Created
August 16, 2020 12:56
-
-
Save arghyadeep99/8467a58c08e47070b80f926861b20eee to your computer and use it in GitHub Desktop.
Decision Trees Implementation.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "Decision Trees Implementation.ipynb", | |
| "provenance": [], | |
| "collapsed_sections": [], | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/arghyadeep99/8467a58c08e47070b80f926861b20eee/decision-trees-implementation.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "I6qKGWQz4i3b", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "# Decision Trees\n", | |
| "“The possible solutions to a given problem emerge as the leaves of a tree, each node representing a point of deliberation and decision.”\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "fdeQCp-yHtL7", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "To understand how Decision Trees are like sophisticated \"if-else\", click [here](https://stackoverflow.com/questions/20224526/how-to-extract-the-decision-rules-from-scikit-learn-decision-tree)." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "EYd2O_Lm5BcF", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "from sklearn import datasets\n", | |
| "from sklearn.tree import DecisionTreeClassifier" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "DdxxbmYG5JyE", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "iris = datasets.load_iris()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "0HuImXCiaEZK", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "x_setosa = iris['data'][:50, (2)]\n", | |
| "y_setosa = iris['data'][:50, (3)]\n", | |
| "x_versicolor = iris['data'][50:100, (2)]\n", | |
| "y_versicolor = iris['data'][50:100, (3)]\n", | |
| "x_virginica = iris['data'][100:150, (2)]\n", | |
| "y_virginica = iris['data'][100:150, (3)]\n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "mlOnK2fMcaoo", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 298 | |
| }, | |
| "outputId": "959d86a3-5708-499e-a793-cc9f28013289" | |
| }, | |
| "source": [ | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "plt.xlabel('petal_length')\n", | |
| "plt.ylabel('petal_width')\n", | |
| "plt.plot(x_setosa,y_setosa, 'ro') #plotting setosa flower\n", | |
| "plt.plot(x_versicolor,y_versicolor, 'go') #plotting versicolor flower\n", | |
| "plt.plot(x_virginica,y_virginica, 'yo')" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[<matplotlib.lines.Line2D at 0x7f0129fca2e8>]" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 6 | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEHCAYAAABMRSrcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5xddX3n8dd7ZpJIBKErKTBAMtCaQPAXMEUR22KDrBYEdXGrZmthtdMm2pXVrmvNPrDweGR31a11lSY6QgBlFrX4o/yyLkSwFqM1SZFfARdTwi8NwdYEDA3J5LN/3DNh5s6ZmXPm3HPvufe+n4/HfWTu937POZ+rD+Yz55zv53wUEZiZWXfraXUAZmbWek4GZmbmZGBmZk4GZmaGk4GZmQF9rQ5gNg4//PAYGBhodRhmZm1l06ZNT0XEgrTP2jIZDAwMsHHjxlaHYWbWViRtm+ozXyYyMzMnAzMzczIwMzOcDMzMDCcDMzOj5GQg6VhJt0u6X9J9kt6fMudMSTsl3ZW8LikzJjNrb9u3j7BhwwB33NHDhg0DbN8+UmjbIvvrJGUvLd0HfDAiNks6BNgk6daIuL9u3ncj4tySYzGzNrd9+wgPPjjE/v27AdizZxsPPjgEwBFHLM+97ZYtFyGJiOdy76/TlHpmEBE/jYjNyc9PA1uAo8s8ppl1rq1bVx34ZT5m//7dbN26albbwt4DiSDv/jpN0+4ZSBoATgZ+kPLx6ZJ+JOmbkk6aYvshSRslbdyxY0eJkZpZVe3Z80iu8bxzZjO3UzQlGUg6GPgqcHFE7Kr7eDOwKCJeAXwG+EbaPiJiOCIGI2JwwYLUamoz63Dz5i3MNZ53zmzmdorSk4GkOdQSwUhEfK3+84jYFRHPJD/fAsyRdHjZcZlZ+zn++NX09MyfMNbTM5/jj189q21hDtLcWe2v05S9mkjAlcCWiPjkFHOOTOYh6bQkpp+XGZeZtacjjljOkiXDzJu3CBDz5i1iyZLhTDd707Y98cSrOOGEdbPaX6dRmT2QJb0W+C5wD7A/Gf4IsBAgIj4r6X3ACmorj54FPhAR35tuv4ODg+EH1ZmZ5SNpU0QMpn1W6tLSiPh7QDPMuRy4vMw4zMxsem35CGsza63t20fYunUVe/Y8wrx5Czn++NWlXFr58Y9X8sQTw8Ao0Et//xCLF69p+HHMycDMcipS+JVHLRGsHTcyeuC9E0Lj+dlEZpZLkcKvPGpnBNnHrRgnAzPLpUjhVz6jOcetCCcDM8ulSOFXPr05x60IJwMzy6VI4Vce/f1DucatGCcDM8ulSOFXHosXr6G/fwXPnwn00t+/wjePS1Jq0VlZXHRmZpZfy4rOzKwzpdUZALMey3NWkbXGodHzWq3sOH1mYGa51NcZ1MyZ0CQGQJpL7ffL3mnn9fTMz3yZKe3Yads3el6rNSrO6c4MfM/AzHLJ2iSm9n7vjPPy1ChkrXFo9LxWa0acTgZmlksZjV+y7jNrjUOj57VaM+J0MjCzXMpo/JJ1n1lrHBo9r9WaEaeTgZnlkrVJTO39nBnn5alRyFrj0Oh5rdaMOJ0MzCyXrE1iTjhhHSeeeFVDm8lkrXFo9LxWa0acXk1kZtYlvJrIzNrS9u0jbNgwwB139LBhwwDbt48Umlc1VYrbRWdmVklZ+yY0q79Co1Utbp8ZmFkldVqtQL2qxe1kYGaV1Gm1AvWqFreTgZlVUqfVCtSrWtxOBmZWSZ1WK1CvanE7GZhZJXVarUC9qsXtOgMzsy7hfgZmVhlZeyEcccTyXHOzHKeVZwtVi6eezwzMrGnSnsuf1vegp2c+Rx75B/zsZ9dkmlv1PgVViccVyGZWCWlr69P6Huzfv5snnhjOPLfqtQdViyeNk4GZNU2+NfSjs95v1dbwVy2eNE4GZtY0+dbQ9856v1Vbw1+1eNI4GZhZ06StrU/re9DTM5/+/qHMc6tee1C1eNI4GZhZ06StrU/re7BkyTCLF6/JPLfqtQdViyeNVxOZmXWJlq0mknSspNsl3S/pPknvT5kjSZ+W9JCkuyWdUmZMZmY2WdlFZ/uAD0bEZkmHAJsk3RoR94+b80bgJcnrVcDa5F8za7KsRV5Zx6p0GaQsRYrJqlSI1tTLRJL+Brg8Im4dN/Y54I6IuC55/yBwZkT8dKr9+DKRWeNlLQhLG6s1uldSB1DTyiKvZilSTNaKQrRKFJ1JGgBOBn5Q99HRwKPj3j+WjJlZE2UtCEsbg70TEgFUr6iqDEWKyapWiNaUZCDpYOCrwMURsWuW+xiStFHSxh07djQ2QDMrpQCqSkVVZShSTFa1QrTSk4GkOdQSwUhEfC1lyuPAsePeH5OMTRARwxExGBGDCxYsKCdYsy5WRgFUlYqqylCkmKxqhWhlryYScCWwJSI+OcW0G4B3JauKXg3snO5+gZmVI2tBWNpY7Z7B3AkjVSuqKkORYrKqFaKVvZroDOD3gXsk3ZWMfQRYCBARnwVuAX4XeAjYDVxUckxmlmLspqVXE2U31f9mWb53kW3L4KIzM7Mu4eY2ZjZraWvhd+68kyeeGKb2ZNFe+vuHWLx4TaZtq3a20A4xNoOTgZlNqX4t/J4923jggQuJ2Ddu1ihPPLEWYEJCSNv2wQeHACrzy7YdYmwWP6jOzKaUXnuwL3Vu7Uxh+m2rVnvQDjE2i5OBmU2pSDOaqq2jT9MOMTaLk4GZTalIM5qqraNP0w4xNouTgZlNKb32IP1WY3//0IzbVq32oB1ibBYnAzObUnozmqvp71/B82cCvfT3r5i0mqgdGrq0Q4zN4joDM7Mu4ToDM5vgpu+dxUF71tMD7AeenbeMc19zGz/+8cqW1A9Mddysx2n0vKl0ck2CzwzMusxN3zuLF+5Zj/T8WATs7elnbjwxaX79JaBGP4e/lgjWTho/7LBl7Nq1YcbjZI2naNyt6D/QaJXoZ2Bm1XBQXSIAkGDO/smJAMqvH6jf/5hf/GJ9puNkjado3J1ek+BkYNZl8v9HX3b9wOjMU6Y5TtZ4isbd6TUJTgZmXWZ/7i3Krh/onXnKNMfJGk/RuDu9JsHJwKzLPDtvGfW3CsfuGaQpu36gfv9jDjtsWabjZI2naNydXpPgZGDWZc59zW38ct4yRqOWBEYDfjlvGWf/9uMtqR9YvHhN6nFf+crbMh0nazxF4+70mgSvJjIz6xJeTWTWgbZvH2HDhgHuuKOHDRsG2L59pJTjjNwzwsCnBui5tIeBTw0wck85x7HWctGZWRtq1nP4R+4ZYejGIXbvrR1n285tDN1YO87yl3XG5RGr8ZmBWRtq1pr3VetXHUgEY3bv3c2q9Z2xtt6e52Rg1oaateb9kZ3p+5tq3NqXk4FZG2rWmveFh6bvb6pxa19OBmZtqFlr3lcvW838OROPM3/OfFYv64y19fY8JwOzNtSsNe/LX7ac4TcNs+jQRQix6NBFDL9p2DePO5DrDMzMuoTrDMw6UNb1/2XUCVSt9qBZNRedzHUGZm0o6/r/MuoEqlZ70Kyai07ny0RmbWjgUwNs27lt0viiQxfx8MUP555XxrGbZcOGAfbsmRzPvHmLOP305sdTZQ25TCTprZL+n6SdknZJelrSrsaFaWZZZV3/X0adQNVqDzq9z0Cz5Lln8HHgvIg4NCJeFBGHRMSLygrMzKaWdf1/GXUCVas96PQ+A82SJxlsj4gtpUViZpllXf9fRp1A1WoPOr3PQLPMeANZ0luTHzdK+jLwDWDP2OcR8bWSYjOzKYzdqF21fhWP7HyEhYcuZPWy1ZNu4GadV8axm2XsJvHWravYs+cR5s1byPHHr/bN45xmvIEs6appPo6I+I+NDWlmvoFsZpbfdDeQZzwziIiLkp2cERF31u34jBkOvA44F3gyIl6a8vmZwN8A/5QMfS0iLpspJjMza6w8dQafAU7JMDbe1cDlwBemmfPdiDg3RxxmHWHknpFCl1qO/oujeeKZJw687z+4n4+f/fFJ+4Tsl3RW3ryS4U3DjMYovepl6NQhPjp4xqRLMODLMp0my2Wi04HXABcDfznuoxcBb4mIV8yw/QBw0zRnBn+aNxn4MpG1u/rCLajdhM363J/6RDCVOT1zkMRzo8/NeJyVN69k7ca1E8aWLYAPn9hHn/aN3yuSiHh+nz098zuqH3CnKlpnMBc4mNpZxCHjXruACxoQ3+mSfiTpm5JOasD+zCqvaNOYLIkAYO/+vRMSwXTHGd40PGnsPcdTlwgA9k5IBFBOYx1rriz3DL4DfEfS1RExucyvmM3Aooh4RtLvUlup9JK0iZKGgCGAhQu9ftjaW6sLt9KOMxqjk8Z+dV72fbrIq71lWVp6IxDJz5M+j4jzZnvwiNg17udbJK2RdHhEPJUydxgYhtplotke06wKFh66MPWRDs0q3Eo7Tq96JyWEJ/fAkS/Itk8XebW3LJeJ/hfwF9RW/DwLfD55PQP8pMjBJR2pJMNIOi2J5+dF9mnWDooWbvUf3J9p3pyeOcztnZvpOEOnDk0au2Ir7Iv6vxnnIE3cp4u82t+MySAivpNcKjojIn4vIm5MXu8EfnO6bSVdB2wAlkh6TNK7Jf2xpD9OplwA3CvpR8CngbdHOz45zyynok1jHv/g45MSQv/B/Vz71msn7POqN1/FuvPXZTrOmnPWsGJwBb3qBWpnCosXreBlS6+e0ETnxBOv4oQT1pXeWMeaK/NTSyVtAc6JiK3J++OAWyLixBLjS+XVRGZm+TWquc1/Bu6QdIek7wC3U1tuata1mtXkZeXNK+m7rA9dKvou62PlzSszx5O2bdWa00zFTWuaJ1c/A0nzgBOStw9ExJ7p5pfFZwZWBUVrBbJKW/8PsGJwBWvOWTNtPH09fezbX780dPJ4GXEXVd+0BlzPUNR0ZwZZis5+JyK+Pe6BdRO04kF1TgZWBc1q8tJ3WV/qss9e9bLvkud/oU8VT1atak4zFTetabxCzyYCfhv4NvCmlM8C8FNLrSs1q1YgLRGkjRc9bqua00zFTWuaK0vR2UeTfy8qPxyz9tGsWoG09f9j41niyapVzWmmMm/ewinODKoVZ6fI0/byJ5JGkqWhfmyEdb1mNXlJW/+fNp4WT19P+t979eOtbE4zFTetaa48q4mWAp8DXgx8IkkOXy8nLLPqK1orkFXa+v/6m8dTxXP1m69O3fbqN19detxFHXHEcpYsGXY9Q5PkqTPoA36D2j2E11JLCndHxB+VF14630A2M8uv6A3kMbuAe4BPAp+PCD82wtpe0Z4Cac76wlms/6f1B94vO24Zi1+8eFKfAGDS2Jpz1qT2FDhj4RmZ+hSkjVXtL36rpjxnBudTOyM4DXgO+B7wdxGxftoNS+AzA2uEMuoE6hNBXksPX8r9T90/abz+JvLc3rlEBHv37z0wlqd3gXWnQnUGKTs7AXgjterjX42Ig4qHmI+TgTVCGXUCunTyk31brWr1A9Y6DXkchaSvSnoI+N/AfOBdwK80JkSz5mt1T4Fm6bTvY+XIc8/gfwD/GJFeASPp9RFxa2PCMitfq3sKNEunfR8rR+Yzg4jYOFUiSHysAfGYNU0ZdQLLjltWKKalhy9NHa8vMJvbO5c5PXMmjOXpXWBWL0+dwUyqd7HUbBpl1Anc9q7bJiWEZcctS13rnzZ233vvSx2/5i3XTIhz3fnruOrNV826d4FZvdw3kKfckbQ5Ik5pyM5m4BvIZmb5NaqfgZnVSesLkLVXQJ6eAkX6D7RL7wJrrTw3kGfycAP3ZVZ59XUK23Zu46JvXDRhrf+2ndsYurFWYDb+ck3atmnz8s7NEmPWba27ZOlnkNrHYIz7GVi3ytM/oH6tf54ahyL1EM3quWDtoejjKNL6GIxxPwPrWnnW79fPzVPjUKQeoltqKay4LP0M3MfALEWe/gH1a/3z1DgUqYfolloKKy7XDWRJ50j6kKRLxl5lBWZWdWl1ClnX+uepcShSD9GsngvW/vI8juKzwO8Bf0KtpuBtwKKS4jKrvLQ6haxr/fPUOBSph2hWzwVrf3meWnp3RLx83L8HA9+MiN8sN8TJfAPZzCy/RtUZPJv8u1tSP7AXOKpocGZm1np5ksFNkg4DPgFsplZXcF0ZQVl3aZeiqCIFZmZVl+cy0byI2DP2M/AC4F/HxprJl4k6RxkNZsqQFmdag5kqxm42plGXiTaM/RAReyJi5/gxs9lYtX7VhF+wALv37mbV+lUtiihdWpzPjT43IRFANWM3y2LGOgNJRwJHAwdJOpnnn076ImpNbsxmrV2KoooUmJm1gywVyP8WuBA4BvjkuPFdwEdKiMm6SLsURRUpMDNrBzNeJoqIayLidcCFEfG6ca/zW/FcIuss7VIUlRZnWoOZKsZulkWeewZ3SrpS0jcBJC2V9O6S4rIu0S5FUWlxpjWYqWLsZlnkWU30TeAqYFVEvEJSH7WeyC8rM8A0Xk1kZpZfo1YTHR4RXwH2A0TEPmC6nshIWifpSUn3TvG5JH1a0kOS7pbUlE5p1llW3rySvsv60KWi77I+Vt68stA8aHwzGdcjWNXlaW7zS0kvpvbYaiS9Gtg5wzZXA5cDX5ji8zcCL0lerwLWJv+aZbLy5pWs3bj2wPvRGD3wfs05a3LPg8Y3k8na8MaslfJcJjoF+AxwEnAfsAC4ICLunmG7AeCmiHhpymefA+6IiOuS9w8CZ0bET6fbpy8T2Zi+y/oYjcknqL3qZd8l+3LPg3KayaRxgxlrtqLNbcbcD3wd2A08DXwD+HHB2I4GHh33/rFkbFIykDQEDAEsXOile1aT9gs+bTzrPCinmUzRuWZly3PP4AvACcB/p3aGsBj4YhlBpYmI4YgYjIjBBQsWNOuwVnG96s00nnUeTF0nkLWZTFauR7AqyZMMXhoR74mI25PXH1K7ZFTE48Cx494fk4yZZTJ06lCm8azzoPHNZLI2vDFrpTzJYHNy0xgASa8Cil64vwF4V7Kq6NXAzpnuF5iNt+acNawYXHHgL/xe9bJicMWkm8JZ50Hjm8lkbXhj1kp5biBvAZYAYxc6FwIPAvuAiIiXp2xzHXAmcDiwHfgoMIfaBp+VJGqrjd5A7V7ERRExY4LxDWQzs/wadQP5DXkPHBHvmOHzAN6bd79mZtZYmZNBRGRbL2dmZm0nzz0DMzPrUE4GZmbmZGBmZk4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgZmZoaTgZmZ4WRgZmY4GZiZGU4GZmaGk4GZmeFkYGZmOBmYmRlOBmZmhpOBmZnhZGBmZjgZmJkZTgbNMTICAwPQ01P7d2Sk1RGZmU3Q1+oAOt7ICAwNwe7dtffbttXeAyxf3rq4zMzG8ZlB2Vatej4RjNm9uzZuZlYRTgZle+SRfONmZi3gZFC2hQvzjZuZtYCTQdlWr4b58yeOzZ9fGzczqwgng7ItXw7Dw7BoEUi1f4eHffPYzCrFq4maYfly//I3s0or/cxA0hskPSjpIUkfTvn8Qkk7JN2VvN5TdkyV4NoDM6uQUs8MJPUCfwW8HngM+KGkGyLi/rqpX46I95UZS6W49sDMKqbsM4PTgIciYmtEPAd8CTi/5GNWn2sPzKxiyk4GRwOPjnv/WDJW799JulvS9ZKOTduRpCFJGyVt3LFjRxmxNo9rD8ysYqqwmuhGYCAiXg7cClyTNikihiNiMCIGFyxY0NQAG861B2ZWMWUng8eB8X/pH5OMHRARP4+IPcnbK4BTS46p9Vx7YGYVU3Yy+CHwEknHSZoLvB24YfwESUeNe3sesKXkmFrPtQdmVjGlriaKiH2S3gd8C+gF1kXEfZIuAzZGxA3Af5J0HrAP+GfgwjJjqgzXHphZhZR+zyAibomIxRHxaxGxOhm7JEkERMSfRcRJEfGKiHhdRDxQdkyzkrUu4Kyzan/tj73OOit92zx1Bq5JMLOSKSJaHUNug4ODsXHjxuYdsL4uAGrX+Osv7Zx1FqxfP3l7Ccb/7zx3bu393r3T7y/Psc3MZiBpU0QMpn7mZJDBwECtMKzeokXw8MPPv5eKHad+f3mObWY2g+mSQRWWllZfs+oC0vbnmgQzawIngyyaVReQtj/XJJhZEzgZZJG1LmDZsvTt6y8fzZ0Lc+bMvL88xzYzK8DJIIusdQG33TY5ISxbBl/84sRt162Dq67KVmfgmgQzawLfQDYz6xK+gWxmZtNyMshq5Uro66tdqunrq73PWmCWxoVkZlYhvkyUxcqVsHZttrn1BWZpBWIuJDOzFnDRWVF9fTA6Ovvt6wvEXEhmZi3gewZFFUkEMLlAzIVkZlYxTgZZ9PYW276+QMyFZGZWMU4GWYw1q8+ivsAsrUDMhWRmVjFOBlmsWQMrVjx/htDbW3ufpcAs7aawC8nMrGJ8A9nMrEv4BjLkW9efVlNw0kkTawpOOqn2jKHxY3Pn1i73jB+bPx+OPnri2NFHu7mNmVVLRLTd69RTT41crr02Yv78iFoFQO01f35tvN6KFRPnNes1VTx5Yjczmwa1dsOpv1e74zJRnnX9RWsKinBzGzMrkS8T5VnX36pEAG5uY2Yt0x3JIM+6/qI1BUW4uY2ZtUh3JIM86/rz1BQ0kpvbmFkLdUcyyLOuf6qagqVLJ85bunRyt7I5c+CggyaOHXQQ9PdPHOvvh2uvdXMbM6uM7riBbGZmvoE8paLr99PqEdLGzMwqrq/VAbRMfU+Bbduev1+Q5RJMfY+D0dHJPQ/Gj61ZUzxmM7OSdO9loqLr9/PUI/T2wr59eaIzM2s4XyZKU3T9fp56hFbWLpiZZdC9yaDo+v089QitrF0wM8uge5NB0fX7eeoRWlW7YGaWUfcmg6Lr96eqR0gb881jM6u47r2BbGbWZVp6A1nSGyQ9KOkhSR9O+XyepC8nn/9A0kDZMZmZ2USlJgNJvcBfAW8ElgLvkFT3XAfeDfxLRPw68JfAx8qMyczMJiv7zOA04KGI2BoRzwFfAs6vm3M+cE3y8/XAMqm+q7yZmZWp7GRwNPDouPePJWOpcyJiH7ATeHH9jiQNSdooaeOOHTtKCtfMrDu1zWqiiBiOiMGIGFywYEGrwzEz6yhlP5voceDYce+PScbS5jwmqQ84FPj5dDvdtGnTU5JSniWRyeHAU7Pctoo66ft00ncBf58q66TvAtm/z6KpPig7GfwQeImk46j90n878M66OTcAfwBsAC4Avh0zrHeNiFmfGkjaONXSqnbUSd+nk74L+PtUWSd9F2jM9yk1GUTEPknvA74F9ALrIuI+SZcBGyPiBuBK4IuSHgL+mVrCMDOzJir9EdYRcQtwS93YJeN+/lfgbWXHYWZmU2ubG8gNNNzqABqsk75PJ30X8Pepsk76LtCA79OWj6MwM7PG6sYzAzMzq+NkYGZm3ZMMJK2T9KSke1sdS1GSjpV0u6T7Jd0n6f2tjqkISS+Q9A+SfpR8n0tbHVNRknol/aOkm1odS1GSHpZ0j6S7JLX944IlHSbpekkPSNoi6fRWxzQbkpYk/5+MvXZJunjW++uWewaSfgt4BvhCRLy01fEUIeko4KiI2CzpEGAT8OaIuL/Foc1K8iyqF0bEM5LmAH8PvD8ivt/i0GZN0geAQeBFEXFuq+MpQtLDwGBEdESRlqRrgO9GxBWS5gLzI+IXrY6riOShoI8Dr4qIWRXkds2ZQUT8HbU6hrYXET+NiM3Jz08DW5j8zKe2ETXPJG/nJK+2/StF0jHAOcAVrY7FJpJ0KPBb1OqbiIjn2j0RJJYBP5ltIoAuSgadKun/cDLwg9ZGUkxyWeUu4Eng1oho5+/zKeBDwP5WB9IgAfxfSZsktXsP1+OAHcBVyWW8KyS9sNVBNcDbgeuK7MDJoI1JOhj4KnBxROxqdTxFRMRoRLyS2vOrTpPUlpfyJJ0LPBkRm1odSwO9NiJOodaX5L3JJdd21QecAqyNiJOBXwKTmm61k+RS13nAXxfZj5NBm0qurX8VGImIr7U6nkZJTtlvB97Q6lhm6QzgvOQ6+5eA35F0bWtDKiYiHk/+fRL4OrU+Je3qMeCxcWee11NLDu3sjcDmiNheZCdOBm0oueF6JbAlIj7Z6niKkrRA0mHJzwcBrwceaG1UsxMRfxYRx0TEALVT929HxH9ocVizJumFySIFksspZwNtuyIvIn4GPCppSTK0DGjLhRfjvIOCl4igCc8mqgpJ1wFnAodLegz4aERc2dqoZu0M4PeBe5Lr7AAfSZ4D1Y6OAq5JVkT0AF+JiLZfktkhjgC+njQf7AP+T0T8bWtDKuxPgJHk8spW4KIWxzNrSYJ+PfBHhffVLUtLzcxsar5MZGZmTgZmZuZkYGZmOBmYmRlOBmZmhpOBmZnhZGAGgKQLJfVnmHe1pAum+fwOSYMNju0wSSvHvT+zEx6NbdXiZGBWcyEwYzJokcOAlTPOMivAycA6kqSBpHnJSNLA5HpJ8yWdKuk7yRM4vyXpqOQv/UFqVal3STpI0iWSfijpXknDySNA8sZwtqQNkjZL+uvkwYJjzWIuTcbvkXRCMr5A0q1Jg58rJG2TdDjwP4FfS2L7RLL7g8c1aBmZTXxm4zkZWCdbAqyJiBOBXcB7gc8AF0TEqcA6YHVEXA9sBJZHxCsj4lng8oj4jaQR0kFArgY1yS/x/waclTzxcyPwgXFTnkrG1wJ/mox9lNqzjE6i9gC1hcn4h6k9q/6VEfFfkrGTgYuBpcDx1B5RYjZrXfNsIutKj0bEncnP1wIfAV4K3Jr8Id0L/HSKbV8n6UPAfODfAPcBN+Y49qup/aK+MznWXGDDuM/HnjS7CXhr8vNrgbcARMTfSvqXafb/DxHxGEDyfKoBah3izGbFycA6Wf2Dt54G7ouIaXveSnoBsIZaq8dHJf058IKcxxa1Jj3vmOLzPcm/o8zuv8M9436e7T7MDvBlIutkC8c1O38n8H1gwdiYpDmSTko+fxo4JPl57Bf/U8l1/ilXD03j+8AZkn49OdYLJS2eYZs7gX+fzD8b+JWU2MxK4WRgnexBap25tlD7xfoZar/YPybpR8BdwGuSuVcDn00uuewBPk/tuf3fAn6Y98ARsYPaCqXrJN1N7RLRCTNsdilwtqR7gbcBPwOejoifU1Bn6gkAAABtSURBVLvcdO+4G8hmDeVHWFtHSnpD35TcAG4LkuYBoxGxLzl7WZu0AjUrna8zmlXHQuArknqA54A/bHE81kV8ZmA2C5K+DhxXN/xfI+JbrYjHrCgnAzMz8w1kMzNzMjAzM5wMzMwMJwMzMwP+P738buQYbJWOAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [], | |
| "needs_background": "light" | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "oe45ucCrzott", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "**Decision Boundary**\n", | |
| "\n", | |
| "Decision Trees divide the input space into axis-parallel rectangles\n", | |
| "and label each rectangle with one of the K classes\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "[Decision Boundaries for iris Sklearn dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "wAVSZkpezhpa", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 315 | |
| }, | |
| "outputId": "34e79ae0-9ead-41b5-ec0c-4ca555ef6972" | |
| }, | |
| "source": [ | |
| "print('Decision Boundary')\n", | |
| "plt.xlabel('petal_length')\n", | |
| "plt.ylabel('petal_width')\n", | |
| "plt.plot(x_setosa,y_setosa, 'ro') #plotting setosa flower\n", | |
| "plt.plot(x_versicolor,y_versicolor, 'go') #plotting versicolor flower\n", | |
| "plt.plot(x_virginica,y_virginica, 'yo')\n", | |
| "plt.plot([0,7], [0.8, 0.8], 'k-', lw=2)\n", | |
| "plt.plot([0,7], [1.75, 1.75], 'k-', lw=2)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Decision Boundary\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[<matplotlib.lines.Line2D at 0x7f01299cb630>]" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 11 | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEHCAYAAABMRSrcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfZRcdZ3n8fcn3UkggglLMkgDScNIEsAnoAdlcGbRRFdBwXFxR82OC6vTY7fOyuqu65g9OHBOdtd1h3WVSbSF8OD0og4+DE+Oi4Goo9ExySBPMQxmCA9xQmCGBCZOk3S++0fdDtXV9XCrum7XrarP65w6XXXr3t/9Ho7WN/fe3/f3VURgZmbdbVarAzAzs9ZzMjAzMycDMzNzMjAzM5wMzMwM6G11AI1YuHBh9Pf3tzoMM7O2smXLlqcjYlG579oyGfT397N58+ZWh2Fm1lYk7az0nW8TmZmZk4GZmTkZmJkZTgZmZoaTgZmZkXEykHSSpHskPSTpQUkfKbPP+ZL2Sro3eV2RZUxm1nl27x5l06Z+Nm6cxaZN/ezePdrQMY2M0ymynlp6EPhYRGyVdDSwRdJdEfFQyX4/iIi3ZRyLmXWg3btH2b59kEOH9gMwNraT7dsHATjuuFWpj9m27TIkEfFC6nE6SaZXBhHxy4jYmrx/DtgGnJDlOc2su+zYsfrwj/qEQ4f2s2PH6rqOgQOHE0HacTrJjD0zkNQPnAn8pMzX50r6maRvSzqjwvGDkjZL2rxnz54MIzWzdjI29lhd22t9N51929mMJANJRwFfBy6PiH0lX28FlkTEq4HPA98qN0ZEjETEQEQMLFpUtprazLrQ3LmL69pe67vp7NvOMk8GkmZTSASjEfGN0u8jYl9EPJ+8vxOYLWlh1nGZWWc45ZQ1zJo1b9K2WbPmccopa+o6BmYjzalrnE6S9WwiAdcB2yLi6gr7vCzZD0nnJDE9k2VcZtY5jjtuFcuWjTB37hJAzJ27hGXLRqo+9C13zGmnXc/y5evrGqeTKMseyJJeD/wAuB84lGz+JLAYICK+IOnDwBCFmUe/Aj4aET+qNu7AwEB4oTozs/pI2hIRA+W+y3RqaUT8FaAa+1wDXJNlHGZmVl1bLmFtZu1h9+5RduxYzdjYY8ydu5hTTlnTlNsuDz88zK5dI8A40ENf3yBLl66d9rjdzMnAzDLRSDFYGoVEsK5oy/jhz04IjfPaRGaWiUaKwdIoXBGk327pOBmYWSYaKQZLZ7zO7ZaGk4GZZaKRYrB0eurcbmk4GZhZJhopBkujr2+wru2WjpOBmWWikWKwNJYuXUtf3xAvXgn00Nc35IfH05Rp0VlWXHRmZla/lhWdmVl3K60zOPbYC3jmmTsn1R0ANfepdTWRpp6hWfvMhFbE4SsDM8tEaZ1BOdIcCr9BByruM2vWvKq3l8qdp/SYZu0zE7KMo9qVgZ8ZmFkmyjeQmazQTKZyIoDGGtWUHtOsfWZCq+JwMjCzTDSzKUwjjWqKtzdrn5nQqjicDMwsE81sCtNIo5ri7c3aZya0Kg4nAzPLRPkGMpMVmsnMrrpPI41qSo9p1j4zoVVxOBmYWSbK1Rn09Q1N+rx8+XpOO+36qvs00qim9Jhm7TMTWhWHZxOZmXUJzyYys46ye/comzb1s3HjLDZt6mf37tGG9mmVPMbmojMzaytp+iRk1UuhGfIam68MzKyttFPNQDl5jc3JwMzaSjvVDNQTQ6tjczIws7bSTjUD9cTQ6ticDMysrbRTzUA5eY3NycDM2ko71QyUk9fYXGdgZtYl3M/AzNpGVj0QWtWrIC89EmrxlYGZ5UaaHggwG0nJ8tfl5aVXQV56JExwBbKZtYU0PRDgQNVEAPmpO8hrTUE5TgZmlhtZ9UBo1dz+vNYUlONkYGa5kVUPhFbN7c9rTUE5TgZmlhtpeiAUnhnMqbpHXuoO8lpTUI6TgZnlRpoeCKeddj3Ll6+vqwdCq+b257WmoBzPJjIz6xItm00k6SRJ90h6SNKDkj5SZh9J+pykRyTdJ+msLGMyM7Opsi46Owh8LCK2Sjoa2CLproh4qGiftwKnJq/XAuuSv2aWY+WKqaB6MVia4rB200hRWR4L0Wb0NpGkvwCuiYi7irZ9EdgYETcnn7cD50fELyuN49tEZq1VrphKmkPh9+RA6nFaWYDVDI0UlbWyEC0XRWeS+oEzgZ+UfHUC8HjR5yeSbWaWU+WKqQqFYOkTAeS3ACutRorK8lqINiPJQNJRwNeByyNiX4NjDEraLGnznj17mhugmdUlq+KwdtNIUVleC9EyTwaSZlNIBKMR8Y0yuzwJnFT0+cRk2yQRMRIRAxExsGjRomyCNbNUsioOazeNFJXltRAt69lEAq4DtkXE1RV2uxV4XzKr6HXA3mrPC8ys9coVUxUKwWbXNU5eC7DSaqSoLK+FaFlfGZwH/B7wRkn3Jq8LJH1Q0geTfe4EdgCPAF8ChjOOycymqVwx1fLl6znttOurFoPVKg5rN40UleW1EM1FZ2ZmXcLNbcxsRpTOnz/yyJfz7LMbgXGgh76+QZYuXVv1mFbOuc9TLDPNycDMmqJ0/vzY2E7GxnYW7THOrl3rAA4nhHLHbN8+CDDjP8J5iqUVvFCdmTVFusY0sGvXSNVjWjXnPk+xtIKTgZk1Rfp58uM1j2nFnPs8xdIKTgZm1hTp58n31DymFXPu8xRLKzgZmFlTpGtMA319g1WPadWc+zzF0gpOBmbWFOXmzy9YsIIXrwR66OsbmjSbKE9z7vMUSyu4zsDMrEu4zsDMpu32H63kyLENzAIOAeOz+pgTu8m6huDhh4eTGUgvnmf+/PNqjlvr3J3Sh6BZfGVgZjXd/qOVvGRsA9KL2yKY9BmYdBuoGev2FxLBujLfTKSk8uPWOne79SFollz0MzCz9nVkSSKAqYkAml9DUDzeZIcmfyoZt9a5O6kPQbM4GZhZTel/KJpdQzBee5cy49Y6dyf1IWgWJwMzq+lQ7V0Sza4h6Km9S5lxa527k/oQNIuTgZnV9Ku5Kyh9vFjucWOzawiKx5ts8k9X6bi1zt1JfQiapaseIKvcTU4zszbT6O+2HyCbmVlVXVVn0I5XQWZZyGq+/Oj9o6zesJrH9j7G4vmLWbNiDate2R7TLrtdVyUDM8tu3f7R+0cZvG2Q/QcK4+7cu5PB2wrjOiHkn28TmXWZrObLr96w+nAimLD/wH5Wb+iMefidzsnArMtkNV/+sb3lj6+03fLFycCsy2Q1X37x/PLHV9pu+eJkYNZlspovv2bFGubNnjzuvNnzWLOiM+bhdzonA7Muk9W6/ateuYqRt4+wZP4ShFgyfwkjbx/xw+M20VVFZ2Zm3cxFZ2Y2yej9o/R/tp9ZV86i/7P9jN4/2tA+zThPVnbvHmXTpn42bpzFpk397N49c+duR64zMOsyaeoBmlEz0Mq6g6xqKTqZbxOZdZn+z/azc+/OKduXzF/Co5c/mnqfZpwnK5s29TM2NvXcc+cu4dxzsz13njXlNpGkd0r6W0l7Je2T9Jykfc0L08xmQpp6gGbUDLSy7qDTew9koZ5nBv8TuCgi5kfESyPi6Ih4aVaBmVk20tQDNKNmoJV1B53eeyAL9SSD3RGxLbNIzGxGpKkHaEbNQCvrDjq990AWaj5AlvTO5O1mSV8FvgWMTXwfEd/IKDYzy8DEw9tqq4um2acZ58nKxEPiLFZm7VQ1HyBLur7K1xER/765IdXmB8hmZvWr9gC55pVBRFyWDHJeRPywZODzapx4PfA24KmIeEWZ788H/gL4u2TTNyLiqloxmZlZc9VTZ/B54KwU24rdAFwD3FRlnx9ExNvqiMPMijTSUOaEPzmBXc/vOvx5wdwFzD9i/qQxoPotnuE7hhnZMsJ4jNOjHgbPHuRTA+dNujVz7LEX8Mwzd/pWTRtI88zgXOA3gUWSPlr01UuBnmrHRsT3JfVPJ0Azq6yRwq7SRADw7NizPDv27OExLvvWZUjihfEXyo47fMcw6zavO3z8eIzz8M513D/vS/TqIFAo9Nq168V9XPiVb2lmE80BjqKQOI4ueu0DLmlCDOdK+pmkb0s6ownjmXWNRhrKlCaCcg4cOnA4EZQbd2TLyJRjPnAKhxNBJc1oomPZSPPM4HvA9yTdEBFTS/qmZyuwJCKel3QBhZlKp5bbUdIgMAiweLHnCpvBzBd2TYw7HuNTvvu1uenGcOFXPqW5TXQbEMn7Kd9HxEWNnjwi9hW9v1PSWkkLI+LpMvuOACNQmE3U6DnNOsni+YvLLvmQVWHXxLg96pmSEJ4ag5cdUXsMF37lU5rbRP8L+BMKM35+BXwpeT0P/GI6J5f0MiUZRtI5STzPTGdMs27SSGFX31F9NcedPWs2c3rmVBx38OzBKcdcuwMORvV/X7rwK79qJoOI+F5yq+i8iPjdiLgteb0X+K1qx0q6GdgELJP0hKT3S/qgpA8mu1wCPCDpZ8DngHdHO66cZ9YijTSUefJjT05JCAvmLpg0xvXvuJ71F6+vOO7aC9cyNDBEjwpzSHrUw9IlQ7zy9BsmNc3p6xtqehMdy0bqVUslbQMujIgdyeeTgTsj4rQM4yvLRWdmZvVrVnOb/whslLRR0veAe4DLmxGgmRVk1Qxm+I5heq/qRVeK3qt6Gb5juOZ5S49ZedPKljWqKeXGNc1XVz8DSXOB5cnHn0fEWLX9s+IrA+tEpTUDULhPP90+wqU1AROGBoZYe+HasuftndXLwUPVp4k2I7ZGlDaugcKzCN+Cqq3alUGatYneGBF3Fy1YN0krFqpzMrBOlFUzmN6restOBe1RDwevOFjxvGnMRKOaUm5c07hprU0E/EvgbuDtZb4LwKuWmjVBVjUD5RJB8fbpjD8TjWpKuXFNNtIUnX0q+XtZ9uGYda+sagbK1QRMbK923jRmolFNqblzF1e4MnD9wnTU0/byF5JGk6mhXjbCrMmyagZTriageHu58/bOqn3TYKYa1ZRy45ps1DOb6HTgi8CxwGeS5PDNbMIy6z6N1AykUa4mYOLhcaXz3vCOG6Ycs+LkFU2PrRHHHbeKZctGXL/QZPXUGfQCv0HhGcLrKSSF+yLiD7ILrzw/QDYzq990HyBP2AfcD1wNfCkivGyEWRWN9BkotfKmlWz4uw2HP684eQVLj106qY/AsmOXsf2Z7RU/D549yHmLz5sUywWnXsCdf3tnxc8z1Z7S8qOeK4OLKVwRnAO8APwI+H5EbKh6YAZ8ZWB514yagdJEMB2VHiJX0qoaAsvWtOoMygy2HHgrherjX4uII6cfYn2cDCzvmlEzoCunrhI8k1pRQ2DZaspyFJK+LukR4P8A84D3Acc0J0SzzjLTfQay0E6x2vTV88zgvwN/E1H+WlPSmyLiruaEZdbeZrrPQBbaKVabvtRXBhGxuVIiSHy6CfGYdYRm1AysOHlF0+KZmCKaVqtqCKx16qkzqKW1NzjNcqQZNQPffd93pySEFSevmDL///SFp1f9PDQwxI2/c+OkWIYGhqp+9sPj7lP3A+SKA0lbI+KspgxWgx8gm5nVr1n9DMwsY6V9BYbvGK7ZQyBND4RG+iRk1VvB8qmeB8i1PNrEscy6Tmltws69Oyf1Idi5dyeDtxXWE5q4hVPumEb2SRNLrWOsvaXpZ1C2j8EE9zMwa460fQWK5/+nqWdopOYhq94K1lrTXY6iXB+DCe5nYNYkaef1F++Xpp6hkZqHTqiTsPqk6WfgPgZmMyBtX4Hi+f9p6hkaqXnohDoJq09dD5AlXSjp45KumHhlFZhZtylXm1CqdP5/mnqGRmoesuqtYPlVz3IUXwB+F/hDCjUF7wKWZBSXWdcpV5tQa/5/mnqGRmoesuqtYPlVz6ql90XEq4r+HgV8OyJ+K9sQp/IDZDOz+jWrzuBXyd/9kvqAA8Dx0w3OzMxar55kcLukBcBngK0U6gpuziIosyzlqZiqkSIzsyzUc5tobkSMTbwHjgD+eWLbTPJtImtUM5rOZBlLKTeZsWZq1m2iTRNvImIsIvYWbzNrB6s3rJ7y47v/wH5Wb1idi1hKtSo26z416wwkvQw4AThS0pm8uDrpSyk0uTFrG3kqpmqkyMwsK2kqkP8VcClwInB10fZ9wCcziMksM3kqpmqkyMwsKzVvE0XEjRHxBuDSiHhD0eviVqxLZDYdeSqmaqTIzCwr9Twz+KGk6yR9G0DS6ZLen1FcZpnIUzFVI0VmZlmpZzbRt4HrgdUR8WpJvRR6Ir8yywDL8WwiM7P6NWs20cKI+BpwCCAiDgLVeiIjab2kpyQ9UOF7SfqcpEck3SdpRjqlmdVr+I5heq/qRVeK3qt6Gb5juO59mtVgJk91EtY56mlu80+SjqWwbDWSXgfsrXHMDcA1wE0Vvn8rcGryei2wLvlrlhvDdwxPajIzHuOHP6+9cG2qfZrVYOayb12GJF4YfyH1OGZp1HOb6Czg88AZwIPAIuCSiLivxnH9wO0R8Yoy330R2BgRNyeftwPnR8Qvq43p20Q2k3qv6mU8pl4E96iHg1ccTLVPMxvMlOOmM5bGdJvbTHgI+CawH3gO+Bbw8DRjOwF4vOjzE8m2KclA0iAwCLB4safa2cwp9yNfur3WPs1sMDPdfc3KqeeZwU3AcuC/UbhCWAp8OYugyomIkYgYiIiBRYsWzdRpzehRT83ttfapVCtQq8FMWq5FsOmqJxm8IiI+EBH3JK/fp3DLaDqeBE4q+nxiss0sNwbPHqy5vdY+zWowM3vWbOb0zKlrHLM06kkGW5OHxgBIei0w3Rv3twLvS2YVvQ7YW+t5gdlMW3vhWoYGhg7/K79HPQwNDB1+eJxmn2Y1mLn+Hdez/uL1rkWwpqvnAfI2YBkwcXNyMbAdOAhERLyqzDE3A+cDC4HdwKeA2RQO+IIkUZht9BYKzyIui4iaCcYPkM3M6tesB8hvqffEEfGeGt8H8KF6xzUzs+ZKnQwiIt0cNzMzazv1PDMwM7MO5WRgZmZOBmZm5mRgZmY4GZiZGU4GZmaGk4GZmeFkYGZm1FeB3PYKq1+YmbW3tMsI1cNXBmZm1l1XBllkUzOzTuArAzMzczIwMzMnAzMzw8nAzMxwMjAzM5wMzMwMJwMzM8PJwMzMcDIwMzOcDMzMDCcDMzPDycDMzHAysNFR6O+HWbMKf0dHWx2RmbVAV61aaiVGR2FwEPbvL3zeubPwGWDVqtbFZWYzzlcG3Wz16hcTwYT9+wvbzayrOBl0s8ceq2+7mXUsJ4NutnhxfdvNrGM5GXSzNWtg3rzJ2+bNK2w3s67iZNDNVq2CkRFYsgSkwt+RET88NutCnk3U7Vat8o+/mWV/ZSDpLZK2S3pE0ifKfH+ppD2S7k1eH8g6JqvCdQdmXSnTKwNJPcCfAm8CngB+KunWiHioZNevRsSHs4zFUnDdgVnXyvrK4BzgkYjYEREvAF8BLs74nNYo1x2Yda2sk8EJwONFn59ItpX615Luk3SLpJPKDSRpUNJmSZv37NmTRazmugOzrpWH2US3Af0R8SrgLuDGcjtFxEhEDETEwKJFi2Y0wK7hugOzrpV1MngSKP6X/onJtsMi4pmIGEs+XgucnXFMVonrDsy6VtbJ4KfAqZJOljQHeDdwa/EOko4v+ngRsC3jmKwS1x2Yda1MZxNFxEFJHwa+A/QA6yPiQUlXAZsj4lbgP0i6CDgI/ANwaZYxWQ2uOzDrSpk/M4iIOyNiaUT8ekSsSbZdkSQCIuKPIuKMiHh1RLwhIn6edUwdK02NwMqVhX/1T7zOOGPyMcPDtcdwLYJZx1FEtDqGug0MDMTmzZtbHUa+lNYIQOF+f/FtnpUrYcOG+sYtHSPNecwslyRtiYiBst85GXSI/v5CkVipJUvg0UcL76XGxi4eI815zCyXqiWDPEwttWbIskageAzXIph1JCeDTpFljUDxGK5FMOtITgadIk2NwIoV9Y9bOoZrEcw6kpNBp0hTI/Dd705NCKefPvmYoaHqY7gWwawj+QGymVmX8ANkMzOrysmgkwwPQ29v4fZNby+ccMLkArOVK2sXjLmgzKwrue1lpxgehnXrXvw8Pg67dk3eZ8MGuPtumLg1WNq8xs1tzLqWnxl0it7eQgJoxETBmAvKzDqanxl0g0YTAbxYMOaCMrOu5WTQKXp6Gj92omDMBWVmXcvJoFNM3NuvpXR9ouKCMReUmXUtJ4NOsXZtoWBs4gqhpwf6+ibvs2IFfPnLlQvGXFBm1rX8ANnMrEv4AXI7SjPfv7Su4JhjJtcVlL7mzCnc9qm2zzHHuLmNWRdynUEepZnvX66u4Nlnq4974EDhVc2zz744TrnzuhbBrCP5NlEepZnvP526gnq5uY1ZR/BtonaTZr7/TCWC0vO6FsGsIzkZ5FGa+f7TqSuol5vbmHU8J4M8SjPfP21dwXS5uY1ZV3AyyKM08/3L1RUsWFB93Nmz4cgjq++zYIGb25h1IT9ANjPrEn6A3AkamdtfWocwPFx+m5l1PdcZtING5vaXq0Mo/ly6be3a5sZsZm3Ft4naQSNz++upQ+jpgYMHG43OzNqEbxO1u0bm9tdThzCTNQtmlktOBu2gkbn99dQhzGTNgpnlkpNBO2hkbn89dQgzVbNgZrnlZNAOGpnbX64OYWio/DY/PDbren6AbGbWJVr6AFnSWyRtl/SIpE+U+X6upK8m3/9EUn/WMZmZ2WSZJgNJPcCfAm8FTgfeI+n0kt3eD/xjRLwc+N/Ap7OMyczMpsr6yuAc4JGI2BERLwBfAS4u2edi4Mbk/S3ACqm0a7uZmWUp62RwAvB40ecnkm1l94mIg8Be4NjSgSQNStosafOePXsyCtfMrDu1zWyiiBiJiIGIGFi0aFGrwzEz6yhZr030JHBS0ecTk23l9nlCUi8wH3im2qBbtmx5WlKZ9RlSWQg83eCxrdBO8bZTrNBe8bZTrNBe8bZTrDC9eJdU+iLrZPBT4FRJJ1P40X838N6SfW4F/h2wCbgEuDtqzHeNiIYvDSRtrjS1Ko/aKd52ihXaK952ihXaK952ihWyizfTZBARByV9GPgO0AOsj4gHJV0FbI6IW4HrgC9LegT4BwoJw8zMZlDmS1hHxJ3AnSXbrih6/8/Au7KOw8zMKmubB8hNNNLqAOrUTvG2U6zQXvG2U6zQXvG2U6yQUbxtuRyFmZk1VzdeGZiZWQknAzMz665kUGvRvDyRtF7SU5IeaHUstUg6SdI9kh6S9KCkj7Q6pkokHSHpryX9LIn1ylbHlIakHkl/I+n2VsdSjaRHJd0v6V5JuV9aWNICSbdI+rmkbZLObXVM5Uhalvw3nXjtk3R5U8/RLc8MkkXzHgbeRGFZjJ8C74mIh1oaWAWSfht4HrgpIl7R6niqkXQ8cHxEbJV0NLAFeEce/9sm6169JCKelzQb+CvgIxHx4xaHVpWkjwIDwEsj4m2tjqcSSY8CAxHRFkVckm4EfhAR10qaA8yLiGdbHVc1yW/Zk8BrI6LR4tspuunKIM2iebkREd+nUHeRexHxy4jYmrx/DtjG1DWociEKnk8+zk5euf4XkaQTgQuBa1sdSyeRNB/4bQq1TkTEC3lPBIkVwC+amQigu5JBmkXzbJqSfhRnAj9pbSSVJbdc7gWeAu6KiNzGmvgs8HHgUKsDSSGA/ydpi6S891M9GdgDXJ/cgrtW0ktaHVQK7wZubvag3ZQMLGOSjgK+DlweEftaHU8lETEeEa+hsFbWOZJyextO0tuApyJiS6tjSen1EXEWhR4mH0pud+ZVL3AWsC4izgT+Ccj7s8Q5wEXAnzd77G5KBmkWzbMGJfffvw6MRsQ3Wh1PGsktgXuAt7Q6lirOAy5K7sV/BXijpD9rbUiVRcSTyd+ngG9SuD2bV08ATxRdGd5CITnk2VuBrRGxu9kDd1MyOLxoXpJd301hkTybpuSh7HXAtoi4utXxVCNpkaQFyfsjKUwo+Hlro6osIv4oIk6MiH4K/5u9OyL+bYvDKkvSS5IJBCS3W94M5HY2XET8PfC4pGXJphVA7iY9lHgPGdwighlYmygvKi2a1+KwKpJ0M3A+sFDSE8CnIuK61kZV0XnA7wH3J/fiAT6ZrEuVN8cDNyYzMmYBX4uIXE/XbCPHAd9MGhX2Av83Iv6ytSHV9IfAaPIPxB3AZS2Op6Ikwb4J+INMxu+WqaVmZlZZN90mMjOzCpwMzMzMycDMzJwMzMwMJwMzM8PJwMzMcDIwA0DSpZL6Uux3g6RLqny/UdJAk2NbIGm46PP5eV/K2tqPk4FZwaVAzWTQIguA4Zp7mU2Dk4F1JEn9ScOS0aRpyS2S5kk6W9L3klU1vyPp+ORf+gMUKlHvlXSkpCsk/VTSA5JGkiU36o3hzZI2Sdoq6c+ThfwmGsBcmWy/X9LyZPsiSXclTXeulbRT0kLgfwC/nsT2mWT4o4qasow2Ep9ZMScD62TLgLURcRqwD/gQ8Hngkog4G1gPrImIW4DNwKqIeE1E/Aq4JiJ+I2ksdCRQV0OZ5Ef8vwIrk1U8NwMfLdrl6WT7OuA/Jds+RWHtoTMoLJq2ONn+CQrr178mIv5zsu1M4HLgdOAUCkuCmDWsa9Ymsq70eET8MHn/Z8AngVcAdyX/kO4Bflnh2DdI+jgwD/gXwIPAbXWc+3UUfqh/mJxrDrCp6PuJlV23AO9M3r8e+B2AiPhLSf9YZfy/jognAJL1oPopdG0za4iTgXWy0oW3ngMejIiqfW4lHQGspdC+8XFJfwwcUee5RaFxznsqfD+W/B2nsf8fjhW9b3QMs8N8m8g62eKiBufvBX4MLJrYJmm2pDOS758Djk7eT/zwP53c5684e6iKHwPnSXp5cq6XSFpa45gfAv8m2f/NwDFlYjPLhJOBdbLtFLptbaPww/p5Cj/sn5b0M+Be4DeTfW8AvpDcchkDvkRhLf7vUOiFUZeI2ENhhtLNku6jcItoeY3DrgTeLOkB4F3A3wPPRcQzFG43PVD0ANmsqbyEtXWkpBfz7ckD4LYgaS4wnvTeOJdCO8bXtDou6w6+z2iWH4uBr0maBbwA/H6L47Eu4isDswZI+iZwcsnm/xIR32lFPGbT5WRgZmZ+gGxmZloPEB4AAAAVSURBVE4GZmaGk4GZmeFkYGZmwP8HHCpeY7YCK8gAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [], | |
| "needs_background": "light" | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "6eb3gp-qgLJy", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 88 | |
| }, | |
| "outputId": "7e06c850-e2e7-4ab1-945b-eede9b61e8fe" | |
| }, | |
| "source": [ | |
| "iris.feature_names" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "['sepal length (cm)',\n", | |
| " 'sepal width (cm)',\n", | |
| " 'petal length (cm)',\n", | |
| " 'petal width (cm)']" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 8 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "gtKZzGge5OxQ", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "X = iris.data[:,2:]\n", | |
| "y = iris.target" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "APiN_J_-5cL7", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 124 | |
| }, | |
| "outputId": "9f8234e1-3e2d-400a-e7a3-ab335ecb6aae" | |
| }, | |
| "source": [ | |
| "tree_clf = DecisionTreeClassifier(max_depth=2)\n", | |
| "tree_clf.fit(X, y)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',\n", | |
| " max_depth=2, max_features=None, max_leaf_nodes=None,\n", | |
| " min_impurity_decrease=0.0, min_impurity_split=None,\n", | |
| " min_samples_leaf=1, min_samples_split=2,\n", | |
| " min_weight_fraction_leaf=0.0, presort='deprecated',\n", | |
| " random_state=None, splitter='best')" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 10 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "MVRLrlcj34rj", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "**Task For You**\n", | |
| "\n", | |
| "Implement Decision Trees from scratch using either gini index or entropy as impurity metric" | |
| ] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment