Created
May 12, 2014 19:24
-
-
Save TomAugspurger/58838d627194a9113f66 to your computer and use it in GitHub Desktop.
max_info
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "metadata": { | |
| "name": "", | |
| "signature": "sha256:a2136a9b764b8cc306e3505c177878f34420d0caedfc615b7f914e5627ef7425" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df = pd.DataFrame(np.random.randn(10, 5))" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 1 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>0</th>\n", | |
| " <th>1</th>\n", | |
| " <th>2</th>\n", | |
| " <th>3</th>\n", | |
| " <th>4</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>-0.461551</td>\n", | |
| " <td> 0.337281</td>\n", | |
| " <td> 2.386641</td>\n", | |
| " <td>-0.063649</td>\n", | |
| " <td>-1.120149</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>-1.251335</td>\n", | |
| " <td> 1.578450</td>\n", | |
| " <td>-0.342258</td>\n", | |
| " <td> 0.098727</td>\n", | |
| " <td> 0.096191</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>-1.732438</td>\n", | |
| " <td>-1.697958</td>\n", | |
| " <td>-0.159549</td>\n", | |
| " <td>-0.038545</td>\n", | |
| " <td> 0.165542</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 1.499082</td>\n", | |
| " <td> 0.939494</td>\n", | |
| " <td>-0.089698</td>\n", | |
| " <td> 0.711280</td>\n", | |
| " <td>-0.747168</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>-0.257008</td>\n", | |
| " <td> 0.849296</td>\n", | |
| " <td>-0.922523</td>\n", | |
| " <td>-0.420108</td>\n", | |
| " <td>-0.522947</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td> 1.133592</td>\n", | |
| " <td> 0.989736</td>\n", | |
| " <td> 0.389640</td>\n", | |
| " <td> 1.245466</td>\n", | |
| " <td>-0.369549</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>-0.481618</td>\n", | |
| " <td> 1.209619</td>\n", | |
| " <td>-0.797668</td>\n", | |
| " <td>-1.085983</td>\n", | |
| " <td>-0.924849</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td> 0.029566</td>\n", | |
| " <td> 1.440946</td>\n", | |
| " <td>-0.273174</td>\n", | |
| " <td>-0.676727</td>\n", | |
| " <td> 0.689995</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td> 0.712432</td>\n", | |
| " <td> 1.021626</td>\n", | |
| " <td> 0.212807</td>\n", | |
| " <td>-0.719138</td>\n", | |
| " <td> 0.548671</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>-0.958496</td>\n", | |
| " <td>-1.494948</td>\n", | |
| " <td> 0.401581</td>\n", | |
| " <td> 0.252721</td>\n", | |
| " <td>-1.507747</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>10 rows \u00d7 5 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 2, | |
| "text": [ | |
| " 0 1 2 3 4\n", | |
| "0 -0.461551 0.337281 2.386641 -0.063649 -1.120149\n", | |
| "1 -1.251335 1.578450 -0.342258 0.098727 0.096191\n", | |
| "2 -1.732438 -1.697958 -0.159549 -0.038545 0.165542\n", | |
| "3 1.499082 0.939494 -0.089698 0.711280 -0.747168\n", | |
| "4 -0.257008 0.849296 -0.922523 -0.420108 -0.522947\n", | |
| "5 1.133592 0.989736 0.389640 1.245466 -0.369549\n", | |
| "6 -0.481618 1.209619 -0.797668 -1.085983 -0.924849\n", | |
| "7 0.029566 1.440946 -0.273174 -0.676727 0.689995\n", | |
| "8 0.712432 1.021626 0.212807 -0.719138 0.548671\n", | |
| "9 -0.958496 -1.494948 0.401581 0.252721 -1.507747\n", | |
| "\n", | |
| "[10 rows x 5 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 2 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "pd.set_option('display.large_repr', 'info',\n", | |
| " 'display.max_info_columns', 4,\n", | |
| " 'display.max_columns', 2)\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 3 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 3, | |
| "metadata": {}, | |
| "source": [ | |
| "`max_info_columns` exceeded => Truncate unless `verbose=True`" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<pre><class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Columns: 5 entries, 0 to 4\n", | |
| "dtypes: float64(5)</pre>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 4, | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Columns: 5 entries, 0 to 4\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 4 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.info()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Columns: 5 entries, 0 to 4\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 5 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.info(verbose=True)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Data columns (total 5 columns):\n", | |
| "0 10 non-null float64\n", | |
| "1 10 non-null float64\n", | |
| "2 10 non-null float64\n", | |
| "3 10 non-null float64\n", | |
| "4 10 non-null float64\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 6 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.info(verbose=False)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Columns: 5 entries, 0 to 4\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 7 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "pd.set_option('display.max_info_columns', 5)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 8 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 3, | |
| "metadata": {}, | |
| "source": [ | |
| "`max_info_columns` not exceeded => don't Truncate unless `verbose=True`" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<pre><class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Data columns (total 5 columns):\n", | |
| "0 10 non-null float64\n", | |
| "1 10 non-null float64\n", | |
| "2 10 non-null float64\n", | |
| "3 10 non-null float64\n", | |
| "4 10 non-null float64\n", | |
| "dtypes: float64(5)</pre>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 9, | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Data columns (total 5 columns):\n", | |
| "0 10 non-null float64\n", | |
| "1 10 non-null float64\n", | |
| "2 10 non-null float64\n", | |
| "3 10 non-null float64\n", | |
| "4 10 non-null float64\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 9 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.info()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Data columns (total 5 columns):\n", | |
| "0 10 non-null float64\n", | |
| "1 10 non-null float64\n", | |
| "2 10 non-null float64\n", | |
| "3 10 non-null float64\n", | |
| "4 10 non-null float64\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 10 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.info(verbose=True)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Data columns (total 5 columns):\n", | |
| "0 10 non-null float64\n", | |
| "1 10 non-null float64\n", | |
| "2 10 non-null float64\n", | |
| "3 10 non-null float64\n", | |
| "4 10 non-null float64\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 11 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.info(verbose=False)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Int64Index: 10 entries, 0 to 9\n", | |
| "Columns: 5 entries, 0 to 4\n", | |
| "dtypes: float64(5)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 12 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "df.__repr__?" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 9 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| } | |
| ], | |
| "metadata": {} | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment