-
-
Save alanchelmickjr/ef6c164c1608d2d48caf0d58fbefa717 to your computer and use it in GitHub Desktop.
Diffusion-Based Coding Model with PyTorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Diffusion-Based Coding Model with PyTorch\n", | |
| "This notebook provides a step-by-step guide to creating a diffusion-based coding model using PyTorch. It covers data collection from GitHub, preprocessing, data augmentation, defining a model architecture, training, evaluation, inference, and model saving/loading." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import torch\n", | |
| "import torch.nn as nn\n", | |
| "import torch.optim as optim\n", | |
| "from torch.utils.data import Dataset, DataLoader\n", | |
| "import numpy as np\n", | |
| "import pandas as pd\n", | |
| "from sklearn.model_selection import train_test_split\n", | |
| "import os\n", | |
| "import re\n", | |
| "import json\n", | |
| "import requests\n", | |
| "from bs4 import BeautifulSoup\n", | |
| "import logging\n", | |
| "from torch.nn.utils.rnn import pad_sequence\n", | |
| "from torchtext.data.utils import get_tokenizer\n", | |
| "from torchtext.vocab import build_vocab_from_iterator\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Data Collection\n", | |
| "Collect code snippets and their corresponding prompts from GitHub repositories. In this example, we fetch code from a specified repository URL." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def fetch_code_snippets(repo_url):\n", | |
| " response = requests.get(repo_url)\n", | |
| " if response.status_code == 200:\n", | |
| " soup = BeautifulSoup(response.content, 'html.parser')\n", | |
| " code_snippets = []\n", | |
| " for code_tag in soup.find_all('code'):\n", | |
| " code_snippet = code_tag.get_text()\n", | |
| " if code_snippet.strip():\n", | |
| " code_snippets.append(code_snippet.strip())\n", | |
| " return code_snippets\n", | |
| " else:\n", | |
| " raise Exception(f'Failed to fetch code snippets from {repo_url}')\n", | |
| "\n", | |
| "repo_url = 'https://github.com/example/repo'\n", | |
| "code_snippets = fetch_code_snippets(repo_url)\n", | |
| "print(f'Fetched {len(code_snippets)} code snippets.')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Data Preprocessing\n", | |
| "Tokenize code snippets and convert them into sequences of tokens using a basic English tokenizer. In a real-world scenario, you would use a tokenizer that better understands code syntax." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def tokenize_code(code_snippet):\n", | |
| " tokenizer = get_tokenizer('basic_english')\n", | |
| " tokens = tokenizer(code_snippet)\n", | |
| " return tokens\n", | |
| "\n", | |
| "def preprocess_data(code_snippets):\n", | |
| " tokenized_snippets = [tokenize_code(snippet) for snippet in code_snippets]\n", | |
| " all_tokens = [token for snippet in tokenized_snippets for token in snippet]\n", | |
| " unique_tokens = list(set(all_tokens))\n", | |
| " token_to_idx = {token: idx for idx, token in enumerate(unique_tokens)}\n", | |
| " idx_to_token = {idx: token for token, idx in token_to_idx.items()}\n", | |
| " return tokenized_snippets, token_to_idx, idx_to_token\n", | |
| "\n", | |
| "tokenized_snippets, token_to_idx, idx_to_token = preprocess_data(code_snippets)\n", | |
| "print(f'Total unique tokens: {len(token_to_idx)}')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Data Augmentation\n", | |
| "Enhance the training data to make the model more robust by applying random insertion, deletion, and swapping of tokens." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def augment_data(tokenized_snippets, token_to_idx):\n", | |
| " augmented_snippets = []\n", | |
| " for snippet in tokenized_snippets:\n", | |
| " # Random Insertion\n", | |
| " if np.random.rand() < 0.1:\n", | |
| " insertion_index = np.random.randint(0, len(snippet) + 1)\n", | |
| " inserted_token = np.random.choice(list(token_to_idx.keys()))\n", | |
| " snippet.insert(insertion_index, inserted_token)\n", | |
| " # Random Deletion\n", | |
| " if np.random.rand() < 0.1 and len(snippet) > 1:\n", | |
| " deletion_index = np.random.randint(0, len(snippet))\n", | |
| " del snippet[deletion_index]\n", | |
| " # Random Swap\n", | |
| " if np.random.rand() < 0.1 and len(snippet) > 1:\n", | |
| " swap_index1, swap_index2 = np.random.choice(len(snippet), 2, replace=False)\n", | |
| " snippet[swap_index1], snippet[swap_index2] = snippet[swap_index2], snippet[swap_index1]\n", | |
| " augmented_snippets.append(snippet)\n", | |
| " return augmented_snippets\n", | |
| "\n", | |
| "augmented_snippets = augment_data(tokenized_snippets, token_to_idx)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Model Architecture\n", | |
| "Define a simple diffusion model architecture using PyTorch. In practice, a diffusion-based model would include iterative denoising steps; here we illustrate a basic model structure that can be extended with diffusion-specific components." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "class DiffusionModel(nn.Module):\n", | |
| " def __init__(self, vocab_size, embedding_dim, hidden_dim):\n", | |
| " super(DiffusionModel, self).__init__()\n", | |
| " self.embedding = nn.Embedding(vocab_size, embedding_dim)\n", | |
| " # In a full diffusion model, this would be replaced by a Transformer-based denoiser with time-step conditioning\n", | |
| " self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n", | |
| " self.fc = nn.Linear(hidden_dim, vocab_size)\n", | |
| "\n", | |
| " def forward(self, x):\n", | |
| " x = self.embedding(x)\n", | |
| " x, _ = self.lstm(x)\n", | |
| " x = self.fc(x)\n", | |
| " return x\n", | |
| "\n", | |
| "vocab_size = len(token_to_idx)\n", | |
| "embedding_dim = 256\n", | |
| "hidden_dim = 512\n", | |
| "learning_rate = 0.001\n", | |
| "\n", | |
| "model = DiffusionModel(vocab_size, embedding_dim, hidden_dim)\n", | |
| "criterion = nn.CrossEntropyLoss()\n", | |
| "optimizer = optim.Adam(model.parameters(), lr=learning_rate)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Data Preparation\n", | |
| "Convert tokens to indices and create batches for training." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "class CodeDataset(Dataset):\n", | |
| " def __init__(self, tokenized_snippets, token_to_idx, seq_length=100):\n", | |
| " self.tokenized_snippets = tokenized_snippets\n", | |
| " self.token_to_idx = token_to_idx\n", | |
| " self.seq_length = seq_length\n", | |
| " def __len__(self):\n", | |
| " return len(self.tokenized_snippets)\n", | |
| " def __getitem__(self, idx):\n", | |
| " snippet = self.tokenized_snippets[idx]\n", | |
| " input_seq = snippet[:self.seq_length]\n", | |
| " target_seq = snippet[1:self.seq_length+1]\n", | |
| " input_seq = [self.token_to_idx[token] for token in input_seq]\n", | |
| " target_seq = [self.token_to_idx[token] for token in target_seq]\n", | |
| " return torch.tensor(input_seq), torch.tensor(target_seq)\n", | |
| "\n", | |
| "seq_length = 100\n", | |
| "batch_size = 32\n", | |
| "\n", | |
| "dataset = CodeDataset(augmented_snippets, token_to_idx, seq_length)\n", | |
| "train_dataset, val_dataset = train_test_split(dataset, test_size=0.2, random_state=42)\n", | |
| "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", | |
| "val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Training\n", | |
| "Train the diffusion model using the prepared data. In a complete diffusion model, you would incorporate a noise schedule and iterative denoising. Here, we demonstrate a simple training loop." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "num_epochs = 10\n", | |
| "scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)\n", | |
| "\n", | |
| "for epoch in range(num_epochs):\n", | |
| " model.train()\n", | |
| " total_loss = 0\n", | |
| " for inputs, targets in train_loader:\n", | |
| " optimizer.zero_grad()\n", | |
| " outputs = model(inputs)\n", | |
| " loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))\n", | |
| " loss.backward()\n", | |
| " optimizer.step()\n", | |
| " total_loss += loss.item()\n", | |
| " scheduler.step()\n", | |
| " avg_loss = total_loss / len(train_loader)\n", | |
| " print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss}')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Evaluation\n", | |
| "Evaluate the model on the validation set." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "model.eval()\n", | |
| "total_loss = 0\n", | |
| "with torch.no_grad():\n", | |
| " for inputs, targets in val_loader:\n", | |
| " outputs = model(inputs)\n", | |
| " loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))\n", | |
| " total_loss += loss.item()\n", | |
| "\n", | |
| "val_loss = total_loss / len(val_loader)\n", | |
| "print(f'Validation Loss: {val_loss}')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Inference\n", | |
| "Generate code snippets using the trained model. This function takes a prompt and generates code by iteratively predicting the next token." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def generate_code(model, prompt, max_length=100):\n", | |
| " model.eval()\n", | |
| " input_seq = [token_to_idx[token] for token in tokenize_code(prompt)]\n", | |
| " input_seq = torch.tensor(input_seq).unsqueeze(0)\n", | |
| " generated_code = []\n", | |
| " with torch.no_grad():\n", | |
| " for _ in range(max_length):\n", | |
| " outputs = model(input_seq)\n", | |
| " _, predicted = torch.max(outputs[:, -1, :], 1)\n", | |
| " generated_code.append(idx_to_token[predicted.item()])\n", | |
| " input_seq = torch.cat([input_seq, predicted.unsqueeze(0)], dim=1)\n", | |
| " return ' '.join(generated_code)\n", | |
| "\n", | |
| "prompt = 'def hello_world():'\n", | |
| "generated_code = generate_code(model, prompt)\n", | |
| "print(generated_code)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Model Saving and Loading\n", | |
| "Save and load the trained model for later use." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def save_model(model, path):\n", | |
| " torch.save(model.state_dict(), path)\n", | |
| "\n", | |
| "def load_model(model, path):\n", | |
| " model.load_state_dict(torch.load(path))\n", | |
| " model.eval()\n", | |
| "\n", | |
| "model_path = 'diffusion_model.pth'\n", | |
| "save_model(model, model_path)\n", | |
| "load_model(model, model_path)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Error Handling and Logging\n", | |
| "Robust error handling and logging to track training and inference processes." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\n", | |
| "\n", | |
| "try:\n", | |
| " for epoch in range(num_epochs):\n", | |
| " model.train()\n", | |
| " total_loss = 0\n", | |
| " for inputs, targets in train_loader:\n", | |
| " optimizer.zero_grad()\n", | |
| " outputs = model(inputs)\n", | |
| " loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))\n", | |
| " loss.backward()\n", | |
| " optimizer.step()\n", | |
| " total_loss += loss.item()\n", | |
| " scheduler.step()\n", | |
| " avg_loss = total_loss / len(train_loader)\n", | |
| " logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss}')\n", | |
| "except Exception as e:\n", | |
| " logging.error(f'An error occurred: {e}')" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "version": "3.8.5" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment