Created
May 17, 2018 18:57
-
-
Save coryjog/576e45841b914d6fadcf14cd4c9f5d07 to your computer and use it in GitHub Desktop.
Introduction to wind analysis - unit test notebook
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## First test\n", | |
| "This is a test notebook. This blog post assumes you can run the following code in your own notebook. The code was copied and pasted from [this 10-minute introduction to Pandas](https://pandas.pydata.org/pandas-docs/stable/10min.html). " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Hello wind\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print('Hello wind')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "0 1.0\n", | |
| "1 3.0\n", | |
| "2 5.0\n", | |
| "3 NaN\n", | |
| "4 6.0\n", | |
| "5 8.0\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "s = pd.Series([1,3,5,np.nan,6,8])\n", | |
| "s" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n", | |
| " '2013-01-05', '2013-01-06'],\n", | |
| " dtype='datetime64[ns]', freq='D')" | |
| ] | |
| }, | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "dates = pd.date_range('2013-01-01', periods=6)\n", | |
| "dates" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>A</th>\n", | |
| " <th>B</th>\n", | |
| " <th>C</th>\n", | |
| " <th>D</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2013-01-01</th>\n", | |
| " <td>-0.529348</td>\n", | |
| " <td>1.052895</td>\n", | |
| " <td>0.640303</td>\n", | |
| " <td>0.252844</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2013-01-02</th>\n", | |
| " <td>-0.888459</td>\n", | |
| " <td>0.795430</td>\n", | |
| " <td>1.073112</td>\n", | |
| " <td>-0.957200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2013-01-03</th>\n", | |
| " <td>-0.172106</td>\n", | |
| " <td>0.040905</td>\n", | |
| " <td>0.459054</td>\n", | |
| " <td>-1.167859</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2013-01-04</th>\n", | |
| " <td>0.670537</td>\n", | |
| " <td>-2.117747</td>\n", | |
| " <td>1.267443</td>\n", | |
| " <td>-0.292776</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2013-01-05</th>\n", | |
| " <td>-0.798625</td>\n", | |
| " <td>0.364038</td>\n", | |
| " <td>1.731047</td>\n", | |
| " <td>-0.228873</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2013-01-06</th>\n", | |
| " <td>-0.395039</td>\n", | |
| " <td>0.863305</td>\n", | |
| " <td>-0.012052</td>\n", | |
| " <td>-0.545045</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " A B C D\n", | |
| "2013-01-01 -0.529348 1.052895 0.640303 0.252844\n", | |
| "2013-01-02 -0.888459 0.795430 1.073112 -0.957200\n", | |
| "2013-01-03 -0.172106 0.040905 0.459054 -1.167859\n", | |
| "2013-01-04 0.670537 -2.117747 1.267443 -0.292776\n", | |
| "2013-01-05 -0.798625 0.364038 1.731047 -0.228873\n", | |
| "2013-01-06 -0.395039 0.863305 -0.012052 -0.545045" | |
| ] | |
| }, | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))\n", | |
| "df" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.4" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment