Created
February 13, 2025 08:06
-
-
Save devishot/837112d6aea007b9e30f35e928698540 to your computer and use it in GitHub Desktop.
Google Machine Learning Crash Course: Numerical data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value | |
| count 17000.0 17000.0 17000.0 17000.0 17000.0 17000.0 17000.0 17000.0 17000.0 | |
| mean -119.6 35.6 28.6 2643.7 539.4 1429.6 501.2 3.9 207300.9 | |
| std 2.0 2.1 12.6 2179.9 421.5 1147.9 384.5 1.9 115983.8 | |
| min -124.3 32.5 1.0 2.0 1.0 3.0 1.0 0.5 14999.0 | |
| 25% -121.8 33.9 18.0 1462.0 297.0 790.0 282.0 2.6 119400.0 | |
| 50% -118.5 34.2 29.0 2127.0 434.0 1167.0 409.0 3.5 180400.0 | |
| 75% -118.0 37.7 37.0 3151.2 648.2 1721.0 605.2 4.8 265000.0 | |
| max -114.3 42.0 52.0 37937.0 6445.0 35682.0 6082.0 15.0 500001.0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # @title Setup - Import relevant modules | |
| # The following code imports relevant modules that | |
| # enable you to run the Colab. | |
| # If you encounter technical issues running some of the code sections | |
| # that follow, try running this section again. | |
| import pandas as pd | |
| from matplotlib import pyplot as plt | |
| import io | |
| # The following lines adjust the granularity of reporting. | |
| pd.options.display.max_rows = 10 | |
| pd.options.display.float_format = "{:.1f}".format | |
| # @title Setup - Define the dataset | |
| # The following code defines the dataset that | |
| # you'll use in the Colab. | |
| # If you encounter technical issues running some of the code sections | |
| # that follow, try running this section again. | |
| dataset = '''calories,test_score | |
| 201,76 | |
| 142,72 | |
| 397,84 | |
| 294,79 | |
| 334,76 | |
| 173,60 | |
| 117,59 | |
| 174,60 | |
| 333,80 | |
| 383,83 | |
| 77,59 | |
| 39,62 | |
| 242,73 | |
| 7,51 | |
| 140,63 | |
| 73,66 | |
| 102,61 | |
| 5,48 | |
| 339,88 | |
| 388,92 | |
| 374,86 | |
| 358,81 | |
| 292,76 | |
| 167,70 | |
| 300,80 | |
| 348,77 | |
| 68,49 | |
| 1,55 | |
| 198,63 | |
| 154,74 | |
| 220,75 | |
| 9,58 | |
| 129,56 | |
| 108,55 | |
| 356,81 | |
| 383,96 | |
| 299,86 | |
| 107,62 | |
| 117,67 | |
| 103,54 | |
| 110,56 | |
| 80,57 | |
| 125,57 | |
| 132,71 | |
| 176,73 | |
| 390,98 | |
| 199,63 | |
| 5,56 | |
| 99,56 | |
| 39,49 | |
| 251,67 | |
| 71,57 | |
| 7,52 | |
| 28,49 | |
| 139,61 | |
| 227,77 | |
| 268,82 | |
| 113,70 | |
| 32,57 | |
| 1,51 | |
| 217,64 | |
| 248,67 | |
| 76,60 | |
| 388,90 | |
| 9,43 | |
| 315,86 | |
| 49,47 | |
| 97,53 | |
| 251,72 | |
| 224,65 | |
| 299,75 | |
| 325,81 | |
| 45,47 | |
| 203,67 | |
| 326,83 | |
| 329,82 | |
| 282,79 | |
| 203,61 | |
| 117,63 | |
| 218,68 | |
| 262,75 | |
| 73,64 | |
| 205,69 | |
| 54,51 | |
| 296,83 | |
| 132,63 | |
| 16,45 | |
| 363,80 | |
| 138,62 | |
| 181,64 | |
| 13,49 | |
| 294,86 | |
| 374,85 | |
| 338,79 | |
| 375,87 | |
| 260,80 | |
| 375,93 | |
| 234,74 | |
| 103,64 | |
| 322,75 | |
| 210,64 | |
| 280,79 | |
| 110,65 | |
| 329,87 | |
| 94,55 | |
| 399,88 | |
| 264,81 | |
| 88,61 | |
| 34,48 | |
| 373,81 | |
| 268,80 | |
| 333,87 | |
| 208,71 | |
| 109,68 | |
| 142,57 | |
| 39,63 | |
| 84,66 | |
| 263,78 | |
| 247,74 | |
| 172,74 | |
| 303,79 | |
| 92,60 | |
| 107,62 | |
| 49,54 | |
| 293,73 | |
| 238,72 | |
| 341,85 | |
| 48,54 | |
| 25,52 | |
| 189,69 | |
| 230,74 | |
| 206,78 | |
| 190,63 | |
| 237,68 | |
| 305,72 | |
| 22,55 | |
| 223,70 | |
| 62,62 | |
| 25,50 | |
| 115,67 | |
| 220,81 | |
| 123,62 | |
| 210,72 | |
| 39,57 | |
| 13,53 | |
| 88,63 | |
| 56,62 | |
| 285,83 | |
| 50,51 | |
| 369,94 | |
| 174,60 | |
| 206,63 | |
| 236,77 | |
| 370,90 | |
| 66,53 | |
| 178,72 | |
| 167,71 | |
| 133,71 | |
| 157,64 | |
| 298,78 | |
| 1,58 | |
| 99,55 | |
| 324,91 | |
| 389,97 | |
| 107,68 | |
| 371,93 | |
| 36,55 | |
| 365,90 | |
| 131,71 | |
| 132,63 | |
| 149,70 | |
| 126,68 | |
| 254,78 | |
| 294,71 | |
| 75,57 | |
| 224,67 | |
| 221,78 | |
| 219,71 | |
| 307,81 | |
| 205,64 | |
| 209,70 | |
| 382,90 | |
| 396,98 | |
| 118,60 | |
| 367,89 | |
| 367,83 | |
| 203,65 | |
| 33,49 | |
| 395,97 | |
| 154,60 | |
| 205,79 | |
| 188,63 | |
| 345,76 | |
| 258,80 | |
| 258,70 | |
| 353,79 | |
| 282,86 | |
| 356,91 | |
| 367,81 | |
| 91,67 | |
| 183,82 | |
| 47,58 | |
| 118,72 | |
| 157,83 | |
| 70,58 | |
| 172,93 | |
| 45,58 | |
| 28,50 | |
| 92,74 | |
| 187,80 | |
| 10,60 | |
| 76,70 | |
| 174,81 | |
| 111,79 | |
| 91,75 | |
| 168,83 | |
| 29,48 | |
| 181,90 | |
| 122,80 | |
| 63,71 | |
| 193,85 | |
| 186,82 | |
| 145,71 | |
| 77,62 | |
| 193,87 | |
| 100,61 | |
| 71,71 | |
| 154,78 | |
| 52,59 | |
| 46,65 | |
| 66,55 | |
| 62,62 | |
| 51,57 | |
| 41,67 | |
| 24,57 | |
| 186,80 | |
| 4,59 | |
| 77,70 | |
| 29,63 | |
| 28,49 | |
| 61,65 | |
| 26,58 | |
| 127,83 | |
| 199,97 | |
| 68,61 | |
| 145,84 | |
| 102,62 | |
| 50,67 | |
| 93,70 | |
| 169,85 | |
| 119,67 | |
| 312,78 | |
| 341,78 | |
| 67,66 | |
| 17,48 | |
| 45,52 | |
| 24,48 | |
| 47,58 | |
| 102,55 | |
| 280,82 | |
| 220,73 | |
| 192,61 | |
| 269,83 | |
| 373,81 | |
| 160,71 | |
| 290,84 | |
| 264,76 | |
| 48,55 | |
| 269,75 | |
| 204,76 | |
| 282,80 | |
| 112,68 | |
| 390,87 | |
| 270,74 | |
| 247,72 | |
| 16,46 | |
| 363,89 | |
| 133,65 | |
| 185,64 | |
| 331,92 | |
| 16,53 | |
| 310,87 | |
| 66,48 | |
| 128,71 | |
| 160,72 | |
| 308,76 | |
| 225,64 | |
| 34,56 | |
| 222,77 | |
| 392,85 | |
| 97,53 | |
| 222,68 | |
| 302,87 | |
| 378,85 | |
| 61,61 | |
| 161,63 | |
| 129,57 | |
| 43,54 | |
| 116,62 | |
| 173,71 | |
| 189,65 | |
| 361,80 | |
| 187,77 | |
| 314,73 | |
| 341,91 | |
| 165,59 | |
| 44,63 | |
| 184,75 | |
| 341,82 | |
| 119,55 | |
| 70,63 | |
| 165,68 | |
| 394,92 | |
| 80,54 | |
| 65,61 | |
| 29,55 | |
| 64,65 | |
| 310,83 | |
| 384,91 | |
| 304,88 | |
| 216,66 | |
| 6,53 | |
| 55,57 | |
| 249,84 | |
| 395,81 | |
| 41,50 | |
| 334,86 | |
| 394,97 | |
| 100,56 | |
| 125,61 | |
| 14,49 | |
| 61,53 | |
| 143,72 | |
| 373,86 | |
| 238,77 | |
| 138,59 | |
| 388,88 | |
| 357,79 | |
| 20,54 | |
| 82,52 | |
| 261,75 | |
| 210,73 | |
| 15,52 | |
| 210,69 | |
| 364,92 | |
| 365,95 | |
| 132,55 | |
| 143,68 | |
| 40,50 | |
| 88,64 | |
| 35,55 | |
| 18,44 | |
| 56,47 | |
| 109,55 | |
| 268,78 | |
| 178,67 | |
| 399,82 | |
| 11,45 | |
| 235,74 | |
| 215,73 | |
| 200,69 | |
| 220,78 | |
| 249,82 | |
| 250,79 | |
| 121,68 | |
| 210,71 | |
| 165,70 | |
| 265,79 | |
| 290,87 | |
| 384,88 | |
| 207,69 | |
| 16,54 | |
| 193,62 | |
| 307,75 | |
| 292,76 | |
| 312,78 | |
| 345,83 | |
| 67,56 | |
| 180,75 | |
| 126,69 | |
| 299,86 | |
| 143,60 | |
| 251,66 | |
| 371,86 | |
| 25,59 | |
| 27,56 | |
| 159,59 | |
| 125,69 | |
| 114,56 | |
| 66,50 | |
| 240,82 | |
| 184,68 | |
| 196,74 | |
| 21,44 | |
| 254,73 | |
| 364,86 | |
| 127,59 | |
| 347,93 | |
| 157,71 | |
| 161,65 | |
| 315,83 | |
| 57,50 | |
| 276,79 | |
| 69,49 | |
| 300,79 | |
| 83,56 | |
| 199,75 | |
| 367,95 | |
| 247,83 | |
| 15,49 | |
| 136,72 | |
| 341,87 | |
| 129,67 | |
| 284,82 | |
| 248,70 | |
| 68,55 | |
| 320,81 | |
| 280,80 | |
| 36,62 | |
| 272,85 | |
| 171,76 | |
| 161,74 | |
| 307,77 | |
| 365,84 | |
| 159,58 | |
| 299,86 | |
| 45,58 | |
| 244,73 | |
| 215,68 | |
| 60,50 | |
| 259,75 | |
| 269,76 | |
| 382,88 | |
| 61,48 | |
| 185,74 | |
| 40,61 | |
| 373,87 | |
| 326,86 | |
| 373,93 | |
| 77,55 | |
| 358,94 | |
| 70,48 | |
| 303,87 | |
| 220,68 | |
| 85,64 | |
| 224,81 | |
| 94,55 | |
| 167,63 | |
| 329,86 | |
| 137,60 | |
| 246,76 | |
| 112,62 | |
| 22,47 | |
| 99,53 | |
| 58,55 | |
| 170,61 | |
| 196,73 | |
| 105,58 | |
| 241,80 | |
| 259,84 | |
| 248,71 | |
| 357,92 | |
| 262,75 | |
| 105,60 | |
| 37,58 | |
| 347,88 | |
| 106,54 | |
| 102,57 | |
| 184,70 | |
| 166,68 | |
| 63,64 | |
| 301,85 | |
| 306,72 | |
| 44,52 | |
| 331,90 | |
| 159,67 | |
| 72,53 | |
| 208,77 | |
| 284,83 | |
| 168,74 | |
| 198,66 | |
| 291,84 | |
| 218,80 | |
| 74,49 | |
| 279,82 | |
| 244,83 | |
| 263,74 | |
| 287,79 | |
| 194,77 | |
| 359,84 | |
| 364,85 | |
| 391,82 | |
| 278,78 | |
| 13,51 | |
| 111,60 | |
| 169,72 | |
| 339,78 | |
| 213,69 | |
| 95,65 | |
| 159,58 | |
| 214,64 | |
| 3,47 | |
| 234,77 | |
| 332,75 | |
| 308,87 | |
| 196,73 | |
| 95,59 | |
| 350,77 | |
| 29,60 | |
| 220,69 | |
| 187,77 | |
| 50,52 | |
| 91,64 | |
| 326,82 | |
| 236,70 | |
| 247,70 | |
| 174,70 | |
| 213,63 | |
| 184,68 | |
| 79,53 | |
| 121,67 | |
| 363,89 | |
| 149,72 | |
| 275,77 | |
| 320,77 | |
| 319,80 | |
| 128,54 | |
| 319,83 | |
| 361,88 | |
| 49,57 | |
| 374,92 | |
| 333,83 | |
| 188,68 | |
| 242,82 | |
| 376,93 | |
| 107,58 | |
| 282,72 | |
| 0,42 | |
| 26,58 | |
| 209,79 | |
| 58,55 | |
| 182,68 | |
| 227,68 | |
| 48,54 | |
| 347,82 | |
| 28,60 | |
| 79,49 | |
| 155,69 | |
| 193,78 | |
| 282,77 | |
| 180,95 | |
| 176,87 | |
| 51,69 | |
| 137,76 | |
| 158,78 | |
| 102,62 | |
| 170,92 | |
| 101,69 | |
| 44,63 | |
| 199,84 | |
| 39,50 | |
| 43,59 | |
| 15,57 | |
| 55,64 | |
| 162,91 | |
| 39,61 | |
| 12,45 | |
| 84,64 | |
| 13,48 | |
| 171,93 | |
| 127,73 | |
| 1,50 | |
| 66,65 | |
| 2,53 | |
| 92,60 | |
| 193,91 | |
| 36,51 | |
| 31,54 | |
| 199,90 | |
| 5,56 | |
| 103,65 | |
| 124,76 | |
| 80,58 | |
| 0,49 | |
| 51,67 | |
| 108,81 | |
| 66,66 | |
| 96,72 | |
| 54,61 | |
| 85,71 | |
| 122,72 | |
| 99,75 | |
| 135,82 | |
| 30,59 | |
| 58,56 | |
| 116,81 | |
| 78,60 | |
| 119,79 | |
| 47,63 | |
| 74,66 | |
| 224,64 | |
| 237,81 | |
| 267,71 | |
| 262,68 | |
| 314,76 | |
| 354,84 | |
| 232,71 | |
| 72,55 | |
| 98,57 | |
| 55,56 | |
| 244,78 | |
| 222,65 | |
| 364,80 | |
| 4,46 | |
| 342,82 | |
| 341,85 | |
| 200,71 | |
| 208,65 | |
| 339,80 | |
| 128,65 | |
| 189,64 | |
| 10,45 | |
| 278,74 | |
| 208,79 | |
| 257,79 | |
| 232,69 | |
| 148,58 | |
| 146,61 | |
| 158,64 | |
| 215,69 | |
| 344,84 | |
| 352,85 | |
| 65,55 | |
| 254,67 | |
| 273,85 | |
| 256,71 | |
| 107,66 | |
| 169,75 | |
| 34,61 | |
| 360,90 | |
| 282,78 | |
| 36,46 | |
| 289,80 | |
| 186,62 | |
| 18,45 | |
| 190,60 | |
| 244,74 | |
| 191,74 | |
| 389,82 | |
| 355,90 | |
| 70,57 | |
| 10,52 | |
| 120,61 | |
| 204,70 | |
| 199,70 | |
| 131,58 | |
| 399,88 | |
| 111,67 | |
| 36,60 | |
| 22,46 | |
| 385,91 | |
| 59,57 | |
| 41,56 | |
| 181,60 | |
| 338,81 | |
| 335,77 | |
| 390,97 | |
| 271,75 | |
| 167,63 | |
| 349,76 | |
| 325,77 | |
| 90,67 | |
| 292,81 | |
| 298,86 | |
| 185,74 | |
| 25,51 | |
| 218,69 | |
| 42,57 | |
| 377,91 | |
| 332,90 | |
| 1,53 | |
| 9,43 | |
| 298,85 | |
| 186,63 | |
| 40,51 | |
| 74,49 | |
| 259,76 | |
| 375,87 | |
| 51,60 | |
| 165,70 | |
| 280,78 | |
| 92,55 | |
| 316,79 | |
| 358,92 | |
| 43,58 | |
| 294,74 | |
| 199,76 | |
| 121,57 | |
| 311,88 | |
| 205,79 | |
| 87,64 | |
| 3,59 | |
| 128,55 | |
| 183,69 | |
| 339,91 | |
| 101,63 | |
| 181,68 | |
| 361,83 | |
| 371,94 | |
| 76,49 | |
| 252,67 | |
| 102,55 | |
| 1,53 | |
| 234,80 | |
| 217,64 | |
| 351,92 | |
| 360,95 | |
| 336,81 | |
| 19,50 | |
| 353,76 | |
| 154,59 | |
| 263,84 | |
| 249,76 | |
| 118,65 | |
| 187,70 | |
| 277,72 | |
| 293,71 | |
| 220,76 | |
| 289,72 | |
| 250,71 | |
| 136,66 | |
| 96,55 | |
| 284,73 | |
| 270,82 | |
| 238,75 | |
| 347,77 | |
| 322,83 | |
| 13,50 | |
| 79,57 | |
| 33,58 | |
| 11,58 | |
| 34,58 | |
| 376,90 | |
| 242,79 | |
| 351,82 | |
| 57,51 | |
| 22,50 | |
| 226,77 | |
| 228,68 | |
| 253,71 | |
| 363,86 | |
| 144,68 | |
| 55,55 | |
| 98,59 | |
| 373,86 | |
| 85,51 | |
| 128,61 | |
| 332,81 | |
| 59,57 | |
| 55,47 | |
| 351,81 | |
| 96,51 | |
| 309,88 | |
| 323,80 | |
| 105,59 | |
| 290,73 | |
| 377,82 | |
| 352,80 | |
| 276,71 | |
| 251,77 | |
| 224,81 | |
| 277,86 | |
| 141,66 | |
| 143,64 | |
| 111,63 | |
| 253,71 | |
| 354,94 | |
| 122,67 | |
| 358,79 | |
| 86,52 | |
| 222,80 | |
| 130,65 | |
| 53,52 | |
| 318,88 | |
| 219,72 | |
| 221,67 | |
| 191,66 | |
| 82,64 | |
| 35,57 | |
| 176,65 | |
| 110,53 | |
| 252,71 | |
| 21,60 | |
| 12,43 | |
| 63,52 | |
| 85,64 | |
| 118,64 | |
| 215,70 | |
| 27,52 | |
| 142,66 | |
| 387,80 | |
| 334,82 | |
| 147,56 | |
| 154,67 | |
| 285,84 | |
| 371,80 | |
| 358,89 | |
| 144,56 | |
| 283,76 | |
| 44,61 | |
| 298,79 | |
| 318,74 | |
| 74,54 | |
| 229,68 | |
| 308,89 | |
| 391,95 | |
| 377,93 | |
| 117,60 | |
| 385,92 | |
| 391,94 | |
| 244,66 | |
| 350,87 | |
| 272,72 | |
| 268,77 | |
| 293,86 | |
| 188,68 | |
| 171,63 | |
| 250,79 | |
| 239,68 | |
| 389,88 | |
| 92,67 | |
| 129,57 | |
| 348,89 | |
| 278,84 | |
| 160,69 | |
| 245,66 | |
| 275,77 | |
| 249,74 | |
| 332,81 | |
| 388,90 | |
| 158,65 | |
| 60,62 | |
| 325,87 | |
| 216,72 | |
| 31,55 | |
| 397,86 | |
| 271,76 | |
| 192,70 | |
| 59,50 | |
| 195,72 | |
| 383,81 | |
| 267,81 | |
| 279,76 | |
| 135,64 | |
| 362,85 | |
| 37,50 | |
| 384,84 | |
| 49,60 | |
| 49,60 | |
| 115,56 | |
| 199,68 | |
| 203,65 | |
| 326,75 | |
| 333,92 | |
| 153,62 | |
| 248,72 | |
| 212,69 | |
| 38,49 | |
| 361,87 | |
| 302,86 | |
| 381,94 | |
| 43,62 | |
| 79,55 | |
| 274,74 | |
| 44,47 | |
| 252,79 | |
| 188,62 | |
| 357,84 | |
| 94,65 | |
| 143,66 | |
| 60,49 | |
| 26,56 | |
| 193,65 | |
| 363,84 | |
| 322,87 | |
| 120,67 | |
| 248,73 | |
| 312,89 | |
| 298,81 | |
| 142,73 | |
| 261,85 | |
| 272,72 | |
| 49,58 | |
| 249,74 | |
| 204,79 | |
| 34,58 | |
| 69,53 | |
| 180,71 | |
| 210,70 | |
| 59,53 | |
| 47,58 | |
| 39,66 | |
| 192,97 | |
| 177,91 | |
| 109,69 | |
| 177,82 | |
| 67,66 | |
| 107,71 | |
| 70,58 | |
| 185,93 | |
| 49,53 | |
| 126,74 | |
| 96,64 | |
| 37,48 | |
| 152,79 | |
| 67,72 | |
| 177,86 | |
| 13,61 | |
| 123,67 | |
| 154,75 | |
| 81,69 | |
| 93,73 | |
| 66,72 | |
| 61,67 | |
| 53,58 | |
| 152,81 | |
| 112,72 | |
| 8,43 | |
| 159,77 | |
| 9,53 | |
| 133,76 | |
| 110,75 | |
| 25,59 | |
| 144,83 | |
| 155,81 | |
| 1,45 | |
| 50,60 | |
| 6,55 | |
| 116,70 | |
| 117,82 | |
| 135,74 | |
| 93,64 | |
| 190,90 | |
| 55,65 | |
| 189,85 | |
| 60,64 | |
| 183,95 | |
| 75,57 | |
| 135,70 | |
| 156,80 | |
| 276,83 | |
| 298,72 | |
| 146,70 | |
| 339,76 | |
| 46,53 | |
| 0,55 | |
| 355,87 | |
| 53,61 | |
| 75,56 | |
| 233,67 | |
| 336,92 | |
| 342,89 | |
| 378,85 | |
| 319,84 | |
| 216,75 | |
| 72,52 | |
| 232,81 | |
| 156,74 | |
| 281,75 | |
| 398,95 | |
| 312,90 | |
| 285,83 | |
| 228,79 | |
| 288,85 | |
| 145,61 | |
| 0,45 | |
| 159,74 | |
| 383,85 | |
| 121,69 | |
| 28,59 | |
| 263,72 | |
| 72,52 | |
| 70,60 | |
| 73,64 | |
| 9,47 | |
| 320,87 | |
| 155,66 | |
| 273,70 | |
| 187,67 | |
| 372,93 | |
| 324,74 | |
| 13,46 | |
| 1,43 | |
| 263,73 | |
| 28,57 | |
| 102,64 | |
| 390,88 | |
| 386,82 | |
| 45,50 | |
| 10,44 | |
| 216,79 | |
| 17,59 | |
| 221,78 | |
| 398,81 | |
| 95,51 | |
| 340,78 | |
| 29,62 | |
| 145,57 | |
| 80,49 | |
| 196,65 | |
| 299,86 | |
| 42,60 | |
| 158,58 | |
| 392,89 | |
| 130,56 | |
| 299,88 | |
| 18,59 | |
| 4,52 | |
| 337,77 | |
| 290,73 | |
| 58,59 | |
| 136,59 | |
| 270,83 | |
| 161,75 | |
| 376,97 | |
| 100,65 | |
| 341,83 | |
| 250,70 | |
| 213,73 | |
| 344,93 | |
| 287,83 | |
| 18,58 | |
| 290,71 | |
| 229,76 | |
| 66,53 | |
| 344,81 | |
| 392,84 | |
| 254,80 | |
| 4,44 | |
| 298,72 | |
| 58,49 | |
| 342,77 | |
| 227,72 | |
| 184,63 | |
| 33,52 | |
| 112,69 | |
| 101,57 | |
| 310,74 | |
| 152,64 | |
| 303,83 | |
| 301,82 | |
| 385,95 | |
| 370,91 | |
| 285,70 | |
| 341,85 | |
| 41,47 | |
| 311,89 | |
| 127,62 | |
| 174,74 | |
| 264,79 | |
| 125,70 | |
| 213,74 | |
| 148,63 | |
| 303,87 | |
| 392,91 | |
| 205,77 | |
| 139,65 | |
| 273,73 | |
| 116,62 | |
| 169,60 | |
| 71,58 | |
| 141,72 | |
| 236,77 | |
| 163,58 | |
| 221,66 | |
| 303,89 | |
| 89,57 | |
| 258,77 | |
| 326,83 | |
| 181,73 | |
| 97,68 | |
| 255,77 | |
| 218,71 | |
| 345,93 | |
| 16,48 | |
| 77,53 | |
| 368,88 | |
| 69,57 | |
| 129,66 | |
| 257,82 | |
| 346,83 | |
| 383,81 | |
| 320,84 | |
| 315,86 | |
| 89,54 | |
| 252,75 | |
| 124,60 | |
| 65,65 | |
| 365,78 | |
| 363,94 | |
| 168,60 | |
| 112,60 | |
| 259,75 | |
| 384,97 | |
| 100,64 | |
| 382,81 | |
| 87,66 | |
| 124,54 | |
| 249,68 | |
| 341,92 | |
| 134,65 | |
| 210,76 | |
| 386,92 | |
| 287,87 | |
| 328,85 | |
| 376,85 | |
| 333,78 | |
| 319,82 | |
| 313,88 | |
| 223,66 | |
| 230,75 | |
| 103,66 | |
| 256,79 | |
| 368,84 | |
| 309,88 | |
| 129,58 | |
| 187,75 | |
| 388,89 | |
| 257,79 | |
| 210,70 | |
| 168,66 | |
| 325,78 | |
| 318,84 | |
| 336,87 | |
| 233,73 | |
| 374,81 | |
| 93,56 | |
| 23,59 | |
| 390,82 | |
| 97,64 | |
| 385,92 | |
| 386,89 | |
| 209,63 | |
| 30,49 | |
| 335,85 | |
| 295,77 | |
| 70,58 | |
| 247,67 | |
| 107,62 | |
| 347,91 | |
| 72,63 | |
| 46,53 | |
| 41,48 | |
| 114,54 | |
| 145,67 | |
| 373,86 | |
| 124,53 | |
| 387,97 | |
| 18,46 | |
| 85,67 | |
| 344,93 | |
| 142,56 | |
| 243,67 | |
| 87,65 | |
| 258,70 | |
| 290,87 | |
| 399,96 | |
| 137,58 | |
| 48,59 | |
| 157,67 | |
| 148,64 | |
| 9,56 | |
| 175,60 | |
| 290,81 | |
| 100,52 | |
| 233,66 | |
| 41,46 | |
| 100,64 | |
| 49,56 | |
| 235,80 | |
| 308,79 | |
| 322,89 | |
| 148,60 | |
| 33,55 | |
| 397,91 | |
| 75,57 | |
| 6,47 | |
| 102,59 | |
| 166,75 | |
| 60,59 | |
| 54,62 | |
| 352,80 | |
| 353,79 | |
| 380,81 | |
| 283,81 | |
| 395,91 | |
| 69,64 | |
| 184,69 | |
| 64,59 | |
| 98,56 | |
| 92,60 | |
| 291,75 | |
| 343,93 | |
| 322,78 | |
| 29,45 | |
| 17,46 | |
| 362,78 | |
| 179,73 | |
| 64,56 | |
| 4,59 | |
| 59,49 | |
| 267,73 | |
| 4,44 | |
| 388,85 | |
| 311,78 | |
| 257,69 | |
| 346,82 | |
| 188,73 | |
| 185,66 | |
| 41,55 | |
| 179,63 | |
| 340,81 | |
| 112,58 | |
| 99,61 | |
| 364,82 | |
| 253,67 | |
| 145,61 | |
| 195,69 | |
| 214,73 | |
| 346,81 | |
| 356,86 | |
| 215,78 | |
| 394,81 | |
| 277,77 | |
| 199,75 | |
| 35,62 | |
| 62,64 | |
| 161,65 | |
| 138,68 | |
| 37,49 | |
| 6,55 | |
| 169,67 | |
| 10,58 | |
| 30,56 | |
| 190,61 | |
| 36,53 | |
| 221,74 | |
| 134,66 | |
| 297,73 | |
| 36,49 | |
| 8,48 | |
| 58,56 | |
| 45,63 | |
| 148,83 | |
| 90,74 | |
| 187,89 | |
| 111,70 | |
| 33,60 | |
| 75,62 | |
| 71,73 | |
| 79,65 | |
| 87,59 | |
| 36,64 | |
| 139,85 | |
| 3,58 | |
| 32,50 | |
| 58,63 | |
| 72,65 | |
| 50,53 | |
| 39,63 | |
| 7,47 | |
| 97,71 | |
| 120,77 | |
| 78,58 | |
| 22,59 | |
| 9,52 | |
| 60,64 | |
| 132,76 | |
| 93,68 | |
| 102,72 | |
| 72,68 | |
| 151,83 | |
| 46,54 | |
| 56,63 | |
| 85,69 | |
| 100,69 | |
| 186,96 | |
| 11,55 | |
| 150,81 | |
| 144,85 | |
| 82,71 | |
| 93,72 | |
| 71,57 | |
| 59,70 | |
| 118,79 | |
| 126,67 | |
| 117,73 | |
| 164,90 | |
| 142,73 | |
| 102,64 | |
| 359,77 | |
| 240,80 | |
| 42,59 | |
| 186,75 | |
| 170,61 | |
| 327,89 | |
| 382,86 | |
| 216,70 | |
| 249,81 | |
| 139,61 | |
| 258,68 | |
| 153,62 | |
| 230,70 | |
| 104,59 | |
| 207,76 | |
| 212,72 | |
| 354,81 | |
| 139,57 | |
| 43,60 | |
| 24,53 | |
| 0,57 | |
| 146,57 | |
| 150,56 | |
| 192,78 | |
| 383,96 | |
| 127,67 | |
| 52,61 | |
| 20,56 | |
| 47,51 | |
| 39,58 | |
| 75,62 | |
| 106,53 | |
| 31,55 | |
| 112,57 | |
| 214,68 | |
| 330,84 | |
| 130,59 | |
| 282,82 | |
| 167,63 | |
| 279,76 | |
| 136,57 | |
| 35,53 | |
| 373,81 | |
| 69,51 | |
| 179,66 | |
| 361,89 | |
| 88,55 | |
| 327,79 | |
| 398,83 | |
| 237,76 | |
| 175,68 | |
| 112,68 | |
| 372,96 | |
| 229,70 | |
| 112,57 | |
| 331,85 | |
| 157,73 | |
| 36,52 | |
| 64,54 | |
| 237,78 | |
| 343,86 | |
| 141,56 | |
| 394,85 | |
| 151,58 | |
| 193,62 | |
| 289,70 | |
| 285,70 | |
| 359,90 | |
| 395,89 | |
| 38,52 | |
| 339,75 | |
| 41,51 | |
| 378,82 | |
| 313,76 | |
| 269,77 | |
| 372,88 | |
| 34,51 | |
| 243,67 | |
| 310,74 | |
| 62,52 | |
| 113,70 | |
| 113,70 | |
| 394,84 | |
| 297,72 | |
| 303,88 | |
| 182,70 | |
| 34,54 | |
| 24,46 | |
| 343,90 | |
| 141,67 | |
| 129,59 | |
| 67,57 | |
| 312,88 | |
| 276,79 | |
| 35,62 | |
| 324,80 | |
| 375,82 | |
| 189,76 | |
| 195,66 | |
| 44,50 | |
| ''' | |
| training_df = pd.read_csv(io.StringIO(dataset), on_bad_lines='warn') | |
| training_df.describe() | |
| """ | |
| calories test_score | |
| count 1400.0 1400.0 | |
| mean 185.4 69.9 | |
| std 116.9 12.8 | |
| min 0.0 42.0 | |
| 25% 80.0 59.0 | |
| 50% 177.0 70.0 | |
| 75% 285.0 80.0 | |
| max 399.0 98.0 | |
| """ | |
| # @title Task 1: Solution (run this code block to view) { display-mode: "form" } | |
| print("""The basic statistics do not suggest a lot of outliers. | |
| The standard deviations are substantially less than the | |
| means. Furthermore, the quartile boundaries are approximately | |
| evenly spaced.""") | |
| #@title Define the plotting functions { display-mode: "form" } | |
| # The following code defines the plotting functions that can be used to | |
| # visualize the data. | |
| def plot_the_dataset(feature, label, number_of_points_to_plot): | |
| """Plot N random points of the dataset.""" | |
| # Label the axes. | |
| plt.xlabel(feature) | |
| plt.ylabel(label) | |
| # Create a scatter plot from n random points of the dataset. | |
| random_examples = training_df.sample(n=number_of_points_to_plot) | |
| plt.scatter(random_examples[feature], random_examples[label]) | |
| # Render the scatter plot. | |
| plt.show() | |
| def plot_a_contiguous_portion_of_dataset(feature, label, start, end): | |
| """Plot the data points from start to end.""" | |
| # Label the axes. | |
| plt.xlabel(feature + "Day") | |
| plt.ylabel(label) | |
| # Create a scatter plot. | |
| plt.scatter(training_df[feature][start:end], training_df[label][start:end]) | |
| # Render the scatter plot. | |
| plt.show() | |
| print("Defined the following functions:") | |
| print(" * plot_the_dataset") | |
| print(" * plot_a_contiguous_portion_of_dataset") | |
| plot_the_dataset("calories", "test_score", number_of_points_to_plot=150) | |
| # @title Task 2: Solution (run this code block to view) { display-mode: "form" } | |
| print("""Visualizing 50 data points doesn't imply any outliers. | |
| However, as you increase the number of random data points to plot, a | |
| clump of outliers appears. Notice the points with high test scores but less | |
| than 200 calories.""") | |
| # Get statistics on Week 0 | |
| training_df[0:350].describe() | |
| """ | |
| calories test_score | |
| count 350.0 350.0 | |
| mean 181.3 69.7 | |
| std 117.5 12.8 | |
| min 1.0 43.0 | |
| 25% 77.0 60.0 | |
| 50% 172.0 70.0 | |
| 75% 281.5 80.0 | |
| max 399.0 98.0 | |
| """ | |
| # Get statistics on Week 1 | |
| training_df[350:700].describe() | |
| """ | |
| calories test_score | |
| count 350.0 350.0 | |
| mean 184.4 69.8 | |
| std 112.4 12.8 | |
| min 0.0 42.0 | |
| 25% 83.2 59.2 | |
| 50% 185.0 70.0 | |
| 75% 278.0 80.0 | |
| max 399.0 97.0 | |
| """ | |
| # Get statistics on Week 2 | |
| training_df[700:1050].describe() | |
| """ | |
| calories test_score | |
| count 350.0 350.0 | |
| mean 189.9 70.3 | |
| std 118.1 12.9 | |
| min 0.0 43.0 | |
| 25% 82.8 60.0 | |
| 50% 184.5 71.0 | |
| 75% 289.8 81.0 | |
| max 398.0 97.0 | |
| """ | |
| # Get statistics on Week 3 | |
| training_df[1050:1400].describe() | |
| """ | |
| calories test_score | |
| count 350.0 350.0 | |
| mean 186.2 69.8 | |
| std 120.0 12.7 | |
| min 0.0 44.0 | |
| 25% 82.8 59.0 | |
| 50% 166.5 69.0 | |
| 75% 297.0 80.0 | |
| max 399.0 97.0 | |
| """ | |
| # @title Task 3: Solution (run this code block to view) { display-mode: "form" } | |
| print("""The basic statistics for each week are pretty similar, so weekly | |
| differences aren't a likely explanation for the outliers.""") | |
| # @title Task 4: Visualize by day of week | |
| for i in range(0,7): | |
| start = i * 50 | |
| end = start + 49 | |
| print("\nDay %d" % i) | |
| plot_a_contiguous_portion_of_dataset("calories", "test_score", start, end) | |
| # @title Task 4: Solution (run this code block to view) { display-mode: "form" } | |
| print("""Wait a second--the calories value for Day 4 spans 0 to 200, while the | |
| calories value for all the other Days spans 0 to 400. Something is wrong | |
| with Day 4, at least on the first week.""") | |
| # Write your code here. | |
| # Note that training_df["calories"][position] returns the value of the | |
| # calories column at a specific position in the dataset. | |
| training_df["calories"][4*50:4*50+49].describe() | |
| """ | |
| day 3: | |
| count 49.0 | |
| mean 229.6 | |
| std 110.5 | |
| min 1.0 | |
| 25% 149.0 | |
| 50% 219.0 | |
| 75% 345.0 | |
| max 396.0 | |
| day 4: | |
| count 49.0 | |
| mean 97.6 | |
| std 59.2 | |
| min 4.0 | |
| 25% 50.0 | |
| 50% 77.0 | |
| 75% 154.0 | |
| max 199.0 | |
| """ | |
| # @title Task 5: Solution (expand this code block to view) { display-mode: "form" } | |
| # You could use a variety of metrics to fully compare Thursday to the other | |
| # six days, but this answer simply focuses on the mean. | |
| running_total_of_thursday_calories = 0 | |
| running_total_of_non_thursday_calories = 0 | |
| count = 0 | |
| for week in range(0,4): | |
| for day in range(0,7): | |
| for subject in range(0,50): | |
| position = (week * 350) + (day * 50) + subject | |
| if (day == 4): # Thursday | |
| running_total_of_thursday_calories += training_df['calories'][position] | |
| else: # Any day except Thursday | |
| count += 1 | |
| running_total_of_non_thursday_calories += training_df['calories'][position] | |
| mean_of_thursday_calories = running_total_of_thursday_calories / 200 | |
| mean_of_non_thursday_calories = running_total_of_non_thursday_calories / 1200 | |
| print("The mean of Thursday calories is %.0f" % (mean_of_thursday_calories)) | |
| print("The mean of calories on days other than Thursday is %.0f" % (mean_of_non_thursday_calories)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment