Created
October 3, 2019 02:43
-
-
Save VibhuJawa/69a7831a2231abb56db8a0f33983b923 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import xgboost \n", | |
| "import dask_cudf\n", | |
| "from dask.distributed import Client, wait\n", | |
| "import cudf\n", | |
| "import dask" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table style=\"border: 2px solid white;\">\n", | |
| "<tr>\n", | |
| "<td style=\"vertical-align: top; border: 0px solid white\">\n", | |
| "<h3 style=\"text-align: left;\">Client</h3>\n", | |
| "<ul style=\"text-align: left; list-style: none; margin: 0; padding: 0;\">\n", | |
| " <li><b>Scheduler: </b>tcp://172.17.0.3:8786</li>\n", | |
| " <li><b>Dashboard: </b><a href='http://172.17.0.3:8787/status' target='_blank'>http://172.17.0.3:8787/status</a>\n", | |
| "</ul>\n", | |
| "</td>\n", | |
| "<td style=\"vertical-align: top; border: 0px solid white\">\n", | |
| "<h3 style=\"text-align: left;\">Cluster</h3>\n", | |
| "<ul style=\"text-align: left; list-style:none; margin: 0; padding: 0;\">\n", | |
| " <li><b>Workers: </b>8</li>\n", | |
| " <li><b>Cores: </b>8</li>\n", | |
| " <li><b>Memory: </b>0 B</li>\n", | |
| "</ul>\n", | |
| "</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "<Client: 'tcp://172.17.0.3:8786' processes=0 threads=0, memory=0 B>" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "client = Client('172.17.0.3:8786')\n", | |
| "client.restart()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "DoneAndNotDoneFutures(done={<Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 4)>, <Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 2)>, <Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 7)>, <Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 5)>, <Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 3)>, <Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 1)>, <Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 0)>, <Future: status: finished, type: DataFrame, key: ('from_pandas-556f0cad77a6f90e109b63f7cf36b5c0', 6)>}, not_done=set())" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df = dask_cudf.from_cudf(cudf.DataFrame({'x':[1,2]*16,'y':[0,1]*16}),npartitions=8)\n", | |
| "df = df.persist()\n", | |
| "wait(df)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div><strong>Dask DataFrame Structure:</strong></div>\n", | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>x</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>npartitions=8</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>int64</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>28</th>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>31</th>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| "<div>Dask Name: getitem, 16 tasks</div>" | |
| ], | |
| "text/plain": [ | |
| "<dask_cudf.DataFrame | 16 tasks | 8 npartitions>" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df[['x']]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def create_dmatrix_from_cudf(df,non_label_columns, label_columns = ['label']):\n", | |
| " \"\"\"\n", | |
| " \n", | |
| " \"\"\"\n", | |
| " gpu_dfs = [(gpu_df[non_label_columns], gpu_df[label_columns]) for gpu_df in df.to_delayed()]\n", | |
| " split_gpu_dfs = [(gpu_df[0].perist(), gpu_df[1].persist()) for gpu_df in gpu_dfs]\n", | |
| " dmat_ls = [dask.delayed(xgboost.DMatrix)(datata = df_tup[0], label = df_tup[1]) for df_tup in split_gpu_dfs]\n", | |
| " wait(dmat_ls)\n", | |
| " return dmat_ls" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "dmat = create_dmatrix_from_cudf(df,non_label_columns = ['x'], \n", | |
| " label_columns = ['y'])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "[Delayed('DMatrix-32259e90-e0d8-4334-ace6-966265830639'),\n", | |
| " Delayed('DMatrix-6ce18521-3507-4ab0-b5ed-494b3b9f6ce4'),\n", | |
| " Delayed('DMatrix-00b14db9-a81d-4962-ba62-a93340a3650f'),\n", | |
| " Delayed('DMatrix-4ab74b1c-11d6-4577-b02c-fde4d48e79cd'),\n", | |
| " Delayed('DMatrix-e2841a80-0868-46ee-ae8e-52b6c75f49e5'),\n", | |
| " Delayed('DMatrix-ce9b5442-6520-46e6-b3d4-a6f4b211be9b'),\n", | |
| " Delayed('DMatrix-40c4c115-a647-4b53-be4d-f92e1c26364c'),\n", | |
| " Delayed('DMatrix-f2844833-d744-4963-83a0-fc521f04df8e')]" | |
| ] | |
| }, | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "dmat" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<b>Future: perist</b> <font color=\"gray\">status: </font><font color=\"red\">error</font>, <font color=\"gray\">key: </font>perist-80d545f6-5d73-403e-81cd-bf1fe0d04a86" | |
| ], | |
| "text/plain": [ | |
| "<Future: status: error, key: perist-80d545f6-5d73-403e-81cd-bf1fe0d04a86>" | |
| ] | |
| }, | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "client.compute(dmat[0][0])\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.3" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 4 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment