Skip to content

Instantly share code, notes, and snippets.

@dfolch
Created June 3, 2020 04:09
Show Gist options
  • Select an option

  • Save dfolch/c0f61f5e2a745ec562a5c84e776b3f4d to your computer and use it in GitHub Desktop.

Select an option

Save dfolch/c0f61f5e2a745ec562a5c84e776b3f4d to your computer and use it in GitHub Desktop.
Multilevel models in Python, R and Mplus
bp RIDAGEYR female BMXBMI SEQN
110.0 22.0 0 23.3 62161
118.0 22.0 0 23.3 62161
104.0 22.0 0 23.3 62161
108.0 14.0 0 17.3 62163
106.0 14.0 0 17.3 62163
112.0 14.0 0 17.3 62163
116.0 44.0 1 23.2 62164
118.0 44.0 1 23.2 62164
120.0 44.0 1 23.2 62164
110.0 14.0 1 27.2 62165
104.0 14.0 1 27.2 62165
106.0 14.0 1 27.2 62165
96.0 9.0 0 16.2 62166
94.0 9.0 0 16.2 62166
94.0 9.0 0 16.2 62166
126.0 21.0 0 20.1 62169
124.0 21.0 0 20.1 62169
124.0 21.0 0 20.1 62169
124.0 15.0 0 18.2 62170
128.0 15.0 0 18.2 62170
122.0 15.0 0 18.2 62170
112.0 14.0 0 19.9 62171
96.0 14.0 0 19.9 62171
108.0 14.0 0 19.9 62171
104.0 43.0 1 33.3 62172
100.0 43.0 1 33.3 62172
102.0 43.0 1 33.3 62172
98.0 80.0 0 33.9 62174
100.0 80.0 0 33.9 62174
96.0 80.0 0 33.9 62174
114.0 34.0 1 23.3 62176
100.0 34.0 1 23.3 62176
104.0 34.0 1 23.3 62176
144.0 51.0 0 20.1 62177
144.0 51.0 0 20.1 62177
152.0 51.0 0 20.1 62177
124.0 80.0 0 28.5 62178
124.0 80.0 0 28.5 62178
118.0 80.0 0 28.5 62178
124.0 55.0 0 27.6 62179
126.0 55.0 0 27.6 62179
124.0 55.0 0 27.6 62179
106.0 35.0 0 27.9 62180
108.0 35.0 0 27.9 62180
108.0 35.0 0 27.9 62180
106.0 9.0 0 16.4 62181
98.0 9.0 0 16.4 62181
102.0 9.0 0 16.4 62181
120.0 26.0 0 22.1 62184
120.0 26.0 0 22.1 62184
122.0 26.0 0 22.1 62184
118.0 16.0 0 19.7 62185
120.0 16.0 0 19.7 62185
116.0 16.0 0 19.7 62185
110.0 17.0 1 22.9 62186
108.0 17.0 1 22.9 62186
106.0 17.0 1 22.9 62186
94.0 9.0 1 16.4 62187
96.0 9.0 1 16.4 62187
92.0 9.0 1 16.4 62187
94.0 30.0 1 22.4 62189
96.0 30.0 1 22.4 62189
100.0 30.0 1 22.4 62189
120.0 15.0 1 17.0 62190
110.0 15.0 1 17.0 62190
106.0 15.0 1 17.0 62190
110.0 11.0 1 26.7 62192
106.0 11.0 1 26.7 62192
108.0 11.0 1 26.7 62192
136.0 17.0 0 28.5 62193
138.0 17.0 0 28.5 62193
144.0 17.0 0 28.5 62193
100.0 9.0 1 14.7 62194
106.0 9.0 1 14.7 62194
98.0 9.0 1 14.7 62194
110.0 35.0 0 28.2 62195
106.0 35.0 0 28.2 62195
108.0 35.0 0 28.2 62195
98.0 16.0 1 22.4 62197
106.0 16.0 1 22.4 62197
106.0 16.0 1 22.4 62197
112.0 57.0 0 28.0 62199
108.0 57.0 0 28.0 62199
112.0 57.0 0 28.0 62199
128.0 42.0 0 27.6 62200
122.0 42.0 0 27.6 62200
132.0 42.0 0 27.6 62200
136.0 36.0 0 24.7 62202
138.0 36.0 0 24.7 62202
96.0 8.0 0 16.2 62203
92.0 8.0 0 16.2 62203
94.0 8.0 0 16.2 62203
122.0 28.0 0 28.9 62205
116.0 28.0 0 28.9 62205
122.0 28.0 0 28.9 62205
104.0 35.0 1 29.1 62206
108.0 35.0 1 29.1 62206
108.0 35.0 1 29.1 62206
108.0 38.0 0 22.2 62208
106.0 38.0 0 22.2 62208
102.0 38.0 0 22.2 62208
106.0 62.0 1 26.0 62209
116.0 62.0 1 26.0 62209
110.0 62.0 1 26.0 62209
116.0 15.0 0 26.0 62210
106.0 15.0 0 26.0 62210
114.0 15.0 0 26.0 62210
110.0 22.0 1 23.8 62214
108.0 22.0 1 23.8 62214
110.0 22.0 1 23.8 62214
132.0 65.0 1 26.7 62215
130.0 65.0 1 26.7 62215
134.0 65.0 1 26.7 62215
130.0 77.0 1 30.6 62217
132.0 77.0 1 30.6 62217
136.0 77.0 1 30.6 62217
134.0 38.0 1 45.4 62218
134.0 38.0 1 45.4 62218
134.0 38.0 1 45.4 62218
118.0 31.0 1 40.4 62220
118.0 31.0 1 40.4 62220
122.0 31.0 1 40.4 62220
134.0 41.0 1 52.6 62221
128.0 41.0 1 52.6 62221
130.0 41.0 1 52.6 62221
108.0 32.0 0 25.0 62222
106.0 32.0 0 25.0 62222
100.0 32.0 0 25.0 62222
108.0 54.0 0 20.5 62223
102.0 54.0 0 20.5 62223
108.0 54.0 0 20.5 62223
102.0 29.0 1 27.2 62224
100.0 29.0 1 27.2 62224
98.0 29.0 1 27.2 62224
104.0 13.0 1 20.1 62225
96.0 13.0 1 20.1 62225
102.0 13.0 1 20.1 62225
126.0 80.0 0 28.4 62226
126.0 80.0 0 28.4 62226
122.0 80.0 0 28.4 62226
112.0 19.0 0 22.7 62227
106.0 19.0 0 22.7 62227
102.0 19.0 0 22.7 62227
118.0 50.0 0 43.4 62228
110.0 50.0 0 43.4 62228
116.0 50.0 0 43.4 62228
120.0 31.0 1 28.6 62229
126.0 31.0 1 28.6 62229
122.0 31.0 1 28.6 62229
108.0 75.0 0 29.7 62230
104.0 75.0 0 29.7 62230
98.0 75.0 0 29.7 62230
112.0 48.0 1 33.2 62231
120.0 48.0 1 33.2 62231
116.0 48.0 1 33.2 62231
128.0 42.0 1 31.6 62232
110.0 42.0 1 31.6 62232
120.0 42.0 1 31.6 62232
102.0 63.0 1 45.2 62233
98.0 63.0 1 45.2 62233
98.0 63.0 1 45.2 62233
118.0 23.0 0 23.8 62234
118.0 23.0 0 23.8 62234
124.0 23.0 0 23.8 62234
130.0 61.0 0 23.2 62236
140.0 61.0 0 23.2 62236
142.0 61.0 0 23.2 62236
118.0 58.0 1 39.9 62237
126.0 58.0 1 39.9 62237
124.0 58.0 1 39.9 62237
114.0 22.0 1 23.3 62239
118.0 22.0 1 23.3 62239
124.0 22.0 1 23.3 62239
122.0 14.0 1 21.2 62240
122.0 14.0 1 21.2 62240
118.0 14.0 1 21.2 62240
130.0 24.0 0 27.0 62242
146.0 24.0 0 27.0 62242
138.0 24.0 0 27.0 62242
88.0 8.0 0 15.3 62245
86.0 8.0 0 15.3 62245
86.0 8.0 0 15.3 62245
130.0 65.0 0 26.6 62248
132.0 65.0 0 26.6 62248
132.0 65.0 0 26.6 62248
124.0 26.0 1 20.3 62249
122.0 26.0 1 20.3 62249
122.0 26.0 1 20.3 62249
114.0 34.0 0 25.9 62250
104.0 34.0 0 25.9 62250
116.0 34.0 0 25.9 62250
170.0 51.0 1 31.9 62251
166.0 51.0 1 31.9 62251
168.0 51.0 1 31.9 62251
104.0 11.0 1 16.0 62252
110.0 11.0 1 16.0 62252
106.0 11.0 1 16.0 62252
90.0 18.0 0 17.2 62253
94.0 18.0 0 17.2 62253
98.0 18.0 0 17.2 62253
108.0 14.0 0 19.4 62254
114.0 14.0 0 19.4 62254
112.0 14.0 0 19.4 62254
110.0 65.0 0 27.1 62255
114.0 65.0 0 27.1 62255
112.0 65.0 0 27.1 62255
124.0 80.0 0 26.0 62256
118.0 80.0 0 26.0 62256
126.0 80.0 0 26.0 62256
126.0 47.0 0 31.0 62258
126.0 47.0 0 31.0 62258
124.0 47.0 0 31.0 62258
134.0 61.0 0 41.7 62259
140.0 61.0 0 41.7 62259
138.0 61.0 0 41.7 62259
104.0 10.0 0 14.9 62260
104.0 10.0 0 14.9 62260
100.0 10.0 0 14.9 62260
120.0 47.0 0 28.6 62261
118.0 47.0 0 28.6 62261
112.0 47.0 0 28.6 62261
134.0 77.0 0 31.1 62264
134.0 77.0 0 31.1 62264
134.0 77.0 0 31.1 62264
136.0 52.0 0 31.4 62265
126.0 52.0 0 31.4 62265
124.0 52.0 0 31.4 62265
98.0 64.0 0 16.6 62266
96.0 64.0 0 16.6 62266
96.0 64.0 0 16.6 62266
114.0 27.0 1 43.9 62267
114.0 27.0 1 43.9 62267
118.0 27.0 1 43.9 62267
96.0 15.0 1 19.1 62268
92.0 15.0 1 19.1 62268
96.0 15.0 1 19.1 62268
132.0 29.0 0 22.8 62269
136.0 29.0 0 22.8 62269
136.0 29.0 0 22.8 62269
110.0 33.0 1 32.3 62270
114.0 33.0 1 32.3 62270
114.0 33.0 1 32.3 62270
106.0 9.0 0 20.9 62272
106.0 9.0 0 20.9 62272
108.0 9.0 0 20.9 62272
124.0 15.0 1 30.0 62273
114.0 15.0 1 30.0 62273
118.0 15.0 1 30.0 62273
106.0 41.0 1 21.8 62275
106.0 41.0 1 21.8 62275
114.0 41.0 1 21.8 62275
96.0 9.0 0 13.3 62276
94.0 9.0 0 13.3 62276
94.0 9.0 0 13.3 62276
106.0 55.0 1 25.0 62277
116.0 55.0 1 25.0 62277
106.0 55.0 1 25.0 62277
118.0 72.0 1 28.3 62278
122.0 72.0 1 28.3 62278
118.0 72.0 1 28.3 62278
98.0 80.0 0 21.9 62279
114.0 80.0 0 21.9 62279
104.0 80.0 0 21.9 62279
134.0 54.0 1 24.3 62280
126.0 54.0 1 24.3 62280
132.0 54.0 1 24.3 62280
102.0 13.0 1 22.3 62281
106.0 13.0 1 22.3 62281
108.0 13.0 1 22.3 62281
108.0 57.0 1 23.7 62282
108.0 57.0 1 23.7 62282
110.0 57.0 1 23.7 62282
134.0 64.0 1 25.6 62284
124.0 64.0 1 25.6 62284
132.0 64.0 1 25.6 62284
116.0 17.0 1 33.1 62285
124.0 17.0 1 33.1 62285
122.0 17.0 1 33.1 62285
128.0 30.0 0 41.0 62286
124.0 30.0 0 41.0 62286
128.0 30.0 0 41.0 62286
126.0 73.0 1 26.8 62287
132.0 73.0 1 26.8 62287
132.0 73.0 1 26.8 62287
118.0 29.0 0 20.1 62288
118.0 29.0 0 20.1 62288
122.0 29.0 0 20.1 62288
138.0 71.0 0 28.8 62289
142.0 71.0 0 28.8 62289
134.0 71.0 0 28.8 62289
120.0 56.0 0 29.9 62291
116.0 56.0 0 29.9 62291
122.0 56.0 0 29.9 62291
102.0 80.0 0 25.2 62292
96.0 80.0 0 25.2 62292
94.0 80.0 0 25.2 62292
130.0 67.0 0 21.3 62293
132.0 67.0 0 21.3 62293
130.0 67.0 0 21.3 62293
102.0 9.0 0 19.9 62294
98.0 9.0 0 19.9 62294
100.0 9.0 0 19.9 62294
142.0 69.0 1 32.7 62295
138.0 69.0 1 32.7 62295
142.0 69.0 1 32.7 62295
128.0 19.0 0 40.3 62296
134.0 19.0 0 40.3 62296
130.0 19.0 0 40.3 62296
126.0 43.0 0 31.1 62297
122.0 43.0 0 31.1 62297
122.0 43.0 0 31.1 62297
120.0 15.0 0 26.6 62298
124.0 15.0 0 26.6 62298
116.0 15.0 0 26.6 62298
104.0 8.0 0 15.5 62299
100.0 8.0 0 15.5 62299
102.0 8.0 0 15.5 62299
118.0 23.0 0 33.0 62301
112.0 23.0 0 33.0 62301
118.0 23.0 0 33.0 62301
138.0 51.0 1 25.4 62302
134.0 51.0 1 25.4 62302
136.0 51.0 1 25.4 62302
150.0 76.0 1 31.9 62303
140.0 76.0 1 31.9 62303
146.0 76.0 1 31.9 62303
100.0 10.0 0 25.6 62305
104.0 10.0 0 25.6 62305
114.0 10.0 0 25.6 62305
120.0 61.0 0 33.5 62307
118.0 61.0 0 33.5 62307
122.0 61.0 0 33.5 62307
108.0 78.0 1 24.6 62308
110.0 78.0 1 24.6 62308
112.0 78.0 1 24.6 62308
114.0 47.0 1 34.0 62309
126.0 47.0 1 34.0 62309
120.0 47.0 1 34.0 62309
110.0 8.0 1 18.7 62310
110.0 8.0 1 18.7 62310
110.0 8.0 1 18.7 62310
116.0 18.0 0 24.4 62311
118.0 18.0 0 24.4 62311
116.0 18.0 0 24.4 62311
132.0 63.0 1 34.7 62312
124.0 63.0 1 34.7 62312
124.0 63.0 1 34.7 62312
94.0 61.0 0 34.2 62314
110.0 61.0 0 34.2 62314
126.0 61.0 0 34.2 62314
148.0 80.0 1 22.7 62315
150.0 80.0 1 22.7 62315
140.0 80.0 1 22.7 62315
116.0 46.0 0 27.6 62317
116.0 46.0 0 27.6 62317
122.0 46.0 0 27.6 62317
154.0 64.0 1 30.0 62320
152.0 64.0 1 30.0 62320
150.0 64.0 1 30.0 62320
90.0 8.0 1 16.2 62321
88.0 8.0 1 16.2 62321
88.0 8.0 1 16.2 62321
102.0 60.0 1 28.0 62324
102.0 60.0 1 28.0 62324
102.0 60.0 1 28.0 62324
124.0 43.0 1 18.4 62325
128.0 43.0 1 18.4 62325
124.0 43.0 1 18.4 62325
108.0 69.0 0 26.4 62326
100.0 69.0 0 26.4 62326
106.0 19.0 1 38.5 62327
102.0 19.0 1 38.5 62327
108.0 19.0 1 38.5 62327
84.0 9.0 1 14.9 62328
86.0 9.0 1 14.9 62328
82.0 9.0 1 14.9 62328
96.0 33.0 1 18.4 62330
96.0 33.0 1 18.4 62330
96.0 33.0 1 18.4 62330
102.0 9.0 0 16.6 62331
104.0 9.0 0 16.6 62331
104.0 9.0 0 16.6 62331
134.0 22.0 0 32.6 62332
130.0 22.0 0 32.6 62332
138.0 22.0 0 32.6 62332
110.0 9.0 0 26.2 62334
106.0 9.0 0 26.2 62334
108.0 9.0 0 26.2 62334
126.0 14.0 0 24.2 62335
124.0 14.0 0 24.2 62335
124.0 14.0 0 24.2 62335
98.0 55.0 0 28.5 62336
100.0 55.0 0 28.5 62336
102.0 55.0 0 28.5 62336
102.0 10.0 1 17.7 62337
98.0 10.0 1 17.7 62337
102.0 10.0 1 17.7 62337
132.0 29.0 0 29.2 62339
126.0 29.0 0 29.2 62339
138.0 29.0 0 29.2 62339
106.0 44.0 0 25.9 62340
106.0 44.0 0 25.9 62340
106.0 44.0 0 25.9 62340
90.0 8.0 0 15.0 62341
94.0 8.0 0 15.0 62341
92.0 8.0 0 15.0 62341
110.0 38.0 1 32.9 62342
114.0 38.0 1 32.9 62342
126.0 38.0 1 32.9 62342
120.0 28.0 0 25.2 62343
114.0 28.0 0 25.2 62343
122.0 28.0 0 25.2 62343
118.0 19.0 0 27.4 62346
120.0 19.0 0 27.4 62346
114.0 19.0 0 27.4 62346
158.0 71.0 1 24.0 62347
150.0 71.0 1 24.0 62347
156.0 71.0 1 24.0 62347
102.0 19.0 1 22.0 62348
110.0 19.0 1 22.0 62348
106.0 19.0 1 22.0 62348
116.0 23.0 1 38.0 62349
112.0 23.0 1 38.0 62349
106.0 23.0 1 38.0 62349
112.0 43.0 1 22.3 62350
118.0 43.0 1 22.3 62350
112.0 43.0 1 22.3 62350
116.0 80.0 0 27.8 62353
110.0 80.0 0 27.8 62353
122.0 80.0 0 27.8 62353
110.0 11.0 1 17.8 62354
108.0 11.0 1 17.8 62354
110.0 11.0 1 17.8 62354
106.0 16.0 1 20.7 62355
106.0 16.0 1 20.7 62355
110.0 16.0 1 20.7 62355
94.0 14.0 1 20.2 62356
92.0 14.0 1 20.2 62356
96.0 14.0 1 20.2 62356
104.0 36.0 0 25.6 62357
110.0 36.0 0 25.6 62357
110.0 36.0 0 25.6 62357
110.0 54.0 1 27.1 62359
114.0 54.0 1 27.1 62359
114.0 54.0 1 27.1 62359
134.0 17.0 0 18.9 62360
126.0 17.0 0 18.9 62360
134.0 17.0 0 18.9 62360
114.0 11.0 1 25.3 62362
112.0 11.0 1 25.3 62362
116.0 11.0 1 25.3 62362
108.0 44.0 1 25.8 62363
106.0 44.0 1 25.8 62363
114.0 44.0 1 25.8 62363
182.0 80.0 0 21.7 62366
180.0 80.0 0 21.7 62366
116.0 50.0 0 27.4 62367
120.0 50.0 0 27.4 62367
118.0 50.0 0 27.4 62367
96.0 8.0 1 16.0 62369
100.0 8.0 1 16.0 62369
104.0 8.0 1 16.0 62369
116.0 21.0 0 18.3 62370
112.0 21.0 0 18.3 62370
116.0 21.0 0 18.3 62370
104.0 32.0 0 18.6 62371
114.0 32.0 0 18.6 62371
110.0 32.0 0 18.6 62371
152.0 55.0 1 30.4 62372
154.0 55.0 1 30.4 62372
146.0 55.0 1 30.4 62372
116.0 31.0 1 23.1 62374
120.0 31.0 1 23.1 62374
122.0 31.0 1 23.1 62374
118.0 24.0 0 38.3 62375
118.0 24.0 0 38.3 62375
114.0 24.0 0 38.3 62375
158.0 78.0 1 24.7 62377
154.0 78.0 1 24.7 62377
152.0 78.0 1 24.7 62377
126.0 68.0 1 33.2 62378
120.0 68.0 1 33.2 62378
132.0 68.0 1 33.2 62378
102.0 40.0 0 20.2 62379
104.0 40.0 0 20.2 62379
104.0 40.0 0 20.2 62379
126.0 16.0 0 37.5 62380
124.0 16.0 0 37.5 62380
112.0 16.0 0 37.5 62380
140.0 21.0 0 20.3 62381
138.0 21.0 0 20.3 62381
124.0 23.0 0 26.7 62383
124.0 23.0 0 26.7 62383
118.0 23.0 0 26.7 62383
122.0 40.0 0 30.5 62384
122.0 40.0 0 30.5 62384
120.0 40.0 0 30.5 62384
112.0 35.0 0 38.4 62386
112.0 35.0 0 38.4 62386
116.0 35.0 0 38.4 62386
110.0 23.0 0 24.5 62387
108.0 23.0 0 24.5 62387
110.0 23.0 0 24.5 62387
128.0 69.0 1 38.4 62388
120.0 69.0 1 38.4 62388
124.0 69.0 1 38.4 62388
110.0 16.0 1 20.4 62389
110.0 16.0 1 20.4 62389
110.0 16.0 1 20.4 62389
102.0 25.0 1 18.7 62390
104.0 25.0 1 18.7 62390
104.0 25.0 1 18.7 62390
108.0 40.0 1 25.1 62391
116.0 40.0 1 25.1 62391
106.0 40.0 1 25.1 62391
108.0 20.0 0 27.1 62393
110.0 20.0 0 27.1 62393
114.0 20.0 0 27.1 62393
108.0 10.0 0 23.4 62396
108.0 10.0 0 23.4 62396
106.0 10.0 0 23.4 62396
128.0 70.0 1 40.6 62397
122.0 70.0 1 40.6 62397
128.0 70.0 1 40.6 62397
86.0 9.0 0 14.6 62398
90.0 9.0 0 14.6 62398
84.0 9.0 0 14.6 62398
116.0 53.0 1 30.7 62399
114.0 53.0 1 30.7 62399
114.0 53.0 1 30.7 62399
166.0 31.0 1 36.3 62400
156.0 31.0 1 36.3 62400
166.0 31.0 1 36.3 62400
104.0 15.0 1 23.7 62401
102.0 15.0 1 23.7 62401
102.0 15.0 1 23.7 62401
108.0 48.0 0 23.3 62402
114.0 48.0 0 23.3 62402
102.0 48.0 0 23.3 62402
128.0 44.0 0 26.1 62404
128.0 44.0 0 26.1 62404
128.0 44.0 0 26.1 62404
104.0 10.0 1 14.0 62406
112.0 10.0 1 14.0 62406
108.0 10.0 1 14.0 62406
138.0 49.0 0 29.9 62407
136.0 49.0 0 29.9 62407
134.0 49.0 0 29.9 62407
186.0 80.0 1 30.5 62409
190.0 80.0 1 30.5 62409
186.0 80.0 1 30.5 62409
130.0 51.0 1 26.3 62411
138.0 51.0 1 26.3 62411
136.0 51.0 1 26.3 62411
108.0 16.0 0 22.7 62412
118.0 16.0 0 22.7 62412
114.0 16.0 0 22.7 62412
136.0 65.0 0 40.0 62413
140.0 65.0 0 40.0 62413
136.0 65.0 0 40.0 62413
136.0 58.0 0 16.5 62414
132.0 58.0 0 16.5 62414
114.0 58.0 0 16.5 62414
92.0 27.0 1 26.7 62415
90.0 27.0 1 26.7 62415
98.0 27.0 1 26.7 62415
110.0 19.0 1 35.1 62416
104.0 19.0 1 35.1 62416
106.0 19.0 1 35.1 62416
110.0 26.0 1 31.6 62417
104.0 26.0 1 31.6 62417
102.0 26.0 1 31.6 62417
166.0 80.0 0 23.5 62418
156.0 80.0 0 23.5 62418
162.0 80.0 0 23.5 62418
150.0 80.0 0 26.5 62419
146.0 80.0 0 26.5 62419
144.0 80.0 0 26.5 62419
106.0 23.0 0 24.5 62421
104.0 23.0 0 24.5 62421
108.0 23.0 0 24.5 62421
118.0 72.0 1 29.0 62422
116.0 72.0 1 29.0 62422
120.0 72.0 1 29.0 62422
136.0 20.0 0 30.4 62424
136.0 20.0 0 30.4 62424
134.0 20.0 0 30.4 62424
102.0 30.0 1 22.2 62425
100.0 30.0 1 22.2 62425
104.0 30.0 1 22.2 62425
96.0 9.0 0 21.3 62426
90.0 9.0 0 21.3 62426
90.0 9.0 0 21.3 62426
120.0 15.0 0 17.3 62427
108.0 15.0 0 17.3 62427
116.0 15.0 0 17.3 62427
114.0 12.0 1 17.2 62428
114.0 12.0 1 17.2 62428
120.0 12.0 1 17.2 62428
118.0 47.0 0 37.3 62429
118.0 47.0 0 37.3 62429
118.0 47.0 0 37.3 62429
124.0 27.0 0 37.9 62430
118.0 27.0 0 37.9 62430
118.0 27.0 0 37.9 62430
98.0 54.0 0 18.9 62431
102.0 54.0 0 18.9 62431
100.0 54.0 0 18.9 62431
144.0 38.0 1 23.4 62432
138.0 38.0 1 23.4 62432
146.0 38.0 1 23.4 62432
94.0 10.0 0 18.8 62433
96.0 10.0 0 18.8 62433
94.0 10.0 0 18.8 62433
122.0 61.0 1 34.0 62434
122.0 61.0 1 34.0 62434
126.0 61.0 1 34.0 62434
130.0 39.0 0 27.2 62437
130.0 39.0 0 27.2 62437
132.0 39.0 0 27.2 62437
140.0 75.0 0 33.0 62439
136.0 75.0 0 33.0 62439
138.0 75.0 0 33.0 62439
114.0 22.0 0 30.2 62440
122.0 22.0 0 30.2 62440
116.0 22.0 0 30.2 62440
144.0 68.0 0 24.0 62441
130.0 68.0 0 24.0 62441
136.0 68.0 0 24.0 62441
116.0 23.0 1 33.6 62444
112.0 23.0 1 33.6 62444
112.0 23.0 1 33.6 62444
142.0 42.0 1 39.1 62445
142.0 42.0 1 39.1 62445
140.0 42.0 1 39.1 62445
90.0 19.0 1 19.9 62447
98.0 19.0 1 19.9 62447
94.0 19.0 1 19.9 62447
114.0 13.0 0 28.3 62448
122.0 13.0 0 28.3 62448
118.0 13.0 0 28.3 62448
100.0 38.0 1 26.4 62449
104.0 38.0 1 26.4 62449
102.0 38.0 1 26.4 62449
138.0 57.0 0 28.2 62450
140.0 57.0 0 28.2 62450
138.0 57.0 0 28.2 62450
112.0 39.0 0 33.1 62452
110.0 39.0 0 33.1 62452
102.0 39.0 0 33.1 62452
134.0 64.0 1 36.8 62454
124.0 64.0 1 36.8 62454
130.0 64.0 1 36.8 62454
112.0 18.0 0 48.9 62455
114.0 18.0 0 48.9 62455
122.0 18.0 0 48.9 62455
126.0 17.0 0 29.0 62456
130.0 17.0 0 29.0 62456
126.0 17.0 0 29.0 62456
104.0 69.0 0 25.7 62457
100.0 69.0 0 25.7 62457
100.0 69.0 0 25.7 62457
106.0 13.0 0 18.8 62458
106.0 13.0 0 18.8 62458
104.0 13.0 0 18.8 62458
124.0 41.0 0 21.9 62460
130.0 41.0 0 21.9 62460
120.0 41.0 0 21.9 62460
114.0 29.0 1 35.3 62461
110.0 29.0 1 35.3 62461
118.0 29.0 1 35.3 62461
90.0 11.0 1 22.0 62462
96.0 11.0 1 22.0 62462
96.0 11.0 1 22.0 62462
114.0 32.0 0 28.2 62464
116.0 32.0 0 28.2 62464
114.0 32.0 0 28.2 62464
112.0 65.0 0 25.6 62467
122.0 65.0 0 25.6 62467
116.0 65.0 0 25.6 62467
108.0 9.0 0 18.5 62469
106.0 9.0 0 18.5 62469
108.0 9.0 0 18.5 62469
106.0 76.0 1 28.0 62471
104.0 76.0 1 28.0 62471
106.0 76.0 1 28.0 62471
172.0 31.0 0 30.3 62472
172.0 31.0 0 30.3 62472
172.0 31.0 0 30.3 62472
102.0 17.0 1 34.3 62473
96.0 17.0 1 34.3 62473
96.0 17.0 1 34.3 62473
106.0 22.0 0 25.8 62475
104.0 22.0 0 25.8 62475
112.0 22.0 0 25.8 62475
116.0 40.0 0 25.8 62476
114.0 40.0 0 25.8 62476
114.0 40.0 0 25.8 62476
100.0 11.0 0 21.3 62477
100.0 11.0 0 21.3 62477
100.0 11.0 0 21.3 62477
134.0 43.0 0 28.5 62480
130.0 43.0 0 28.5 62480
134.0 43.0 0 28.5 62480
94.0 39.0 1 27.7 62481
96.0 39.0 1 27.7 62481
98.0 39.0 1 27.7 62481
96.0 32.0 1 26.5 62482
92.0 32.0 1 26.5 62482
94.0 32.0 1 26.5 62482
94.0 11.0 0 23.8 62483
94.0 11.0 0 23.8 62483
98.0 11.0 0 23.8 62483
144.0 42.0 1 47.2 62484
144.0 42.0 1 47.2 62484
144.0 42.0 1 47.2 62484
118.0 21.0 0 33.3 62485
118.0 21.0 0 33.3 62485
112.0 21.0 0 33.3 62485
126.0 65.0 0 25.5 62487
128.0 65.0 0 25.5 62487
134.0 65.0 0 25.5 62487
120.0 61.0 1 27.8 62491
122.0 61.0 1 27.8 62491
118.0 61.0 1 27.8 62491
96.0 28.0 0 26.8 62494
96.0 28.0 0 26.8 62494
96.0 28.0 0 26.8 62494
106.0 44.0 0 28.6 62495
102.0 44.0 0 28.6 62495
106.0 44.0 0 28.6 62495
102.0 12.0 0 16.0 62497
104.0 12.0 0 16.0 62497
96.0 12.0 0 16.0 62497
122.0 13.0 1 24.3 62498
126.0 13.0 1 24.3 62498
126.0 13.0 1 24.3 62498
118.0 52.0 1 24.3 62500
120.0 52.0 1 24.3 62500
122.0 52.0 1 24.3 62500
110.0 30.0 1 25.6 62501
110.0 30.0 1 25.6 62501
104.0 30.0 1 25.6 62501
118.0 35.0 0 36.5 62502
124.0 35.0 0 36.5 62502
124.0 35.0 0 36.5 62502
112.0 30.0 1 38.9 62504
110.0 30.0 1 38.9 62504
118.0 30.0 1 38.9 62504
108.0 46.0 1 28.4 62506
110.0 46.0 1 28.4 62506
110.0 46.0 1 28.4 62506
94.0 17.0 1 28.6 62507
102.0 17.0 1 28.6 62507
90.0 17.0 1 28.6 62507
112.0 60.0 1 24.1 62509
116.0 60.0 1 24.1 62509
120.0 60.0 1 24.1 62509
168.0 80.0 1 29.8 62510
164.0 80.0 1 29.8 62510
164.0 80.0 1 29.8 62510
94.0 9.0 0 18.5 62511
100.0 9.0 0 18.5 62511
94.0 9.0 0 18.5 62511
134.0 39.0 0 19.1 62512
122.0 39.0 0 19.1 62512
118.0 39.0 0 19.1 62512
108.0 46.0 1 26.7 62513
104.0 46.0 1 26.7 62513
108.0 46.0 1 26.7 62513
136.0 44.0 0 33.6 62514
138.0 44.0 0 33.6 62514
136.0 44.0 0 33.6 62514
114.0 10.0 0 19.5 62516
118.0 10.0 0 19.5 62516
118.0 10.0 0 19.5 62516
154.0 80.0 0 32.3 62517
158.0 80.0 0 32.3 62517
156.0 80.0 0 32.3 62517
144.0 56.0 0 25.8 62519
138.0 56.0 0 25.8 62519
140.0 56.0 0 25.8 62519
134.0 59.0 1 23.1 62521
136.0 59.0 1 23.1 62521
140.0 59.0 1 23.1 62521
140.0 54.0 0 31.2 62522
142.0 54.0 0 31.2 62522
136.0 54.0 0 31.2 62522
112.0 33.0 0 30.1 62523
110.0 33.0 0 30.1 62523
114.0 33.0 0 30.1 62523
114.0 23.0 0 24.0 62524
108.0 23.0 0 24.0 62524
110.0 23.0 0 24.0 62524
118.0 15.0 0 29.5 62525
120.0 15.0 0 29.5 62525
118.0 15.0 0 29.5 62525
116.0 62.0 1 28.7 62526
116.0 62.0 1 28.7 62526
114.0 62.0 1 28.7 62526
138.0 79.0 0 25.8 62527
136.0 79.0 0 25.8 62527
156.0 79.0 0 25.8 62527
102.0 40.0 0 24.8 62528
102.0 40.0 0 24.8 62528
116.0 40.0 0 24.8 62528
126.0 59.0 0 45.6 62529
124.0 59.0 0 45.6 62529
132.0 59.0 0 45.6 62529
118.0 51.0 1 36.3 62530
122.0 51.0 1 36.3 62530
124.0 51.0 1 36.3 62530
110.0 52.0 1 33.3 62531
106.0 52.0 1 33.3 62531
92.0 52.0 1 33.3 62531
126.0 64.0 1 39.5 62532
128.0 64.0 1 39.5 62532
120.0 64.0 1 39.5 62532
102.0 13.0 0 25.3 62534
108.0 13.0 0 25.3 62534
106.0 13.0 0 25.3 62534
110.0 46.0 0 27.5 62536
106.0 46.0 0 27.5 62536
108.0 46.0 0 27.5 62536
100.0 10.0 1 22.4 62537
96.0 10.0 1 22.4 62537
102.0 10.0 1 22.4 62537
148.0 60.0 0 31.9 62539
140.0 60.0 0 31.9 62539
144.0 60.0 0 31.9 62539
118.0 13.0 1 22.6 62541
114.0 13.0 1 22.6 62541
112.0 13.0 1 22.6 62541
86.0 11.0 1 19.6 62542
96.0 11.0 1 19.6 62542
86.0 11.0 1 19.6 62542
96.0 8.0 0 16.2 62545
98.0 8.0 0 16.2 62545
96.0 8.0 0 16.2 62545
150.0 64.0 0 36.5 62546
142.0 64.0 0 36.5 62546
138.0 64.0 0 36.5 62546
106.0 9.0 0 28.8 62547
106.0 9.0 0 28.8 62547
106.0 9.0 0 28.8 62547
120.0 57.0 0 34.2 62548
120.0 57.0 0 34.2 62548
118.0 57.0 0 34.2 62548
118.0 53.0 0 21.5 62549
122.0 53.0 0 21.5 62549
114.0 53.0 0 21.5 62549
96.0 9.0 1 18.9 62550
96.0 9.0 1 18.9 62550
96.0 9.0 1 18.9 62550
136.0 37.0 1 48.2 62551
128.0 37.0 1 48.2 62551
132.0 37.0 1 48.2 62551
118.0 41.0 1 22.5 62552
120.0 41.0 1 22.5 62552
108.0 41.0 1 22.5 62552
84.0 8.0 0 15.8 62553
90.0 8.0 0 15.8 62553
88.0 8.0 0 15.8 62553
114.0 15.0 1 18.5 62554
110.0 15.0 1 18.5 62554
114.0 15.0 1 18.5 62554
130.0 35.0 0 20.2 62555
128.0 35.0 0 20.2 62555
126.0 35.0 0 20.2 62555
120.0 31.0 1 22.4 62556
124.0 31.0 1 22.4 62556
128.0 31.0 1 22.4 62556
98.0 10.0 0 17.8 62557
96.0 10.0 0 17.8 62557
96.0 10.0 0 17.8 62557
108.0 49.0 1 38.2 62558
110.0 49.0 1 38.2 62558
104.0 49.0 1 38.2 62558
108.0 9.0 1 16.7 62559
110.0 9.0 1 16.7 62559
110.0 9.0 1 16.7 62559
102.0 10.0 1 17.8 62561
96.0 10.0 1 17.8 62561
96.0 10.0 1 17.8 62561
124.0 13.0 1 42.7 62564
126.0 13.0 1 42.7 62564
126.0 13.0 1 42.7 62564
126.0 23.0 0 31.7 62565
130.0 23.0 0 31.7 62565
138.0 23.0 0 31.7 62565
184.0 80.0 1 22.4 62567
180.0 80.0 1 22.4 62567
164.0 80.0 1 22.4 62567
100.0 32.0 1 27.8 62571
102.0 32.0 1 27.8 62571
102.0 32.0 1 27.8 62571
98.0 48.0 1 29.6 62573
110.0 48.0 1 29.6 62573
112.0 48.0 1 29.6 62573
114.0 13.0 1 31.0 62574
112.0 13.0 1 31.0 62574
118.0 13.0 1 31.0 62574
132.0 24.0 1 22.0 62575
134.0 24.0 1 22.0 62575
130.0 24.0 1 22.0 62575
130.0 66.0 0 36.5 62576
128.0 66.0 0 36.5 62576
130.0 66.0 0 36.5 62576
128.0 71.0 1 35.6 62577
132.0 71.0 1 35.6 62577
132.0 71.0 1 35.6 62577
136.0 78.0 0 23.8 62579
142.0 78.0 0 23.8 62579
134.0 78.0 0 23.8 62579
104.0 14.0 1 17.8 62580
106.0 14.0 1 17.8 62580
108.0 14.0 1 17.8 62580
100.0 10.0 1 17.0 62581
100.0 10.0 1 17.0 62581
100.0 10.0 1 17.0 62581
122.0 22.0 0 23.2 62584
126.0 22.0 0 23.2 62584
124.0 22.0 0 23.2 62584
120.0 80.0 1 34.3 62585
100.0 80.0 1 34.3 62585
116.0 80.0 1 34.3 62585
116.0 70.0 0 40.1 62586
112.0 70.0 0 40.1 62586
116.0 70.0 0 40.1 62586
134.0 73.0 0 24.8 62587
136.0 73.0 0 24.8 62587
124.0 73.0 0 24.8 62587
132.0 21.0 0 20.7 62588
124.0 21.0 0 20.7 62588
126.0 21.0 0 20.7 62588
146.0 75.0 1 24.8 62589
144.0 75.0 1 24.8 62589
132.0 75.0 1 24.8 62589
92.0 11.0 0 16.0 62590
94.0 11.0 0 16.0 62590
92.0 11.0 0 16.0 62590
118.0 10.0 0 16.2 62591
124.0 10.0 0 16.2 62591
116.0 10.0 0 16.2 62591
108.0 72.0 1 34.5 62593
110.0 72.0 1 34.5 62593
110.0 72.0 1 34.5 62593
94.0 28.0 1 23.8 62595
98.0 28.0 1 23.8 62595
94.0 28.0 1 23.8 62595
110.0 52.0 1 32.5 62596
106.0 52.0 1 32.5 62596
110.0 52.0 1 32.5 62596
126.0 60.0 1 50.5 62597
96.0 60.0 1 50.5 62597
120.0 60.0 1 50.5 62597
116.0 18.0 0 37.4 62598
112.0 18.0 0 37.4 62598
118.0 18.0 0 37.4 62598
150.0 50.0 1 30.0 62599
148.0 50.0 1 30.0 62599
148.0 50.0 1 30.0 62599
104.0 10.0 0 19.9 62600
104.0 10.0 0 19.9 62600
104.0 10.0 0 19.9 62600
130.0 65.0 0 26.1 62601
132.0 65.0 0 26.1 62601
134.0 65.0 0 26.1 62601
140.0 80.0 1 25.8 62602
138.0 80.0 1 25.8 62602
136.0 80.0 1 25.8 62602
108.0 38.0 1 52.2 62603
114.0 38.0 1 52.2 62603
112.0 38.0 1 52.2 62603
144.0 73.0 1 22.2 62604
142.0 73.0 1 22.2 62604
150.0 73.0 1 22.2 62604
112.0 9.0 0 19.3 62609
114.0 9.0 0 19.3 62609
106.0 9.0 0 19.3 62609
100.0 12.0 1 30.3 62610
104.0 12.0 1 30.3 62610
94.0 12.0 1 30.3 62610
150.0 45.0 0 30.7 62611
146.0 45.0 0 30.7 62611
150.0 45.0 0 30.7 62611
104.0 38.0 1 30.5 62612
108.0 38.0 1 30.5 62612
108.0 38.0 1 30.5 62612
114.0 29.0 1 34.2 62613
120.0 29.0 1 34.2 62613
118.0 29.0 1 34.2 62613
110.0 12.0 0 18.4 62614
108.0 12.0 0 18.4 62614
110.0 12.0 0 18.4 62614
108.0 37.0 1 19.3 62616
100.0 37.0 1 19.3 62616
110.0 37.0 1 19.3 62616
94.0 8.0 0 14.7 62617
94.0 8.0 0 14.7 62617
94.0 8.0 0 14.7 62617
96.0 10.0 0 15.4 62618
104.0 10.0 0 15.4 62618
102.0 10.0 0 15.4 62618
156.0 80.0 0 24.9 62619
142.0 80.0 0 24.9 62619
148.0 80.0 0 24.9 62619
114.0 41.0 0 28.8 62621
110.0 41.0 0 28.8 62621
110.0 41.0 0 28.8 62621
94.0 15.0 1 22.4 62622
96.0 15.0 1 22.4 62622
102.0 15.0 1 22.4 62622
140.0 78.0 1 26.9 62623
132.0 78.0 1 26.9 62623
134.0 78.0 1 26.9 62623
120.0 40.0 1 20.9 62624
114.0 40.0 1 20.9 62624
116.0 40.0 1 20.9 62624
126.0 60.0 1 23.9 62625
126.0 60.0 1 23.9 62625
128.0 60.0 1 23.9 62625
98.0 13.0 0 20.5 62626
96.0 13.0 0 20.5 62626
96.0 13.0 0 20.5 62626
94.0 11.0 0 15.5 62629
94.0 11.0 0 15.5 62629
92.0 11.0 0 15.5 62629
154.0 68.0 1 31.0 62630
160.0 68.0 1 31.0 62630
154.0 68.0 1 31.0 62630
114.0 37.0 1 23.8 62631
114.0 37.0 1 23.8 62631
114.0 37.0 1 23.8 62631
110.0 29.0 0 48.3 62632
108.0 29.0 0 48.3 62632
112.0 29.0 0 48.3 62632
138.0 61.0 1 24.0 62633
138.0 61.0 1 24.0 62633
132.0 61.0 1 24.0 62633
132.0 68.0 0 32.6 62634
130.0 68.0 0 32.6 62634
130.0 68.0 0 32.6 62634
100.0 27.0 1 26.1 62635
100.0 27.0 1 26.1 62635
100.0 27.0 1 26.1 62635
132.0 17.0 0 20.5 62636
132.0 17.0 0 20.5 62636
132.0 17.0 0 20.5 62636
114.0 9.0 1 24.3 62638
108.0 9.0 1 24.3 62638
114.0 9.0 1 24.3 62638
118.0 26.0 1 38.6 62639
116.0 26.0 1 38.6 62639
112.0 26.0 1 38.6 62639
96.0 31.0 1 37.1 62640
106.0 31.0 1 37.1 62640
100.0 31.0 1 37.1 62640
126.0 30.0 0 26.9 62642
126.0 30.0 0 26.9 62642
118.0 30.0 0 26.9 62642
136.0 61.0 0 42.0 62644
132.0 61.0 0 42.0 62644
118.0 61.0 0 42.0 62644
106.0 12.0 1 19.1 62645
110.0 12.0 1 19.1 62645
106.0 12.0 1 19.1 62645
136.0 57.0 1 28.9 62646
122.0 57.0 1 28.9 62646
110.0 57.0 1 28.9 62646
118.0 76.0 0 36.6 62649
126.0 76.0 0 36.6 62649
120.0 76.0 0 36.6 62649
118.0 71.0 0 33.3 62650
118.0 71.0 0 33.3 62650
114.0 71.0 0 33.3 62650
142.0 55.0 0 39.5 62651
140.0 55.0 0 39.5 62651
140.0 55.0 0 39.5 62651
114.0 46.0 0 29.3 62652
110.0 46.0 0 29.3 62652
114.0 46.0 0 29.3 62652
124.0 68.0 0 34.5 62658
120.0 68.0 0 34.5 62658
124.0 68.0 0 34.5 62658
116.0 18.0 0 25.4 62659
104.0 18.0 0 25.4 62659
108.0 18.0 0 25.4 62659
104.0 35.0 0 21.2 62661
110.0 35.0 0 21.2 62661
114.0 35.0 0 21.2 62661
108.0 11.0 1 28.2 62662
100.0 11.0 1 28.2 62662
102.0 11.0 1 28.2 62662
140.0 64.0 0 39.4 62664
138.0 64.0 0 39.4 62664
140.0 64.0 0 39.4 62664
108.0 67.0 1 20.1 62665
106.0 67.0 1 20.1 62665
100.0 67.0 1 20.1 62665
146.0 33.0 0 36.1 62668
152.0 33.0 0 36.1 62668
146.0 33.0 0 36.1 62668
120.0 33.0 0 22.5 62669
128.0 33.0 0 22.5 62669
116.0 33.0 0 22.5 62669
104.0 13.0 0 19.5 62670
108.0 13.0 0 19.5 62670
106.0 13.0 0 19.5 62670
108.0 69.0 0 26.3 62671
120.0 69.0 0 26.3 62671
110.0 69.0 0 26.3 62671
96.0 13.0 1 20.6 62672
106.0 13.0 1 20.6 62672
104.0 13.0 1 20.6 62672
106.0 33.0 1 21.5 62674
102.0 33.0 1 21.5 62674
96.0 33.0 1 21.5 62674
92.0 30.0 1 27.3 62677
94.0 30.0 1 27.3 62677
90.0 30.0 1 27.3 62677
154.0 68.0 0 23.7 62678
164.0 68.0 0 23.7 62678
154.0 68.0 0 23.7 62678
152.0 68.0 0 25.7 62680
154.0 68.0 0 25.7 62680
154.0 68.0 0 25.7 62680
128.0 62.0 1 34.9 62682
130.0 62.0 1 34.9 62682
122.0 62.0 1 34.9 62682
108.0 55.0 1 22.3 62683
114.0 55.0 1 22.3 62683
112.0 55.0 1 22.3 62683
128.0 36.0 0 22.5 62685
120.0 36.0 0 22.5 62685
128.0 36.0 0 22.5 62685
162.0 80.0 1 38.7 62686
156.0 80.0 1 38.7 62686
92.0 10.0 0 14.8 62687
98.0 10.0 0 14.8 62687
92.0 10.0 0 14.8 62687
124.0 24.0 0 32.7 62688
120.0 24.0 0 32.7 62688
116.0 24.0 0 32.7 62688
102.0 44.0 0 43.5 62689
104.0 44.0 0 43.5 62689
102.0 44.0 0 43.5 62689
112.0 26.0 1 35.4 62690
108.0 26.0 1 35.4 62690
110.0 26.0 1 35.4 62690
108.0 31.0 0 23.6 62691
108.0 31.0 0 23.6 62691
114.0 31.0 0 23.6 62691
160.0 69.0 1 40.7 62693
146.0 69.0 1 40.7 62693
154.0 69.0 1 40.7 62693
108.0 37.0 0 40.1 62694
118.0 37.0 0 40.1 62694
118.0 37.0 0 40.1 62694
140.0 41.0 1 27.7 62695
142.0 41.0 1 27.7 62695
140.0 41.0 1 27.7 62695
100.0 13.0 0 17.2 62696
104.0 13.0 0 17.2 62696
106.0 13.0 0 17.2 62696
106.0 9.0 0 21.9 62697
114.0 9.0 0 21.9 62697
102.0 9.0 0 21.9 62697
112.0 9.0 0 19.1 62700
112.0 9.0 0 19.1 62700
110.0 9.0 0 19.1 62700
92.0 29.0 1 29.9 62701
92.0 29.0 1 29.9 62701
88.0 29.0 1 29.9 62701
154.0 80.0 0 24.8 62704
146.0 80.0 0 24.8 62704
148.0 80.0 0 24.8 62704
104.0 30.0 1 27.0 62705
96.0 30.0 1 27.0 62705
100.0 30.0 1 27.0 62705
112.0 39.0 1 33.3 62706
108.0 39.0 1 33.3 62706
110.0 39.0 1 33.3 62706
118.0 49.0 1 30.5 62707
116.0 49.0 1 30.5 62707
112.0 49.0 1 30.5 62707
158.0 52.0 0 21.9 62708
158.0 52.0 0 21.9 62708
162.0 52.0 0 21.9 62708
90.0 10.0 1 21.3 62709
90.0 10.0 1 21.3 62709
92.0 10.0 1 21.3 62709
96.0 15.0 0 29.6 62713
86.0 15.0 0 29.6 62713
98.0 15.0 0 29.6 62713
124.0 75.0 0 27.0 62714
126.0 75.0 0 27.0 62714
126.0 75.0 0 27.0 62714
98.0 10.0 0 15.8 62715
94.0 10.0 0 15.8 62715
96.0 10.0 0 15.8 62715
104.0 42.0 1 23.3 62716
100.0 42.0 1 23.3 62716
108.0 42.0 1 23.3 62716
154.0 50.0 1 23.6 62717
158.0 50.0 1 23.6 62717
158.0 50.0 1 23.6 62717
134.0 63.0 0 26.8 62718
122.0 63.0 0 26.8 62718
126.0 63.0 0 26.8 62718
114.0 74.0 0 27.6 62719
114.0 74.0 0 27.6 62719
128.0 74.0 0 27.6 62719
128.0 58.0 0 26.1 62720
128.0 58.0 0 26.1 62720
122.0 58.0 0 26.1 62720
108.0 31.0 1 25.3 62723
108.0 31.0 1 25.3 62723
102.0 31.0 1 25.3 62723
120.0 57.0 1 26.1 62724
118.0 57.0 1 26.1 62724
112.0 57.0 1 26.1 62724
220.0 80.0 1 30.8 62727
214.0 80.0 1 30.8 62727
226.0 80.0 1 30.8 62727
136.0 32.0 1 29.3 62728
136.0 32.0 1 29.3 62728
138.0 32.0 1 29.3 62728
118.0 19.0 0 23.6 62731
122.0 19.0 0 23.6 62731
116.0 19.0 0 23.6 62731
130.0 71.0 1 38.8 62732
130.0 71.0 1 38.8 62732
136.0 71.0 1 38.8 62732
104.0 39.0 0 22.4 62735
104.0 39.0 0 22.4 62735
100.0 39.0 0 22.4 62735
124.0 40.0 1 22.8 62736
128.0 40.0 1 22.8 62736
132.0 40.0 1 22.8 62736
118.0 74.0 0 26.4 62739
122.0 74.0 0 26.4 62739
112.0 74.0 0 26.4 62739
106.0 19.0 1 29.6 62740
96.0 19.0 1 29.6 62740
102.0 19.0 1 29.6 62740
116.0 70.0 0 28.8 62742
120.0 70.0 0 28.8 62742
118.0 70.0 0 28.8 62742
132.0 37.0 0 33.9 62744
126.0 37.0 0 33.9 62744
122.0 37.0 0 33.9 62744
138.0 71.0 1 29.2 62745
142.0 71.0 1 29.2 62745
138.0 71.0 1 29.2 62745
114.0 38.0 1 28.6 62746
116.0 38.0 1 28.6 62746
114.0 38.0 1 28.6 62746
174.0 52.0 0 28.8 62747
164.0 52.0 0 28.8 62747
182.0 52.0 0 28.8 62747
100.0 13.0 0 17.6 62748
100.0 13.0 0 17.6 62748
114.0 13.0 0 17.6 62748
130.0 48.0 0 28.0 62749
126.0 48.0 0 28.0 62749
134.0 48.0 0 28.0 62749
128.0 45.0 1 20.3 62750
122.0 45.0 1 20.3 62750
124.0 45.0 1 20.3 62750
110.0 8.0 0 24.3 62751
108.0 8.0 0 24.3 62751
112.0 8.0 0 24.3 62751
112.0 16.0 1 20.6 62753
114.0 16.0 1 20.6 62753
114.0 16.0 1 20.6 62753
94.0 19.0 1 20.8 62755
96.0 19.0 1 20.8 62755
100.0 19.0 1 20.8 62755
126.0 54.0 0 36.1 62757
128.0 54.0 0 36.1 62757
132.0 54.0 0 36.1 62757
118.0 22.0 1 32.3 62759
120.0 22.0 1 32.3 62759
118.0 22.0 1 32.3 62759
84.0 10.0 1 18.4 62760
86.0 10.0 1 18.4 62760
84.0 10.0 1 18.4 62760
116.0 68.0 0 37.6 62761
122.0 68.0 0 37.6 62761
116.0 68.0 0 37.6 62761
128.0 29.0 0 31.8 62763
128.0 29.0 0 31.8 62763
128.0 29.0 0 31.8 62763
142.0 51.0 1 48.6 62764
142.0 51.0 1 48.6 62764
142.0 51.0 1 48.6 62764
104.0 29.0 1 18.9 62765
102.0 29.0 1 18.9 62765
94.0 29.0 1 18.9 62765
126.0 38.0 1 32.2 62768
126.0 38.0 1 32.2 62768
128.0 38.0 1 32.2 62768
116.0 13.0 1 26.8 62769
114.0 13.0 1 26.8 62769
116.0 13.0 1 26.8 62769
124.0 30.0 0 27.4 62771
126.0 30.0 0 27.4 62771
126.0 30.0 0 27.4 62771
142.0 46.0 1 38.1 62772
150.0 46.0 1 38.1 62772
148.0 46.0 1 38.1 62772
110.0 9.0 0 33.1 62776
110.0 9.0 0 33.1 62776
118.0 9.0 0 33.1 62776
126.0 28.0 0 25.4 62777
126.0 28.0 0 25.4 62777
122.0 28.0 0 25.4 62777
124.0 32.0 0 25.4 62779
122.0 32.0 0 25.4 62779
122.0 32.0 0 25.4 62779
128.0 31.0 0 36.4 62784
120.0 31.0 0 36.4 62784
124.0 31.0 0 36.4 62784
98.0 21.0 1 22.5 62787
90.0 21.0 1 22.5 62787
96.0 21.0 1 22.5 62787
128.0 35.0 0 22.6 62788
128.0 35.0 0 22.6 62788
120.0 35.0 0 22.6 62788
106.0 26.0 1 31.8 62789
106.0 26.0 1 31.8 62789
108.0 26.0 1 31.8 62789
92.0 11.0 1 19.3 62790
96.0 11.0 1 19.3 62790
86.0 11.0 1 19.3 62790
110.0 14.0 0 29.6 62791
110.0 14.0 0 29.6 62791
104.0 14.0 0 29.6 62791
116.0 52.0 1 42.3 62792
118.0 52.0 1 42.3 62792
112.0 52.0 1 42.3 62792
126.0 72.0 0 29.9 62793
126.0 72.0 0 29.9 62793
132.0 72.0 0 29.9 62793
102.0 45.0 1 29.0 62794
102.0 45.0 1 29.0 62794
102.0 45.0 1 29.0 62794
128.0 20.0 0 31.1 62795
126.0 20.0 0 31.1 62795
128.0 20.0 0 31.1 62795
98.0 17.0 1 21.7 62796
94.0 17.0 1 21.7 62796
96.0 17.0 1 21.7 62796
118.0 24.0 1 24.8 62797
114.0 24.0 1 24.8 62797
120.0 24.0 1 24.8 62797
122.0 50.0 0 25.8 62798
124.0 50.0 0 25.8 62798
118.0 50.0 0 25.8 62798
104.0 15.0 1 21.5 62800
102.0 15.0 1 21.5 62800
104.0 15.0 1 21.5 62800
130.0 34.0 1 22.6 62803
110.0 34.0 1 22.6 62803
118.0 34.0 1 22.6 62803
118.0 69.0 0 30.8 62804
126.0 69.0 0 30.8 62804
128.0 69.0 0 30.8 62804
100.0 41.0 1 27.2 62805
98.0 41.0 1 27.2 62805
100.0 41.0 1 27.2 62805
110.0 53.0 0 25.0 62806
108.0 53.0 0 25.0 62806
116.0 53.0 0 25.0 62806
126.0 67.0 0 30.8 62807
132.0 67.0 0 30.8 62807
132.0 67.0 0 30.8 62807
100.0 44.0 1 31.4 62808
94.0 44.0 1 31.4 62808
94.0 44.0 1 31.4 62808
108.0 51.0 1 21.0 62809
108.0 51.0 1 21.0 62809
106.0 51.0 1 21.0 62809
106.0 15.0 1 32.6 62810
108.0 15.0 1 32.6 62810
112.0 15.0 1 32.6 62810
98.0 40.0 1 37.0 62811
98.0 40.0 1 37.0 62811
102.0 40.0 1 37.0 62811
118.0 50.0 0 24.2 62812
122.0 50.0 0 24.2 62812
118.0 50.0 0 24.2 62812
106.0 71.0 0 27.6 62813
116.0 71.0 0 27.6 62813
108.0 71.0 0 27.6 62813
128.0 72.0 0 24.4 62814
134.0 72.0 0 24.4 62814
130.0 72.0 0 24.4 62814
110.0 22.0 0 23.3 62161
118.0 22.0 0 23.3 62161
104.0 22.0 0 23.3 62161
108.0 14.0 0 17.3 62163
106.0 14.0 0 17.3 62163
112.0 14.0 0 17.3 62163
116.0 44.0 1 23.2 62164
118.0 44.0 1 23.2 62164
120.0 44.0 1 23.2 62164
110.0 14.0 1 27.2 62165
104.0 14.0 1 27.2 62165
106.0 14.0 1 27.2 62165
96.0 9.0 0 16.2 62166
94.0 9.0 0 16.2 62166
94.0 9.0 0 16.2 62166
126.0 21.0 0 20.1 62169
124.0 21.0 0 20.1 62169
124.0 21.0 0 20.1 62169
124.0 15.0 0 18.2 62170
128.0 15.0 0 18.2 62170
122.0 15.0 0 18.2 62170
112.0 14.0 0 19.9 62171
96.0 14.0 0 19.9 62171
108.0 14.0 0 19.9 62171
104.0 43.0 1 33.3 62172
100.0 43.0 1 33.3 62172
102.0 43.0 1 33.3 62172
98.0 80.0 0 33.9 62174
100.0 80.0 0 33.9 62174
96.0 80.0 0 33.9 62174
114.0 34.0 1 23.3 62176
100.0 34.0 1 23.3 62176
104.0 34.0 1 23.3 62176
144.0 51.0 0 20.1 62177
144.0 51.0 0 20.1 62177
152.0 51.0 0 20.1 62177
124.0 80.0 0 28.5 62178
124.0 80.0 0 28.5 62178
118.0 80.0 0 28.5 62178
124.0 55.0 0 27.6 62179
126.0 55.0 0 27.6 62179
124.0 55.0 0 27.6 62179
106.0 35.0 0 27.9 62180
108.0 35.0 0 27.9 62180
108.0 35.0 0 27.9 62180
106.0 9.0 0 16.4 62181
98.0 9.0 0 16.4 62181
102.0 9.0 0 16.4 62181
120.0 26.0 0 22.1 62184
120.0 26.0 0 22.1 62184
122.0 26.0 0 22.1 62184
118.0 16.0 0 19.7 62185
120.0 16.0 0 19.7 62185
116.0 16.0 0 19.7 62185
110.0 17.0 1 22.9 62186
108.0 17.0 1 22.9 62186
106.0 17.0 1 22.9 62186
94.0 9.0 1 16.4 62187
96.0 9.0 1 16.4 62187
92.0 9.0 1 16.4 62187
94.0 30.0 1 22.4 62189
96.0 30.0 1 22.4 62189
100.0 30.0 1 22.4 62189
120.0 15.0 1 17.0 62190
110.0 15.0 1 17.0 62190
106.0 15.0 1 17.0 62190
110.0 11.0 1 26.7 62192
106.0 11.0 1 26.7 62192
108.0 11.0 1 26.7 62192
136.0 17.0 0 28.5 62193
138.0 17.0 0 28.5 62193
144.0 17.0 0 28.5 62193
100.0 9.0 1 14.7 62194
106.0 9.0 1 14.7 62194
98.0 9.0 1 14.7 62194
110.0 35.0 0 28.2 62195
106.0 35.0 0 28.2 62195
108.0 35.0 0 28.2 62195
98.0 16.0 1 22.4 62197
106.0 16.0 1 22.4 62197
106.0 16.0 1 22.4 62197
112.0 57.0 0 28.0 62199
108.0 57.0 0 28.0 62199
112.0 57.0 0 28.0 62199
128.0 42.0 0 27.6 62200
122.0 42.0 0 27.6 62200
132.0 42.0 0 27.6 62200
136.0 36.0 0 24.7 62202
138.0 36.0 0 24.7 62202
96.0 8.0 0 16.2 62203
92.0 8.0 0 16.2 62203
94.0 8.0 0 16.2 62203
122.0 28.0 0 28.9 62205
116.0 28.0 0 28.9 62205
122.0 28.0 0 28.9 62205
104.0 35.0 1 29.1 62206
108.0 35.0 1 29.1 62206
108.0 35.0 1 29.1 62206
108.0 38.0 0 22.2 62208
106.0 38.0 0 22.2 62208
102.0 38.0 0 22.2 62208
106.0 62.0 1 26.0 62209
116.0 62.0 1 26.0 62209
110.0 62.0 1 26.0 62209
116.0 15.0 0 26.0 62210
106.0 15.0 0 26.0 62210
114.0 15.0 0 26.0 62210
110.0 22.0 1 23.8 62214
108.0 22.0 1 23.8 62214
110.0 22.0 1 23.8 62214
132.0 65.0 1 26.7 62215
130.0 65.0 1 26.7 62215
134.0 65.0 1 26.7 62215
130.0 77.0 1 30.6 62217
132.0 77.0 1 30.6 62217
136.0 77.0 1 30.6 62217
134.0 38.0 1 45.4 62218
134.0 38.0 1 45.4 62218
134.0 38.0 1 45.4 62218
118.0 31.0 1 40.4 62220
118.0 31.0 1 40.4 62220
122.0 31.0 1 40.4 62220
134.0 41.0 1 52.6 62221
128.0 41.0 1 52.6 62221
130.0 41.0 1 52.6 62221
108.0 32.0 0 25.0 62222
106.0 32.0 0 25.0 62222
100.0 32.0 0 25.0 62222
108.0 54.0 0 20.5 62223
102.0 54.0 0 20.5 62223
108.0 54.0 0 20.5 62223
102.0 29.0 1 27.2 62224
100.0 29.0 1 27.2 62224
98.0 29.0 1 27.2 62224
104.0 13.0 1 20.1 62225
96.0 13.0 1 20.1 62225
102.0 13.0 1 20.1 62225
126.0 80.0 0 28.4 62226
126.0 80.0 0 28.4 62226
122.0 80.0 0 28.4 62226
112.0 19.0 0 22.7 62227
106.0 19.0 0 22.7 62227
102.0 19.0 0 22.7 62227
118.0 50.0 0 43.4 62228
110.0 50.0 0 43.4 62228
116.0 50.0 0 43.4 62228
120.0 31.0 1 28.6 62229
126.0 31.0 1 28.6 62229
122.0 31.0 1 28.6 62229
108.0 75.0 0 29.7 62230
104.0 75.0 0 29.7 62230
98.0 75.0 0 29.7 62230
112.0 48.0 1 33.2 62231
120.0 48.0 1 33.2 62231
116.0 48.0 1 33.2 62231
128.0 42.0 1 31.6 62232
110.0 42.0 1 31.6 62232
120.0 42.0 1 31.6 62232
102.0 63.0 1 45.2 62233
98.0 63.0 1 45.2 62233
98.0 63.0 1 45.2 62233
118.0 23.0 0 23.8 62234
118.0 23.0 0 23.8 62234
124.0 23.0 0 23.8 62234
130.0 61.0 0 23.2 62236
140.0 61.0 0 23.2 62236
142.0 61.0 0 23.2 62236
118.0 58.0 1 39.9 62237
126.0 58.0 1 39.9 62237
124.0 58.0 1 39.9 62237
114.0 22.0 1 23.3 62239
118.0 22.0 1 23.3 62239
124.0 22.0 1 23.3 62239
122.0 14.0 1 21.2 62240
122.0 14.0 1 21.2 62240
118.0 14.0 1 21.2 62240
130.0 24.0 0 27.0 62242
146.0 24.0 0 27.0 62242
138.0 24.0 0 27.0 62242
88.0 8.0 0 15.3 62245
86.0 8.0 0 15.3 62245
86.0 8.0 0 15.3 62245
130.0 65.0 0 26.6 62248
132.0 65.0 0 26.6 62248
132.0 65.0 0 26.6 62248
124.0 26.0 1 20.3 62249
122.0 26.0 1 20.3 62249
122.0 26.0 1 20.3 62249
114.0 34.0 0 25.9 62250
104.0 34.0 0 25.9 62250
116.0 34.0 0 25.9 62250
170.0 51.0 1 31.9 62251
166.0 51.0 1 31.9 62251
168.0 51.0 1 31.9 62251
104.0 11.0 1 16.0 62252
110.0 11.0 1 16.0 62252
106.0 11.0 1 16.0 62252
90.0 18.0 0 17.2 62253
94.0 18.0 0 17.2 62253
98.0 18.0 0 17.2 62253
108.0 14.0 0 19.4 62254
114.0 14.0 0 19.4 62254
112.0 14.0 0 19.4 62254
110.0 65.0 0 27.1 62255
114.0 65.0 0 27.1 62255
112.0 65.0 0 27.1 62255
124.0 80.0 0 26.0 62256
118.0 80.0 0 26.0 62256
126.0 80.0 0 26.0 62256
126.0 47.0 0 31.0 62258
126.0 47.0 0 31.0 62258
124.0 47.0 0 31.0 62258
134.0 61.0 0 41.7 62259
140.0 61.0 0 41.7 62259
138.0 61.0 0 41.7 62259
104.0 10.0 0 14.9 62260
104.0 10.0 0 14.9 62260
100.0 10.0 0 14.9 62260
120.0 47.0 0 28.6 62261
118.0 47.0 0 28.6 62261
112.0 47.0 0 28.6 62261
134.0 77.0 0 31.1 62264
134.0 77.0 0 31.1 62264
134.0 77.0 0 31.1 62264
136.0 52.0 0 31.4 62265
126.0 52.0 0 31.4 62265
124.0 52.0 0 31.4 62265
98.0 64.0 0 16.6 62266
96.0 64.0 0 16.6 62266
96.0 64.0 0 16.6 62266
114.0 27.0 1 43.9 62267
114.0 27.0 1 43.9 62267
118.0 27.0 1 43.9 62267
96.0 15.0 1 19.1 62268
92.0 15.0 1 19.1 62268
96.0 15.0 1 19.1 62268
132.0 29.0 0 22.8 62269
136.0 29.0 0 22.8 62269
136.0 29.0 0 22.8 62269
110.0 33.0 1 32.3 62270
114.0 33.0 1 32.3 62270
114.0 33.0 1 32.3 62270
106.0 9.0 0 20.9 62272
106.0 9.0 0 20.9 62272
108.0 9.0 0 20.9 62272
124.0 15.0 1 30.0 62273
114.0 15.0 1 30.0 62273
118.0 15.0 1 30.0 62273
106.0 41.0 1 21.8 62275
106.0 41.0 1 21.8 62275
114.0 41.0 1 21.8 62275
96.0 9.0 0 13.3 62276
94.0 9.0 0 13.3 62276
94.0 9.0 0 13.3 62276
106.0 55.0 1 25.0 62277
116.0 55.0 1 25.0 62277
106.0 55.0 1 25.0 62277
118.0 72.0 1 28.3 62278
122.0 72.0 1 28.3 62278
118.0 72.0 1 28.3 62278
98.0 80.0 0 21.9 62279
114.0 80.0 0 21.9 62279
104.0 80.0 0 21.9 62279
134.0 54.0 1 24.3 62280
126.0 54.0 1 24.3 62280
132.0 54.0 1 24.3 62280
102.0 13.0 1 22.3 62281
106.0 13.0 1 22.3 62281
108.0 13.0 1 22.3 62281
108.0 57.0 1 23.7 62282
108.0 57.0 1 23.7 62282
110.0 57.0 1 23.7 62282
134.0 64.0 1 25.6 62284
124.0 64.0 1 25.6 62284
132.0 64.0 1 25.6 62284
116.0 17.0 1 33.1 62285
124.0 17.0 1 33.1 62285
122.0 17.0 1 33.1 62285
128.0 30.0 0 41.0 62286
124.0 30.0 0 41.0 62286
128.0 30.0 0 41.0 62286
126.0 73.0 1 26.8 62287
132.0 73.0 1 26.8 62287
132.0 73.0 1 26.8 62287
118.0 29.0 0 20.1 62288
118.0 29.0 0 20.1 62288
122.0 29.0 0 20.1 62288
138.0 71.0 0 28.8 62289
142.0 71.0 0 28.8 62289
134.0 71.0 0 28.8 62289
120.0 56.0 0 29.9 62291
116.0 56.0 0 29.9 62291
122.0 56.0 0 29.9 62291
102.0 80.0 0 25.2 62292
96.0 80.0 0 25.2 62292
94.0 80.0 0 25.2 62292
130.0 67.0 0 21.3 62293
132.0 67.0 0 21.3 62293
130.0 67.0 0 21.3 62293
102.0 9.0 0 19.9 62294
98.0 9.0 0 19.9 62294
100.0 9.0 0 19.9 62294
142.0 69.0 1 32.7 62295
138.0 69.0 1 32.7 62295
142.0 69.0 1 32.7 62295
128.0 19.0 0 40.3 62296
134.0 19.0 0 40.3 62296
130.0 19.0 0 40.3 62296
126.0 43.0 0 31.1 62297
122.0 43.0 0 31.1 62297
122.0 43.0 0 31.1 62297
120.0 15.0 0 26.6 62298
124.0 15.0 0 26.6 62298
116.0 15.0 0 26.6 62298
104.0 8.0 0 15.5 62299
100.0 8.0 0 15.5 62299
102.0 8.0 0 15.5 62299
118.0 23.0 0 33.0 62301
112.0 23.0 0 33.0 62301
118.0 23.0 0 33.0 62301
138.0 51.0 1 25.4 62302
134.0 51.0 1 25.4 62302
136.0 51.0 1 25.4 62302
150.0 76.0 1 31.9 62303
140.0 76.0 1 31.9 62303
146.0 76.0 1 31.9 62303
100.0 10.0 0 25.6 62305
104.0 10.0 0 25.6 62305
114.0 10.0 0 25.6 62305
120.0 61.0 0 33.5 62307
118.0 61.0 0 33.5 62307
122.0 61.0 0 33.5 62307
108.0 78.0 1 24.6 62308
110.0 78.0 1 24.6 62308
112.0 78.0 1 24.6 62308
114.0 47.0 1 34.0 62309
126.0 47.0 1 34.0 62309
120.0 47.0 1 34.0 62309
110.0 8.0 1 18.7 62310
110.0 8.0 1 18.7 62310
110.0 8.0 1 18.7 62310
116.0 18.0 0 24.4 62311
118.0 18.0 0 24.4 62311
116.0 18.0 0 24.4 62311
132.0 63.0 1 34.7 62312
124.0 63.0 1 34.7 62312
124.0 63.0 1 34.7 62312
94.0 61.0 0 34.2 62314
110.0 61.0 0 34.2 62314
126.0 61.0 0 34.2 62314
148.0 80.0 1 22.7 62315
150.0 80.0 1 22.7 62315
140.0 80.0 1 22.7 62315
116.0 46.0 0 27.6 62317
116.0 46.0 0 27.6 62317
122.0 46.0 0 27.6 62317
154.0 64.0 1 30.0 62320
152.0 64.0 1 30.0 62320
150.0 64.0 1 30.0 62320
90.0 8.0 1 16.2 62321
88.0 8.0 1 16.2 62321
88.0 8.0 1 16.2 62321
102.0 60.0 1 28.0 62324
102.0 60.0 1 28.0 62324
102.0 60.0 1 28.0 62324
124.0 43.0 1 18.4 62325
128.0 43.0 1 18.4 62325
124.0 43.0 1 18.4 62325
108.0 69.0 0 26.4 62326
100.0 69.0 0 26.4 62326
106.0 19.0 1 38.5 62327
102.0 19.0 1 38.5 62327
108.0 19.0 1 38.5 62327
84.0 9.0 1 14.9 62328
86.0 9.0 1 14.9 62328
82.0 9.0 1 14.9 62328
96.0 33.0 1 18.4 62330
96.0 33.0 1 18.4 62330
96.0 33.0 1 18.4 62330
102.0 9.0 0 16.6 62331
104.0 9.0 0 16.6 62331
104.0 9.0 0 16.6 62331
134.0 22.0 0 32.6 62332
130.0 22.0 0 32.6 62332
138.0 22.0 0 32.6 62332
110.0 9.0 0 26.2 62334
106.0 9.0 0 26.2 62334
108.0 9.0 0 26.2 62334
126.0 14.0 0 24.2 62335
124.0 14.0 0 24.2 62335
124.0 14.0 0 24.2 62335
98.0 55.0 0 28.5 62336
100.0 55.0 0 28.5 62336
102.0 55.0 0 28.5 62336
102.0 10.0 1 17.7 62337
98.0 10.0 1 17.7 62337
102.0 10.0 1 17.7 62337
132.0 29.0 0 29.2 62339
126.0 29.0 0 29.2 62339
138.0 29.0 0 29.2 62339
106.0 44.0 0 25.9 62340
106.0 44.0 0 25.9 62340
106.0 44.0 0 25.9 62340
90.0 8.0 0 15.0 62341
94.0 8.0 0 15.0 62341
92.0 8.0 0 15.0 62341
110.0 38.0 1 32.9 62342
114.0 38.0 1 32.9 62342
126.0 38.0 1 32.9 62342
120.0 28.0 0 25.2 62343
114.0 28.0 0 25.2 62343
122.0 28.0 0 25.2 62343
118.0 19.0 0 27.4 62346
120.0 19.0 0 27.4 62346
114.0 19.0 0 27.4 62346
158.0 71.0 1 24.0 62347
150.0 71.0 1 24.0 62347
156.0 71.0 1 24.0 62347
102.0 19.0 1 22.0 62348
110.0 19.0 1 22.0 62348
106.0 19.0 1 22.0 62348
116.0 23.0 1 38.0 62349
112.0 23.0 1 38.0 62349
106.0 23.0 1 38.0 62349
112.0 43.0 1 22.3 62350
118.0 43.0 1 22.3 62350
112.0 43.0 1 22.3 62350
116.0 80.0 0 27.8 62353
110.0 80.0 0 27.8 62353
122.0 80.0 0 27.8 62353
110.0 11.0 1 17.8 62354
108.0 11.0 1 17.8 62354
110.0 11.0 1 17.8 62354
106.0 16.0 1 20.7 62355
106.0 16.0 1 20.7 62355
110.0 16.0 1 20.7 62355
94.0 14.0 1 20.2 62356
92.0 14.0 1 20.2 62356
96.0 14.0 1 20.2 62356
104.0 36.0 0 25.6 62357
110.0 36.0 0 25.6 62357
110.0 36.0 0 25.6 62357
110.0 54.0 1 27.1 62359
114.0 54.0 1 27.1 62359
114.0 54.0 1 27.1 62359
134.0 17.0 0 18.9 62360
126.0 17.0 0 18.9 62360
134.0 17.0 0 18.9 62360
114.0 11.0 1 25.3 62362
112.0 11.0 1 25.3 62362
116.0 11.0 1 25.3 62362
108.0 44.0 1 25.8 62363
106.0 44.0 1 25.8 62363
114.0 44.0 1 25.8 62363
182.0 80.0 0 21.7 62366
180.0 80.0 0 21.7 62366
116.0 50.0 0 27.4 62367
120.0 50.0 0 27.4 62367
118.0 50.0 0 27.4 62367
96.0 8.0 1 16.0 62369
100.0 8.0 1 16.0 62369
104.0 8.0 1 16.0 62369
116.0 21.0 0 18.3 62370
112.0 21.0 0 18.3 62370
116.0 21.0 0 18.3 62370
104.0 32.0 0 18.6 62371
114.0 32.0 0 18.6 62371
110.0 32.0 0 18.6 62371
152.0 55.0 1 30.4 62372
154.0 55.0 1 30.4 62372
146.0 55.0 1 30.4 62372
116.0 31.0 1 23.1 62374
120.0 31.0 1 23.1 62374
122.0 31.0 1 23.1 62374
118.0 24.0 0 38.3 62375
118.0 24.0 0 38.3 62375
114.0 24.0 0 38.3 62375
158.0 78.0 1 24.7 62377
154.0 78.0 1 24.7 62377
152.0 78.0 1 24.7 62377
126.0 68.0 1 33.2 62378
120.0 68.0 1 33.2 62378
132.0 68.0 1 33.2 62378
102.0 40.0 0 20.2 62379
104.0 40.0 0 20.2 62379
104.0 40.0 0 20.2 62379
126.0 16.0 0 37.5 62380
124.0 16.0 0 37.5 62380
112.0 16.0 0 37.5 62380
140.0 21.0 0 20.3 62381
138.0 21.0 0 20.3 62381
124.0 23.0 0 26.7 62383
124.0 23.0 0 26.7 62383
118.0 23.0 0 26.7 62383
122.0 40.0 0 30.5 62384
122.0 40.0 0 30.5 62384
120.0 40.0 0 30.5 62384
112.0 35.0 0 38.4 62386
112.0 35.0 0 38.4 62386
116.0 35.0 0 38.4 62386
110.0 23.0 0 24.5 62387
108.0 23.0 0 24.5 62387
110.0 23.0 0 24.5 62387
128.0 69.0 1 38.4 62388
120.0 69.0 1 38.4 62388
124.0 69.0 1 38.4 62388
110.0 16.0 1 20.4 62389
110.0 16.0 1 20.4 62389
110.0 16.0 1 20.4 62389
102.0 25.0 1 18.7 62390
104.0 25.0 1 18.7 62390
104.0 25.0 1 18.7 62390
108.0 40.0 1 25.1 62391
116.0 40.0 1 25.1 62391
106.0 40.0 1 25.1 62391
108.0 20.0 0 27.1 62393
110.0 20.0 0 27.1 62393
114.0 20.0 0 27.1 62393
108.0 10.0 0 23.4 62396
108.0 10.0 0 23.4 62396
106.0 10.0 0 23.4 62396
128.0 70.0 1 40.6 62397
122.0 70.0 1 40.6 62397
128.0 70.0 1 40.6 62397
86.0 9.0 0 14.6 62398
90.0 9.0 0 14.6 62398
84.0 9.0 0 14.6 62398
116.0 53.0 1 30.7 62399
114.0 53.0 1 30.7 62399
114.0 53.0 1 30.7 62399
166.0 31.0 1 36.3 62400
156.0 31.0 1 36.3 62400
166.0 31.0 1 36.3 62400
104.0 15.0 1 23.7 62401
102.0 15.0 1 23.7 62401
102.0 15.0 1 23.7 62401
108.0 48.0 0 23.3 62402
114.0 48.0 0 23.3 62402
102.0 48.0 0 23.3 62402
128.0 44.0 0 26.1 62404
128.0 44.0 0 26.1 62404
128.0 44.0 0 26.1 62404
104.0 10.0 1 14.0 62406
112.0 10.0 1 14.0 62406
108.0 10.0 1 14.0 62406
138.0 49.0 0 29.9 62407
136.0 49.0 0 29.9 62407
134.0 49.0 0 29.9 62407
186.0 80.0 1 30.5 62409
190.0 80.0 1 30.5 62409
186.0 80.0 1 30.5 62409
130.0 51.0 1 26.3 62411
138.0 51.0 1 26.3 62411
136.0 51.0 1 26.3 62411
108.0 16.0 0 22.7 62412
118.0 16.0 0 22.7 62412
114.0 16.0 0 22.7 62412
136.0 65.0 0 40.0 62413
140.0 65.0 0 40.0 62413
136.0 65.0 0 40.0 62413
136.0 58.0 0 16.5 62414
132.0 58.0 0 16.5 62414
114.0 58.0 0 16.5 62414
92.0 27.0 1 26.7 62415
90.0 27.0 1 26.7 62415
98.0 27.0 1 26.7 62415
110.0 19.0 1 35.1 62416
104.0 19.0 1 35.1 62416
106.0 19.0 1 35.1 62416
110.0 26.0 1 31.6 62417
104.0 26.0 1 31.6 62417
102.0 26.0 1 31.6 62417
166.0 80.0 0 23.5 62418
156.0 80.0 0 23.5 62418
162.0 80.0 0 23.5 62418
150.0 80.0 0 26.5 62419
146.0 80.0 0 26.5 62419
144.0 80.0 0 26.5 62419
106.0 23.0 0 24.5 62421
104.0 23.0 0 24.5 62421
108.0 23.0 0 24.5 62421
118.0 72.0 1 29.0 62422
116.0 72.0 1 29.0 62422
120.0 72.0 1 29.0 62422
136.0 20.0 0 30.4 62424
136.0 20.0 0 30.4 62424
134.0 20.0 0 30.4 62424
102.0 30.0 1 22.2 62425
100.0 30.0 1 22.2 62425
104.0 30.0 1 22.2 62425
96.0 9.0 0 21.3 62426
90.0 9.0 0 21.3 62426
90.0 9.0 0 21.3 62426
120.0 15.0 0 17.3 62427
108.0 15.0 0 17.3 62427
116.0 15.0 0 17.3 62427
114.0 12.0 1 17.2 62428
114.0 12.0 1 17.2 62428
120.0 12.0 1 17.2 62428
118.0 47.0 0 37.3 62429
118.0 47.0 0 37.3 62429
118.0 47.0 0 37.3 62429
124.0 27.0 0 37.9 62430
118.0 27.0 0 37.9 62430
118.0 27.0 0 37.9 62430
98.0 54.0 0 18.9 62431
102.0 54.0 0 18.9 62431
100.0 54.0 0 18.9 62431
144.0 38.0 1 23.4 62432
138.0 38.0 1 23.4 62432
146.0 38.0 1 23.4 62432
94.0 10.0 0 18.8 62433
96.0 10.0 0 18.8 62433
94.0 10.0 0 18.8 62433
122.0 61.0 1 34.0 62434
122.0 61.0 1 34.0 62434
126.0 61.0 1 34.0 62434
130.0 39.0 0 27.2 62437
130.0 39.0 0 27.2 62437
132.0 39.0 0 27.2 62437
140.0 75.0 0 33.0 62439
136.0 75.0 0 33.0 62439
138.0 75.0 0 33.0 62439
114.0 22.0 0 30.2 62440
122.0 22.0 0 30.2 62440
116.0 22.0 0 30.2 62440
144.0 68.0 0 24.0 62441
130.0 68.0 0 24.0 62441
136.0 68.0 0 24.0 62441
116.0 23.0 1 33.6 62444
112.0 23.0 1 33.6 62444
112.0 23.0 1 33.6 62444
142.0 42.0 1 39.1 62445
142.0 42.0 1 39.1 62445
140.0 42.0 1 39.1 62445
90.0 19.0 1 19.9 62447
98.0 19.0 1 19.9 62447
94.0 19.0 1 19.9 62447
114.0 13.0 0 28.3 62448
122.0 13.0 0 28.3 62448
118.0 13.0 0 28.3 62448
100.0 38.0 1 26.4 62449
104.0 38.0 1 26.4 62449
102.0 38.0 1 26.4 62449
138.0 57.0 0 28.2 62450
140.0 57.0 0 28.2 62450
138.0 57.0 0 28.2 62450
112.0 39.0 0 33.1 62452
110.0 39.0 0 33.1 62452
102.0 39.0 0 33.1 62452
134.0 64.0 1 36.8 62454
124.0 64.0 1 36.8 62454
130.0 64.0 1 36.8 62454
112.0 18.0 0 48.9 62455
114.0 18.0 0 48.9 62455
122.0 18.0 0 48.9 62455
126.0 17.0 0 29.0 62456
130.0 17.0 0 29.0 62456
126.0 17.0 0 29.0 62456
104.0 69.0 0 25.7 62457
100.0 69.0 0 25.7 62457
100.0 69.0 0 25.7 62457
106.0 13.0 0 18.8 62458
106.0 13.0 0 18.8 62458
104.0 13.0 0 18.8 62458
124.0 41.0 0 21.9 62460
130.0 41.0 0 21.9 62460
120.0 41.0 0 21.9 62460
114.0 29.0 1 35.3 62461
110.0 29.0 1 35.3 62461
118.0 29.0 1 35.3 62461
90.0 11.0 1 22.0 62462
96.0 11.0 1 22.0 62462
96.0 11.0 1 22.0 62462
114.0 32.0 0 28.2 62464
116.0 32.0 0 28.2 62464
114.0 32.0 0 28.2 62464
112.0 65.0 0 25.6 62467
122.0 65.0 0 25.6 62467
116.0 65.0 0 25.6 62467
108.0 9.0 0 18.5 62469
106.0 9.0 0 18.5 62469
108.0 9.0 0 18.5 62469
106.0 76.0 1 28.0 62471
104.0 76.0 1 28.0 62471
106.0 76.0 1 28.0 62471
172.0 31.0 0 30.3 62472
172.0 31.0 0 30.3 62472
172.0 31.0 0 30.3 62472
102.0 17.0 1 34.3 62473
96.0 17.0 1 34.3 62473
96.0 17.0 1 34.3 62473
106.0 22.0 0 25.8 62475
104.0 22.0 0 25.8 62475
112.0 22.0 0 25.8 62475
116.0 40.0 0 25.8 62476
114.0 40.0 0 25.8 62476
114.0 40.0 0 25.8 62476
100.0 11.0 0 21.3 62477
100.0 11.0 0 21.3 62477
100.0 11.0 0 21.3 62477
134.0 43.0 0 28.5 62480
130.0 43.0 0 28.5 62480
134.0 43.0 0 28.5 62480
94.0 39.0 1 27.7 62481
96.0 39.0 1 27.7 62481
98.0 39.0 1 27.7 62481
96.0 32.0 1 26.5 62482
92.0 32.0 1 26.5 62482
94.0 32.0 1 26.5 62482
94.0 11.0 0 23.8 62483
94.0 11.0 0 23.8 62483
98.0 11.0 0 23.8 62483
144.0 42.0 1 47.2 62484
144.0 42.0 1 47.2 62484
144.0 42.0 1 47.2 62484
118.0 21.0 0 33.3 62485
118.0 21.0 0 33.3 62485
112.0 21.0 0 33.3 62485
126.0 65.0 0 25.5 62487
128.0 65.0 0 25.5 62487
134.0 65.0 0 25.5 62487
120.0 61.0 1 27.8 62491
122.0 61.0 1 27.8 62491
118.0 61.0 1 27.8 62491
96.0 28.0 0 26.8 62494
96.0 28.0 0 26.8 62494
96.0 28.0 0 26.8 62494
106.0 44.0 0 28.6 62495
102.0 44.0 0 28.6 62495
106.0 44.0 0 28.6 62495
102.0 12.0 0 16.0 62497
104.0 12.0 0 16.0 62497
96.0 12.0 0 16.0 62497
122.0 13.0 1 24.3 62498
126.0 13.0 1 24.3 62498
126.0 13.0 1 24.3 62498
118.0 52.0 1 24.3 62500
120.0 52.0 1 24.3 62500
122.0 52.0 1 24.3 62500
110.0 30.0 1 25.6 62501
110.0 30.0 1 25.6 62501
104.0 30.0 1 25.6 62501
118.0 35.0 0 36.5 62502
124.0 35.0 0 36.5 62502
124.0 35.0 0 36.5 62502
112.0 30.0 1 38.9 62504
110.0 30.0 1 38.9 62504
118.0 30.0 1 38.9 62504
108.0 46.0 1 28.4 62506
110.0 46.0 1 28.4 62506
110.0 46.0 1 28.4 62506
94.0 17.0 1 28.6 62507
102.0 17.0 1 28.6 62507
90.0 17.0 1 28.6 62507
112.0 60.0 1 24.1 62509
116.0 60.0 1 24.1 62509
120.0 60.0 1 24.1 62509
168.0 80.0 1 29.8 62510
164.0 80.0 1 29.8 62510
164.0 80.0 1 29.8 62510
94.0 9.0 0 18.5 62511
100.0 9.0 0 18.5 62511
94.0 9.0 0 18.5 62511
134.0 39.0 0 19.1 62512
122.0 39.0 0 19.1 62512
118.0 39.0 0 19.1 62512
108.0 46.0 1 26.7 62513
104.0 46.0 1 26.7 62513
108.0 46.0 1 26.7 62513
136.0 44.0 0 33.6 62514
138.0 44.0 0 33.6 62514
136.0 44.0 0 33.6 62514
114.0 10.0 0 19.5 62516
118.0 10.0 0 19.5 62516
118.0 10.0 0 19.5 62516
154.0 80.0 0 32.3 62517
158.0 80.0 0 32.3 62517
156.0 80.0 0 32.3 62517
144.0 56.0 0 25.8 62519
138.0 56.0 0 25.8 62519
140.0 56.0 0 25.8 62519
134.0 59.0 1 23.1 62521
136.0 59.0 1 23.1 62521
140.0 59.0 1 23.1 62521
140.0 54.0 0 31.2 62522
142.0 54.0 0 31.2 62522
136.0 54.0 0 31.2 62522
112.0 33.0 0 30.1 62523
110.0 33.0 0 30.1 62523
114.0 33.0 0 30.1 62523
114.0 23.0 0 24.0 62524
108.0 23.0 0 24.0 62524
110.0 23.0 0 24.0 62524
118.0 15.0 0 29.5 62525
120.0 15.0 0 29.5 62525
118.0 15.0 0 29.5 62525
116.0 62.0 1 28.7 62526
116.0 62.0 1 28.7 62526
114.0 62.0 1 28.7 62526
138.0 79.0 0 25.8 62527
136.0 79.0 0 25.8 62527
156.0 79.0 0 25.8 62527
102.0 40.0 0 24.8 62528
102.0 40.0 0 24.8 62528
116.0 40.0 0 24.8 62528
126.0 59.0 0 45.6 62529
124.0 59.0 0 45.6 62529
132.0 59.0 0 45.6 62529
118.0 51.0 1 36.3 62530
122.0 51.0 1 36.3 62530
124.0 51.0 1 36.3 62530
110.0 52.0 1 33.3 62531
106.0 52.0 1 33.3 62531
92.0 52.0 1 33.3 62531
126.0 64.0 1 39.5 62532
128.0 64.0 1 39.5 62532
120.0 64.0 1 39.5 62532
102.0 13.0 0 25.3 62534
108.0 13.0 0 25.3 62534
106.0 13.0 0 25.3 62534
110.0 46.0 0 27.5 62536
106.0 46.0 0 27.5 62536
108.0 46.0 0 27.5 62536
100.0 10.0 1 22.4 62537
96.0 10.0 1 22.4 62537
102.0 10.0 1 22.4 62537
148.0 60.0 0 31.9 62539
140.0 60.0 0 31.9 62539
144.0 60.0 0 31.9 62539
118.0 13.0 1 22.6 62541
114.0 13.0 1 22.6 62541
112.0 13.0 1 22.6 62541
86.0 11.0 1 19.6 62542
96.0 11.0 1 19.6 62542
86.0 11.0 1 19.6 62542
96.0 8.0 0 16.2 62545
98.0 8.0 0 16.2 62545
96.0 8.0 0 16.2 62545
150.0 64.0 0 36.5 62546
142.0 64.0 0 36.5 62546
138.0 64.0 0 36.5 62546
106.0 9.0 0 28.8 62547
106.0 9.0 0 28.8 62547
106.0 9.0 0 28.8 62547
120.0 57.0 0 34.2 62548
120.0 57.0 0 34.2 62548
118.0 57.0 0 34.2 62548
118.0 53.0 0 21.5 62549
122.0 53.0 0 21.5 62549
114.0 53.0 0 21.5 62549
96.0 9.0 1 18.9 62550
96.0 9.0 1 18.9 62550
96.0 9.0 1 18.9 62550
136.0 37.0 1 48.2 62551
128.0 37.0 1 48.2 62551
132.0 37.0 1 48.2 62551
118.0 41.0 1 22.5 62552
120.0 41.0 1 22.5 62552
108.0 41.0 1 22.5 62552
84.0 8.0 0 15.8 62553
90.0 8.0 0 15.8 62553
88.0 8.0 0 15.8 62553
114.0 15.0 1 18.5 62554
110.0 15.0 1 18.5 62554
114.0 15.0 1 18.5 62554
130.0 35.0 0 20.2 62555
128.0 35.0 0 20.2 62555
126.0 35.0 0 20.2 62555
120.0 31.0 1 22.4 62556
124.0 31.0 1 22.4 62556
128.0 31.0 1 22.4 62556
98.0 10.0 0 17.8 62557
96.0 10.0 0 17.8 62557
96.0 10.0 0 17.8 62557
108.0 49.0 1 38.2 62558
110.0 49.0 1 38.2 62558
104.0 49.0 1 38.2 62558
108.0 9.0 1 16.7 62559
110.0 9.0 1 16.7 62559
110.0 9.0 1 16.7 62559
102.0 10.0 1 17.8 62561
96.0 10.0 1 17.8 62561
96.0 10.0 1 17.8 62561
124.0 13.0 1 42.7 62564
126.0 13.0 1 42.7 62564
126.0 13.0 1 42.7 62564
126.0 23.0 0 31.7 62565
130.0 23.0 0 31.7 62565
138.0 23.0 0 31.7 62565
184.0 80.0 1 22.4 62567
180.0 80.0 1 22.4 62567
164.0 80.0 1 22.4 62567
100.0 32.0 1 27.8 62571
102.0 32.0 1 27.8 62571
102.0 32.0 1 27.8 62571
98.0 48.0 1 29.6 62573
110.0 48.0 1 29.6 62573
112.0 48.0 1 29.6 62573
114.0 13.0 1 31.0 62574
112.0 13.0 1 31.0 62574
118.0 13.0 1 31.0 62574
132.0 24.0 1 22.0 62575
134.0 24.0 1 22.0 62575
130.0 24.0 1 22.0 62575
130.0 66.0 0 36.5 62576
128.0 66.0 0 36.5 62576
130.0 66.0 0 36.5 62576
128.0 71.0 1 35.6 62577
132.0 71.0 1 35.6 62577
132.0 71.0 1 35.6 62577
136.0 78.0 0 23.8 62579
142.0 78.0 0 23.8 62579
134.0 78.0 0 23.8 62579
104.0 14.0 1 17.8 62580
106.0 14.0 1 17.8 62580
108.0 14.0 1 17.8 62580
100.0 10.0 1 17.0 62581
100.0 10.0 1 17.0 62581
100.0 10.0 1 17.0 62581
122.0 22.0 0 23.2 62584
126.0 22.0 0 23.2 62584
124.0 22.0 0 23.2 62584
120.0 80.0 1 34.3 62585
100.0 80.0 1 34.3 62585
116.0 80.0 1 34.3 62585
116.0 70.0 0 40.1 62586
112.0 70.0 0 40.1 62586
116.0 70.0 0 40.1 62586
134.0 73.0 0 24.8 62587
136.0 73.0 0 24.8 62587
124.0 73.0 0 24.8 62587
132.0 21.0 0 20.7 62588
124.0 21.0 0 20.7 62588
126.0 21.0 0 20.7 62588
146.0 75.0 1 24.8 62589
144.0 75.0 1 24.8 62589
132.0 75.0 1 24.8 62589
92.0 11.0 0 16.0 62590
94.0 11.0 0 16.0 62590
92.0 11.0 0 16.0 62590
118.0 10.0 0 16.2 62591
124.0 10.0 0 16.2 62591
116.0 10.0 0 16.2 62591
108.0 72.0 1 34.5 62593
110.0 72.0 1 34.5 62593
110.0 72.0 1 34.5 62593
94.0 28.0 1 23.8 62595
98.0 28.0 1 23.8 62595
94.0 28.0 1 23.8 62595
110.0 52.0 1 32.5 62596
106.0 52.0 1 32.5 62596
110.0 52.0 1 32.5 62596
126.0 60.0 1 50.5 62597
96.0 60.0 1 50.5 62597
120.0 60.0 1 50.5 62597
116.0 18.0 0 37.4 62598
112.0 18.0 0 37.4 62598
118.0 18.0 0 37.4 62598
150.0 50.0 1 30.0 62599
148.0 50.0 1 30.0 62599
148.0 50.0 1 30.0 62599
104.0 10.0 0 19.9 62600
104.0 10.0 0 19.9 62600
104.0 10.0 0 19.9 62600
130.0 65.0 0 26.1 62601
132.0 65.0 0 26.1 62601
134.0 65.0 0 26.1 62601
140.0 80.0 1 25.8 62602
138.0 80.0 1 25.8 62602
136.0 80.0 1 25.8 62602
108.0 38.0 1 52.2 62603
114.0 38.0 1 52.2 62603
112.0 38.0 1 52.2 62603
144.0 73.0 1 22.2 62604
142.0 73.0 1 22.2 62604
150.0 73.0 1 22.2 62604
112.0 9.0 0 19.3 62609
114.0 9.0 0 19.3 62609
106.0 9.0 0 19.3 62609
100.0 12.0 1 30.3 62610
104.0 12.0 1 30.3 62610
94.0 12.0 1 30.3 62610
150.0 45.0 0 30.7 62611
146.0 45.0 0 30.7 62611
150.0 45.0 0 30.7 62611
104.0 38.0 1 30.5 62612
108.0 38.0 1 30.5 62612
108.0 38.0 1 30.5 62612
114.0 29.0 1 34.2 62613
120.0 29.0 1 34.2 62613
118.0 29.0 1 34.2 62613
110.0 12.0 0 18.4 62614
108.0 12.0 0 18.4 62614
110.0 12.0 0 18.4 62614
108.0 37.0 1 19.3 62616
100.0 37.0 1 19.3 62616
110.0 37.0 1 19.3 62616
94.0 8.0 0 14.7 62617
94.0 8.0 0 14.7 62617
94.0 8.0 0 14.7 62617
96.0 10.0 0 15.4 62618
104.0 10.0 0 15.4 62618
102.0 10.0 0 15.4 62618
156.0 80.0 0 24.9 62619
142.0 80.0 0 24.9 62619
148.0 80.0 0 24.9 62619
114.0 41.0 0 28.8 62621
110.0 41.0 0 28.8 62621
110.0 41.0 0 28.8 62621
94.0 15.0 1 22.4 62622
96.0 15.0 1 22.4 62622
102.0 15.0 1 22.4 62622
140.0 78.0 1 26.9 62623
132.0 78.0 1 26.9 62623
134.0 78.0 1 26.9 62623
120.0 40.0 1 20.9 62624
114.0 40.0 1 20.9 62624
116.0 40.0 1 20.9 62624
126.0 60.0 1 23.9 62625
126.0 60.0 1 23.9 62625
128.0 60.0 1 23.9 62625
98.0 13.0 0 20.5 62626
96.0 13.0 0 20.5 62626
96.0 13.0 0 20.5 62626
94.0 11.0 0 15.5 62629
94.0 11.0 0 15.5 62629
92.0 11.0 0 15.5 62629
154.0 68.0 1 31.0 62630
160.0 68.0 1 31.0 62630
154.0 68.0 1 31.0 62630
114.0 37.0 1 23.8 62631
114.0 37.0 1 23.8 62631
114.0 37.0 1 23.8 62631
110.0 29.0 0 48.3 62632
108.0 29.0 0 48.3 62632
112.0 29.0 0 48.3 62632
138.0 61.0 1 24.0 62633
138.0 61.0 1 24.0 62633
132.0 61.0 1 24.0 62633
132.0 68.0 0 32.6 62634
130.0 68.0 0 32.6 62634
130.0 68.0 0 32.6 62634
100.0 27.0 1 26.1 62635
100.0 27.0 1 26.1 62635
100.0 27.0 1 26.1 62635
132.0 17.0 0 20.5 62636
132.0 17.0 0 20.5 62636
132.0 17.0 0 20.5 62636
114.0 9.0 1 24.3 62638
108.0 9.0 1 24.3 62638
114.0 9.0 1 24.3 62638
118.0 26.0 1 38.6 62639
116.0 26.0 1 38.6 62639
112.0 26.0 1 38.6 62639
96.0 31.0 1 37.1 62640
106.0 31.0 1 37.1 62640
100.0 31.0 1 37.1 62640
126.0 30.0 0 26.9 62642
126.0 30.0 0 26.9 62642
118.0 30.0 0 26.9 62642
136.0 61.0 0 42.0 62644
132.0 61.0 0 42.0 62644
118.0 61.0 0 42.0 62644
106.0 12.0 1 19.1 62645
110.0 12.0 1 19.1 62645
106.0 12.0 1 19.1 62645
136.0 57.0 1 28.9 62646
122.0 57.0 1 28.9 62646
110.0 57.0 1 28.9 62646
118.0 76.0 0 36.6 62649
126.0 76.0 0 36.6 62649
120.0 76.0 0 36.6 62649
118.0 71.0 0 33.3 62650
118.0 71.0 0 33.3 62650
114.0 71.0 0 33.3 62650
142.0 55.0 0 39.5 62651
140.0 55.0 0 39.5 62651
140.0 55.0 0 39.5 62651
114.0 46.0 0 29.3 62652
110.0 46.0 0 29.3 62652
114.0 46.0 0 29.3 62652
124.0 68.0 0 34.5 62658
120.0 68.0 0 34.5 62658
124.0 68.0 0 34.5 62658
116.0 18.0 0 25.4 62659
104.0 18.0 0 25.4 62659
108.0 18.0 0 25.4 62659
104.0 35.0 0 21.2 62661
110.0 35.0 0 21.2 62661
114.0 35.0 0 21.2 62661
108.0 11.0 1 28.2 62662
100.0 11.0 1 28.2 62662
102.0 11.0 1 28.2 62662
140.0 64.0 0 39.4 62664
138.0 64.0 0 39.4 62664
140.0 64.0 0 39.4 62664
108.0 67.0 1 20.1 62665
106.0 67.0 1 20.1 62665
100.0 67.0 1 20.1 62665
146.0 33.0 0 36.1 62668
152.0 33.0 0 36.1 62668
146.0 33.0 0 36.1 62668
120.0 33.0 0 22.5 62669
128.0 33.0 0 22.5 62669
116.0 33.0 0 22.5 62669
104.0 13.0 0 19.5 62670
108.0 13.0 0 19.5 62670
106.0 13.0 0 19.5 62670
108.0 69.0 0 26.3 62671
120.0 69.0 0 26.3 62671
110.0 69.0 0 26.3 62671
96.0 13.0 1 20.6 62672
106.0 13.0 1 20.6 62672
104.0 13.0 1 20.6 62672
106.0 33.0 1 21.5 62674
102.0 33.0 1 21.5 62674
96.0 33.0 1 21.5 62674
92.0 30.0 1 27.3 62677
94.0 30.0 1 27.3 62677
90.0 30.0 1 27.3 62677
154.0 68.0 0 23.7 62678
164.0 68.0 0 23.7 62678
154.0 68.0 0 23.7 62678
152.0 68.0 0 25.7 62680
154.0 68.0 0 25.7 62680
154.0 68.0 0 25.7 62680
128.0 62.0 1 34.9 62682
130.0 62.0 1 34.9 62682
122.0 62.0 1 34.9 62682
108.0 55.0 1 22.3 62683
114.0 55.0 1 22.3 62683
112.0 55.0 1 22.3 62683
128.0 36.0 0 22.5 62685
120.0 36.0 0 22.5 62685
128.0 36.0 0 22.5 62685
162.0 80.0 1 38.7 62686
156.0 80.0 1 38.7 62686
92.0 10.0 0 14.8 62687
98.0 10.0 0 14.8 62687
92.0 10.0 0 14.8 62687
124.0 24.0 0 32.7 62688
120.0 24.0 0 32.7 62688
116.0 24.0 0 32.7 62688
102.0 44.0 0 43.5 62689
104.0 44.0 0 43.5 62689
102.0 44.0 0 43.5 62689
112.0 26.0 1 35.4 62690
108.0 26.0 1 35.4 62690
110.0 26.0 1 35.4 62690
108.0 31.0 0 23.6 62691
108.0 31.0 0 23.6 62691
114.0 31.0 0 23.6 62691
160.0 69.0 1 40.7 62693
146.0 69.0 1 40.7 62693
154.0 69.0 1 40.7 62693
108.0 37.0 0 40.1 62694
118.0 37.0 0 40.1 62694
118.0 37.0 0 40.1 62694
140.0 41.0 1 27.7 62695
142.0 41.0 1 27.7 62695
140.0 41.0 1 27.7 62695
100.0 13.0 0 17.2 62696
104.0 13.0 0 17.2 62696
106.0 13.0 0 17.2 62696
106.0 9.0 0 21.9 62697
114.0 9.0 0 21.9 62697
102.0 9.0 0 21.9 62697
112.0 9.0 0 19.1 62700
112.0 9.0 0 19.1 62700
110.0 9.0 0 19.1 62700
92.0 29.0 1 29.9 62701
92.0 29.0 1 29.9 62701
88.0 29.0 1 29.9 62701
154.0 80.0 0 24.8 62704
146.0 80.0 0 24.8 62704
148.0 80.0 0 24.8 62704
104.0 30.0 1 27.0 62705
96.0 30.0 1 27.0 62705
100.0 30.0 1 27.0 62705
112.0 39.0 1 33.3 62706
108.0 39.0 1 33.3 62706
110.0 39.0 1 33.3 62706
118.0 49.0 1 30.5 62707
116.0 49.0 1 30.5 62707
112.0 49.0 1 30.5 62707
158.0 52.0 0 21.9 62708
158.0 52.0 0 21.9 62708
162.0 52.0 0 21.9 62708
90.0 10.0 1 21.3 62709
90.0 10.0 1 21.3 62709
92.0 10.0 1 21.3 62709
96.0 15.0 0 29.6 62713
86.0 15.0 0 29.6 62713
98.0 15.0 0 29.6 62713
124.0 75.0 0 27.0 62714
126.0 75.0 0 27.0 62714
126.0 75.0 0 27.0 62714
98.0 10.0 0 15.8 62715
94.0 10.0 0 15.8 62715
96.0 10.0 0 15.8 62715
104.0 42.0 1 23.3 62716
100.0 42.0 1 23.3 62716
108.0 42.0 1 23.3 62716
154.0 50.0 1 23.6 62717
158.0 50.0 1 23.6 62717
158.0 50.0 1 23.6 62717
134.0 63.0 0 26.8 62718
122.0 63.0 0 26.8 62718
126.0 63.0 0 26.8 62718
114.0 74.0 0 27.6 62719
114.0 74.0 0 27.6 62719
128.0 74.0 0 27.6 62719
128.0 58.0 0 26.1 62720
128.0 58.0 0 26.1 62720
122.0 58.0 0 26.1 62720
108.0 31.0 1 25.3 62723
108.0 31.0 1 25.3 62723
102.0 31.0 1 25.3 62723
120.0 57.0 1 26.1 62724
118.0 57.0 1 26.1 62724
112.0 57.0 1 26.1 62724
220.0 80.0 1 30.8 62727
214.0 80.0 1 30.8 62727
226.0 80.0 1 30.8 62727
136.0 32.0 1 29.3 62728
136.0 32.0 1 29.3 62728
138.0 32.0 1 29.3 62728
118.0 19.0 0 23.6 62731
122.0 19.0 0 23.6 62731
116.0 19.0 0 23.6 62731
130.0 71.0 1 38.8 62732
130.0 71.0 1 38.8 62732
136.0 71.0 1 38.8 62732
104.0 39.0 0 22.4 62735
104.0 39.0 0 22.4 62735
100.0 39.0 0 22.4 62735
124.0 40.0 1 22.8 62736
128.0 40.0 1 22.8 62736
132.0 40.0 1 22.8 62736
118.0 74.0 0 26.4 62739
122.0 74.0 0 26.4 62739
112.0 74.0 0 26.4 62739
106.0 19.0 1 29.6 62740
96.0 19.0 1 29.6 62740
102.0 19.0 1 29.6 62740
116.0 70.0 0 28.8 62742
120.0 70.0 0 28.8 62742
118.0 70.0 0 28.8 62742
132.0 37.0 0 33.9 62744
126.0 37.0 0 33.9 62744
122.0 37.0 0 33.9 62744
138.0 71.0 1 29.2 62745
142.0 71.0 1 29.2 62745
138.0 71.0 1 29.2 62745
114.0 38.0 1 28.6 62746
116.0 38.0 1 28.6 62746
114.0 38.0 1 28.6 62746
174.0 52.0 0 28.8 62747
164.0 52.0 0 28.8 62747
182.0 52.0 0 28.8 62747
100.0 13.0 0 17.6 62748
100.0 13.0 0 17.6 62748
114.0 13.0 0 17.6 62748
130.0 48.0 0 28.0 62749
126.0 48.0 0 28.0 62749
134.0 48.0 0 28.0 62749
128.0 45.0 1 20.3 62750
122.0 45.0 1 20.3 62750
124.0 45.0 1 20.3 62750
110.0 8.0 0 24.3 62751
108.0 8.0 0 24.3 62751
112.0 8.0 0 24.3 62751
112.0 16.0 1 20.6 62753
114.0 16.0 1 20.6 62753
114.0 16.0 1 20.6 62753
94.0 19.0 1 20.8 62755
96.0 19.0 1 20.8 62755
100.0 19.0 1 20.8 62755
126.0 54.0 0 36.1 62757
128.0 54.0 0 36.1 62757
132.0 54.0 0 36.1 62757
118.0 22.0 1 32.3 62759
120.0 22.0 1 32.3 62759
118.0 22.0 1 32.3 62759
84.0 10.0 1 18.4 62760
86.0 10.0 1 18.4 62760
84.0 10.0 1 18.4 62760
116.0 68.0 0 37.6 62761
122.0 68.0 0 37.6 62761
116.0 68.0 0 37.6 62761
128.0 29.0 0 31.8 62763
128.0 29.0 0 31.8 62763
128.0 29.0 0 31.8 62763
142.0 51.0 1 48.6 62764
142.0 51.0 1 48.6 62764
142.0 51.0 1 48.6 62764
104.0 29.0 1 18.9 62765
102.0 29.0 1 18.9 62765
94.0 29.0 1 18.9 62765
126.0 38.0 1 32.2 62768
126.0 38.0 1 32.2 62768
128.0 38.0 1 32.2 62768
116.0 13.0 1 26.8 62769
114.0 13.0 1 26.8 62769
116.0 13.0 1 26.8 62769
124.0 30.0 0 27.4 62771
126.0 30.0 0 27.4 62771
126.0 30.0 0 27.4 62771
142.0 46.0 1 38.1 62772
150.0 46.0 1 38.1 62772
148.0 46.0 1 38.1 62772
110.0 9.0 0 33.1 62776
110.0 9.0 0 33.1 62776
118.0 9.0 0 33.1 62776
126.0 28.0 0 25.4 62777
126.0 28.0 0 25.4 62777
122.0 28.0 0 25.4 62777
124.0 32.0 0 25.4 62779
122.0 32.0 0 25.4 62779
122.0 32.0 0 25.4 62779
128.0 31.0 0 36.4 62784
120.0 31.0 0 36.4 62784
124.0 31.0 0 36.4 62784
98.0 21.0 1 22.5 62787
90.0 21.0 1 22.5 62787
96.0 21.0 1 22.5 62787
128.0 35.0 0 22.6 62788
128.0 35.0 0 22.6 62788
120.0 35.0 0 22.6 62788
106.0 26.0 1 31.8 62789
106.0 26.0 1 31.8 62789
108.0 26.0 1 31.8 62789
92.0 11.0 1 19.3 62790
96.0 11.0 1 19.3 62790
86.0 11.0 1 19.3 62790
110.0 14.0 0 29.6 62791
110.0 14.0 0 29.6 62791
104.0 14.0 0 29.6 62791
116.0 52.0 1 42.3 62792
118.0 52.0 1 42.3 62792
112.0 52.0 1 42.3 62792
126.0 72.0 0 29.9 62793
126.0 72.0 0 29.9 62793
132.0 72.0 0 29.9 62793
102.0 45.0 1 29.0 62794
102.0 45.0 1 29.0 62794
102.0 45.0 1 29.0 62794
128.0 20.0 0 31.1 62795
126.0 20.0 0 31.1 62795
128.0 20.0 0 31.1 62795
98.0 17.0 1 21.7 62796
94.0 17.0 1 21.7 62796
96.0 17.0 1 21.7 62796
118.0 24.0 1 24.8 62797
114.0 24.0 1 24.8 62797
120.0 24.0 1 24.8 62797
122.0 50.0 0 25.8 62798
124.0 50.0 0 25.8 62798
118.0 50.0 0 25.8 62798
104.0 15.0 1 21.5 62800
102.0 15.0 1 21.5 62800
104.0 15.0 1 21.5 62800
130.0 34.0 1 22.6 62803
110.0 34.0 1 22.6 62803
118.0 34.0 1 22.6 62803
118.0 69.0 0 30.8 62804
126.0 69.0 0 30.8 62804
128.0 69.0 0 30.8 62804
100.0 41.0 1 27.2 62805
98.0 41.0 1 27.2 62805
100.0 41.0 1 27.2 62805
110.0 53.0 0 25.0 62806
108.0 53.0 0 25.0 62806
116.0 53.0 0 25.0 62806
126.0 67.0 0 30.8 62807
132.0 67.0 0 30.8 62807
132.0 67.0 0 30.8 62807
100.0 44.0 1 31.4 62808
94.0 44.0 1 31.4 62808
94.0 44.0 1 31.4 62808
108.0 51.0 1 21.0 62809
108.0 51.0 1 21.0 62809
106.0 51.0 1 21.0 62809
106.0 15.0 1 32.6 62810
108.0 15.0 1 32.6 62810
112.0 15.0 1 32.6 62810
98.0 40.0 1 37.0 62811
98.0 40.0 1 37.0 62811
102.0 40.0 1 37.0 62811
118.0 50.0 0 24.2 62812
122.0 50.0 0 24.2 62812
118.0 50.0 0 24.2 62812
106.0 71.0 0 27.6 62813
116.0 71.0 0 27.6 62813
108.0 71.0 0 27.6 62813
128.0 72.0 0 24.4 62814
134.0 72.0 0 24.4 62814
130.0 72.0 0 24.4 62814
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Multilevel Modeling Software Comparison\n",
"\n",
"----\n",
"David C. Folch (@dfolch)\n",
"\n",
"Reilley Luedde (@rluedde)\n",
"\n",
"\n",
"## Background\n",
"\n",
"`R`, `Python`, and `MPlus` have multiple options for creating multilevel models. There is overlap among the models that can be built with these software, but not all models can be estimated in all software. In the following sections, you will see what needs to be done to get relatively congruent models.\n",
"\n",
"----\n",
"## Software and Packages\n",
"\n",
"| Software | Package/Library | Class |\n",
"|----------|:---------------:|:-----------------------------------------------------------------------------------------------------------:|\n",
"| Python | statsmodels | [MixedLM](https://www.statsmodels.org/dev/generated/statsmodels.regression.mixed_linear_model.MixedLM.html) |\n",
"| R | lme4 | [lmer](https://www.rdocumentation.org/packages/lme4/versions/1.1-23/topics/lmer) |\n",
"| Mplus* | N/A* | N/A* |A | \n",
"\n",
"*Multilevel modeling is available in the normal and demo version of Mplus. There's no need to install anything else.\n",
"\n",
"Both `Python` and `R` require the user to install external packages, statsmodels and lme4, respectively.\n",
"\n",
"## Estimators\n",
"\n",
"Each of the three software have various algorithms that are used to estimate the paramaters and standard errors. Below is a table of the estimation algorithms that we comparing. \n",
"\n",
"| Software | Available Estimators |\n",
"|----------|-------------------------------------------------------------------------------------|\n",
"| MixedLM | Restricted Maximum Likelihood (REML)*, Maximum Likelihood (ML) |\n",
"| lmer | Restricted Maximum Likelihood (REML)*, Maximum Likelihood (ML) |\n",
"| Mplus | [See table in ESTIMATOR section](https://www.statmodel.com/HTML_UG/chapter16V8.htm) |\n",
"\n",
" * = Default"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What estimators produce similar models? \n",
"\n",
"By default, `lmer` (`R`) and `MixedLM` (`Python`) both use `REML`, and are accordingly very similar. However, there are **slight** differences in the calculation of the standard errors/deviations of these models. `REML` isn't possible in `Mplus` for TwoLevel random models. Maximum Likelihood (`ML`) is available in `R`, `Python`, and `Mplus` and the model results from using this estimator are very similar between all three software."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## R setup for formatting output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To compare each software, we will need to run `R` in this Jupyter Notebook. The `rpy2` extension allows this. If you don't have it installed a `pip install rpy2` or `conda install rpy2` should do the trick.\n",
"\n",
"Once we load the `rpy2` extension, any cell that starts with the magic function `%%R` will be able to run `R` code."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The rpy2.ipython extension is already loaded. To reload it, use:\n",
" %reload_ext rpy2.ipython\n"
]
}
],
"source": [
"%load_ext rpy2.ipython"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will use:\n",
"- R's multi-level modelling package `lme4`\n",
"- `tidyverse`\n",
"- `MplusAutomation` will help us extract parameters from Mplus for comparison with R and Python\n",
"\n",
"`install.packages(\"package\")` for any of these three packages that you don't have."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will need some functions to extract paramaters from the models once they've all been built:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"%%R\n",
"\n",
"# Get a df containing the parameters for the fixed effects of the model.\n",
"fixed_fx = function(R_model){\n",
"\n",
" sum = summary(R_model)\n",
"\n",
" fixed_fx = sum$coefficients %>% \n",
" data.frame() %>% # convert to df\n",
" select(-3) %>% # remove t-values\n",
" gather %>%\n",
" select(-1)\n",
"\n",
" rownames(fixed_fx) = c(\"Int\", \"BMXBMI\", \"female\", \"Int_SE\", \"BMXBMI_SE\", \"female_SE\")\n",
" colnames(fixed_fx) = \"lme4\"\n",
"\n",
" return (fixed_fx)\n",
"}\n",
"\n",
"# Get a df containing the parameters for the random effects of the model.\n",
"random_fx = function(R_model){\n",
" \n",
" sum = summary(R_model)\n",
" random_fx = sum$varcor %>%\n",
" data.frame() %>%\n",
" gather %>%\n",
" select(-1)\n",
" \n",
" random_fx = data.frame(random_fx[7:10,])\n",
" rownames(random_fx) = c(\"SEQN_Var\",\"Resid_Var\",\"SEQN_SD\",\"Resid_SD\")\n",
" colnames(random_fx) = \"lme4\"\n",
" return (random_fx)\n",
"}\n",
"\n",
"lme4_params = function(model){\n",
" fixed_fx = fixed_fx(model)\n",
" random_fx = random_fx(model)\n",
" all_params = rbind(fixed_fx, random_fx)\n",
" write.csv(all_params, \"r_df.csv\")\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following function reads in the output generated by `MPlus` and extracts certain paramaters to compare with `R` and `Python`"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"%%R\n",
"\n",
"mplus_params = function(mp_out_fp) {\n",
" mp_model = readModels(mp_out_fp)\n",
" coef_df = coef(mp_model)\n",
" coef_df = coef_df %>% \n",
" select(c(\"est\", \"se\")) %>% \n",
" gather() %>% \n",
" select(c(\"value\")) \n",
" \n",
" order = c(3,1,2,8,6,7,5,4,10,9)\n",
" coef_df = coef_df[order,,drop = FALSE]\n",
" colnames(coef_df) = c(\"MPlus\")\n",
" \n",
" rownames(coef_df) = c(\"Int\", \"BMXBMI\", \"female\", \"Int_SE\", \"BMXBMI_SE\", \"female_SE\",\n",
" \"SEQN_Var\",\"Resid_Var\",\"SEQN_SE\",\"Resid_SE\")\n",
" write.csv(coef_df, \"mplus_df.csv\")\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Python setup "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* If you have problems with the notebook, try `pip install html5lib==0.9999999`, because some versions of `html5lib` have a bug."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def sm_params(results_obj):\n",
" row_labels = [\"Int\", \"BMXBMI\", \"female\", \"Int_SE\", \"BMXBMI_SE\", \"female_SE\", \"SEQN_Var\", \"Resid_Var\", \"SEQN_SE\",\n",
" \"Resid_SD\"]\n",
" column = [\"statsmodels\"]\n",
"\n",
" results = pd.DataFrame(index = row_labels, columns = column)\n",
" \n",
" # HTML Parsing that might break depending on your version of html5lib\n",
" # Read results_obj into a list of DataFrames and select the first df.\n",
" summary_df = pd.read_html(results_obj.summary().as_html(), header = 0)[1]\n",
" summary_df.index = summary_df.iloc[:,0]\n",
" summary_df = summary_df.drop(summary_df.columns[0], axis=1)\n",
" \n",
" # Extract parameters \n",
" results.loc[\"Int\"] = summary_df.loc[\"Intercept\", \"Coef.\"]\n",
" results.loc[\"BMXBMI\"] = summary_df.loc[\"BMXBMI\", \"Coef.\"]\n",
" results.loc[\"female\"] = summary_df.loc[\"female\", \"Coef.\"]\n",
" results.loc[\"Int_SE\"] = summary_df.loc[\"Intercept\", \"Std.Err.\"]\n",
" results.loc[\"BMXBMI_SE\"] = summary_df.loc[\"BMXBMI\", \"Std.Err.\"]\n",
" results.loc[\"female_SE\"] = summary_df.loc[\"female\", \"Std.Err.\"]\n",
" results.loc[\"SEQN_Var\"] = summary_df.loc[\"SEQN Var\", \"Coef.\"]\n",
" results.loc[\"Resid_Var\"] = results_obj.scale\n",
" results.loc[\"SEQN_SE\"] = summary_df.loc[\"SEQN Var\", \"Std.Err.\"]\n",
" # results.loc[\"Resid_SD\"] = This isn't even in the normal printout ...\n",
" return results\n",
"\n",
"\n",
"# Output a df that has selected lme4 results next to the statsmodels results\n",
"def compare_params(r_csv_fp, results_obj, mp_csv_fp = None):\n",
" sm_results = sm_params(results_obj)\n",
" lme4_results = pd.read_csv(r_csv_fp, index_col = 0)\n",
" compare_results = pd.concat([lme4_results, sm_results], join=\"outer\", axis = 1)\n",
" # If we want to compare R, Python, and MPlus\n",
" # Since MPlus doesn't have a REML option, it's useful to compare only the Python and R REML\n",
" # models.\n",
" if mp_csv_fp:\n",
" mp_results = pd.read_csv(mp_csv_fp, index_col = 0)\n",
" compare_results = pd.concat([lme4_results, sm_results, mp_results], join=\"outer\", axis = 1)\n",
" compare_results[\"lme4/mp % diff\"] = \\\n",
" (compare_results[\"lme4\"] - compare_results[\"MPlus\"])/compare_results[\"MPlus\"] \n",
" compare_results[\"sm/mp % diff\"] = \\\n",
" (compare_results[\"statsmodels\"] - compare_results[\"MPlus\"])/compare_results[\"MPlus\"]\n",
"\n",
" # If we only want to compare R and Python models\n",
" else:\n",
" compare_results = pd.concat([lme4_results, sm_results], join=\"outer\", axis = 1)\n",
" compare_results[\"sm/lme4 % diff\"] = \\\n",
" (compare_results[\"lme4\"] - compare_results[\"statsmodels\"])/compare_results[\"statsmodels\"]\n",
"\n",
" return compare_results\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" ## How do lme4 (R) and Statsmodels (Python) compare when using REML?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we will load test blood-pressure data and fit a simple mixed effects models in `R` and `Python`.`SEQN` is the grouping variable (subject's unique ID). [Based on this example.](https://github.com/kshedden/Statsmodels-MixedLM/blob/master/nhanes_bp.py)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Specify `lme4` model implicitly using `REML`."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"%%R\n",
"\n",
"library(lme4)\n",
"library(tidyverse)\n",
"library(MplusAutomation)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%%R\n",
"\n",
"bp_data = read.csv(\"bp_data.csv\")\n",
"r_reml_model = lmer(bp ~ BMXBMI + female + (1 | SEQN), data = bp_data)\n",
"lme4_params(r_reml_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we will replicate this lme4 model with statsmodels. Again, we will be using `REML` estimation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Specify and fit model:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"import statsmodels.api as sm\n",
"import statsmodels\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"bp_data = pd.read_csv(\"bp_data.csv\")\n",
"sm_reml_model = sm.MixedLM.from_formula(\"bp ~ female + BMXBMI\", groups = \"SEQN\", data = bp_data)\n",
"sm_reml_results = sm_reml_model.fit()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Make comparison."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>lme4</th>\n",
" <th>statsmodels</th>\n",
" <th>sm/lme4 % diff</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Int</th>\n",
" <td>97.535339</td>\n",
" <td>97.535</td>\n",
" <td>3.47952e-06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BMXBMI</th>\n",
" <td>0.799370</td>\n",
" <td>0.799</td>\n",
" <td>0.000463643</td>\n",
" </tr>\n",
" <tr>\n",
" <th>female</th>\n",
" <td>-3.296478</td>\n",
" <td>-3.296</td>\n",
" <td>0.00014512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Int_SE</th>\n",
" <td>2.989652</td>\n",
" <td>2.99</td>\n",
" <td>-0.000116445</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BMXBMI_SE</th>\n",
" <td>0.106120</td>\n",
" <td>0.106</td>\n",
" <td>0.00113113</td>\n",
" </tr>\n",
" <tr>\n",
" <th>female_SE</th>\n",
" <td>1.546270</td>\n",
" <td>1.546</td>\n",
" <td>0.000174376</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SEQN_Var</th>\n",
" <td>270.933125</td>\n",
" <td>270.918</td>\n",
" <td>5.58297e-05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Resid_Var</th>\n",
" <td>15.805451</td>\n",
" <td>15.8059</td>\n",
" <td>-2.74691e-05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SEQN_SD</th>\n",
" <td>16.460046</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Resid_SD</th>\n",
" <td>3.975607</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SEQN_SE</th>\n",
" <td>NaN</td>\n",
" <td>5.582</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" lme4 statsmodels sm/lme4 % diff\n",
"Int 97.535339 97.535 3.47952e-06\n",
"BMXBMI 0.799370 0.799 0.000463643\n",
"female -3.296478 -3.296 0.00014512\n",
"Int_SE 2.989652 2.99 -0.000116445\n",
"BMXBMI_SE 0.106120 0.106 0.00113113\n",
"female_SE 1.546270 1.546 0.000174376\n",
"SEQN_Var 270.933125 270.918 5.58297e-05\n",
"Resid_Var 15.805451 15.8059 -2.74691e-05\n",
"SEQN_SD 16.460046 NaN NaN\n",
"Resid_SD 3.975607 NaN NaN\n",
"SEQN_SE NaN 5.582 NaN"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"reml_comparison = compare_params(\"r_df.csv\", sm_reml_results)\n",
"reml_comparison"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The difference between the two models is relatively small. The diffferences that do arise are, for the most part, due to the inspecific rounding of `statsmodels` and the increased specificity of `lme4`. We cannot include `MPlus` in this analysis of `REML` models because the software doesn't have a `REML` estimator. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `NaN` values result in each software package using differing techniques to calculate variation among grouping variable effects. This will occur again in the next section."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How do all three software compare when using ML (Maximum Likelihood) estimation?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's see how well `statsmodels`,`lme4` and `MPlus` line up if they all use `ML` estimation. We will follow the same process as above except this time, we will fit an `MPlus` model as well."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"%%R\n",
"\n",
"r_ml_model = lmer(bp ~ BMXBMI + female + (1 | SEQN), REML = FALSE, data = bp_data)\n",
"lme4_params(r_ml_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Python"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"sm_ml_model = sm.MixedLM.from_formula(\"bp ~ female + BMXBMI\", groups = \"SEQN\", data = bp_data)\n",
"sm_ml_results = sm_ml_model.fit(reml = False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write `MPlus` `ML` model script to hard drive:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"%%bash\n",
"\n",
"echo \"\n",
"TITLE:\n",
" Replication of Nhanes bp models;\n",
"\n",
"DATA:\n",
" FILE = \n",
" mplus_bp_data.csv;\n",
"\n",
"VARIABLE:\n",
" NAMES = !might need to be ARE instead of !\n",
" bp\n",
" RIDAGEYR\n",
" female\n",
" BMXBMI\n",
" SEQN;\n",
"\n",
" USEVARIABLES = \n",
" bp\n",
" BMXBMI\n",
" female\n",
" SEQN;\n",
"\n",
" CLUSTER = \n",
" SEQN;\n",
"\n",
" WITHIN = \n",
" BMXBMI;\n",
" \n",
" BETWEEN = \n",
" female;\n",
"\n",
"ANALYSIS:\n",
" TYPE = TWOLEVEL RANDOM;\n",
" ESTIMATOR = ML\n",
"\n",
"MODEL:\n",
" %BETWEEN%\n",
" bp ON \n",
" female;\n",
" %WITHIN%\n",
" bp ON \n",
" BMXBMI;\n",
"\" >| bp_ml.inp"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses the [Mplus free demo version](https://www.statmodel.com/demo.shtml). There are options below for running this on Linux and MacOS."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%%bash\n",
"\n",
"# Linux\n",
"#export PATH=$PATH:/opt/mplusdemo \n",
"#export TMP=/tmp\n",
"#mpdemo bp_ml.inp >/dev/null\n",
"\n",
"# MacOS\n",
"/Applications/MplusDemo/mpdemo bp_ml.inp >/dev/null"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Extract parameters from MPlus output."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Reading model: bp_ml.out \n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%R\n",
"\n",
"mplus_params(\"bp_ml.out\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>lme4</th>\n",
" <th>statsmodels</th>\n",
" <th>MPlus</th>\n",
" <th>lme4/mp % diff</th>\n",
" <th>sm/mp % diff</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Int</th>\n",
" <td>97.535308</td>\n",
" <td>97.535</td>\n",
" <td>97.530</td>\n",
" <td>0.000054</td>\n",
" <td>5.12663e-05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BMXBMI</th>\n",
" <td>0.799371</td>\n",
" <td>0.799</td>\n",
" <td>0.799</td>\n",
" <td>0.000464</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>female</th>\n",
" <td>-3.296465</td>\n",
" <td>-3.296</td>\n",
" <td>-3.297</td>\n",
" <td>-0.000162</td>\n",
" <td>-0.000303306</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Int_SE</th>\n",
" <td>2.980047</td>\n",
" <td>2.98</td>\n",
" <td>2.980</td>\n",
" <td>0.000016</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BMXBMI_SE</th>\n",
" <td>0.105779</td>\n",
" <td>0.106</td>\n",
" <td>0.106</td>\n",
" <td>-0.002085</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>female_SE</th>\n",
" <td>1.541302</td>\n",
" <td>1.541</td>\n",
" <td>1.541</td>\n",
" <td>0.000196</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SEQN_Var</th>\n",
" <td>269.161014</td>\n",
" <td>269.147</td>\n",
" <td>269.194</td>\n",
" <td>-0.000123</td>\n",
" <td>-0.000174595</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Resid_Var</th>\n",
" <td>15.805492</td>\n",
" <td>15.8059</td>\n",
" <td>15.806</td>\n",
" <td>-0.000032</td>\n",
" <td>-6.31062e-06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SEQN_SD</th>\n",
" <td>16.406127</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Resid_SD</th>\n",
" <td>3.975612</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SEQN_SE</th>\n",
" <td>NaN</td>\n",
" <td>5.535</td>\n",
" <td>17.955</td>\n",
" <td>NaN</td>\n",
" <td>-0.691729</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Resid_SE</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.733</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" lme4 statsmodels MPlus lme4/mp % diff sm/mp % diff\n",
"Int 97.535308 97.535 97.530 0.000054 5.12663e-05\n",
"BMXBMI 0.799371 0.799 0.799 0.000464 0\n",
"female -3.296465 -3.296 -3.297 -0.000162 -0.000303306\n",
"Int_SE 2.980047 2.98 2.980 0.000016 0\n",
"BMXBMI_SE 0.105779 0.106 0.106 -0.002085 0\n",
"female_SE 1.541302 1.541 1.541 0.000196 0\n",
"SEQN_Var 269.161014 269.147 269.194 -0.000123 -0.000174595\n",
"Resid_Var 15.805492 15.8059 15.806 -0.000032 -6.31062e-06\n",
"SEQN_SD 16.406127 NaN NaN NaN NaN\n",
"Resid_SD 3.975612 NaN NaN NaN NaN\n",
"SEQN_SE NaN 5.535 17.955 NaN -0.691729\n",
"Resid_SE NaN NaN 0.733 NaN NaN"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ml_comparison = compare_params(\"r_df.csv\", sm_ml_results, \"mplus_df.csv\")\n",
"ml_comparison"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In an Mplus twolevel random model, there are 4 `ESTIMATOR` options: `MLR`, `ML`, `MLF`, and `Bayes`. `MLF` and `Bayes` produce standard errors much different than `R` and `Python`. `ML` `MPlus` estimation produces results that are very close to `Python` and `R` so that is where the overlap occurs."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There isn't anything to compare the MPlus `MLR` model because neither `Python` nor `R` have an `MLR` option."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In R, there is a package called `robustlmm` which has a `rlmer` model that features two more estimators. Neither of these estimators are as close as `lme4::lmer`, though."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## <span style=\"text-decoration: underline\">Conclusion</span>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When using Maximum Likelihood estimation, all three software produce relatively congruent models. However, `R` and `Python` don't have any other methods that produce models similar to those of `MPlus`"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment