncgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ax = d.plot(kind='bar', title ='Percentage of participants in each social class for cases and controls\\n 494 cases, 466 controls, IPFJES 2020')\n",
"ax.set_xlabel(\"Social class\")\n",
"ax.set_ylabel(\"Percentage\")\n",
"ax.set_ylim(0,25)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100.0"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d['cases'].sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment