Last active
November 21, 2019 15:15
-
-
Save MHenderson/9fe8692a661b78115f696572161eabe3 to your computer and use it in GitHub Desktop.
PyTorch tutorial
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import torch" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([[1.8293e+25, 4.5808e-41, 2.7649e-37],\n", | |
| " [0.0000e+00, 0.0000e+00, 0.0000e+00],\n", | |
| " [0.0000e+00, 0.0000e+00, 0.0000e+00],\n", | |
| " [0.0000e+00, 0.0000e+00, 0.0000e+00],\n", | |
| " [0.0000e+00, 0.0000e+00, 0.0000e+00]])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "x = torch.empty(5, 3)\n", | |
| "print(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([[0.0999, 0.0514, 0.5746],\n", | |
| " [0.2492, 0.3858, 0.2630],\n", | |
| " [0.2320, 0.5569, 0.0581],\n", | |
| " [0.5044, 0.3515, 0.9185],\n", | |
| " [0.0800, 0.5181, 0.6103]])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "x = torch.rand(5, 3)\n", | |
| "print(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([[0, 0, 0],\n", | |
| " [0, 0, 0],\n", | |
| " [0, 0, 0],\n", | |
| " [0, 0, 0],\n", | |
| " [0, 0, 0]])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "x = torch.zeros(5, 3, dtype=torch.long)\n", | |
| "print(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([5.5000, 3.0000])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "x = torch.tensor([5.5, 3])\n", | |
| "print(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([[1., 1., 1.],\n", | |
| " [1., 1., 1.],\n", | |
| " [1., 1., 1.],\n", | |
| " [1., 1., 1.],\n", | |
| " [1., 1., 1.]], dtype=torch.float64)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "x = x.new_ones(5, 3, dtype=torch.double)\n", | |
| "print(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([[ 0.4409, -1.0526, -0.1251],\n", | |
| " [-3.1898, -0.9379, -0.1052],\n", | |
| " [ 0.1024, -0.3951, -1.3711],\n", | |
| " [ 0.0613, 0.0635, -0.7447],\n", | |
| " [-0.1321, -0.1839, -1.8460]])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "x = torch.randn_like(x, dtype=torch.float)\n", | |
| "print(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "torch.Size([5, 3])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(x.size())" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([[ 0.5931, -0.9253, 0.3852],\n", | |
| " [-2.8199, 0.0564, -0.0479],\n", | |
| " [ 1.0666, -0.3886, -0.8085],\n", | |
| " [ 0.1084, 1.0452, 0.0571],\n", | |
| " [-0.0160, 0.5582, -1.0145]])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "y = torch.rand(5, 3)\n", | |
| "print(x + y)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([[ 0.5931, -0.9253, 0.3852],\n", | |
| " [-2.8199, 0.0564, -0.0479],\n", | |
| " [ 1.0666, -0.3886, -0.8085],\n", | |
| " [ 0.1084, 1.0452, 0.0571],\n", | |
| " [-0.0160, 0.5582, -1.0145]])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(torch.add(x, y))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "tensor([[ 0.5931, -0.9253, 0.3852],\n", | |
| " [-2.8199, 0.0564, -0.0479],\n", | |
| " [ 1.0666, -0.3886, -0.8085],\n", | |
| " [ 0.1084, 1.0452, 0.0571],\n", | |
| " [-0.0160, 0.5582, -1.0145]])" | |
| ] | |
| }, | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "result = torch.empty(5, 3)\n", | |
| "torch.add(x, y, out=result)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "tensor([[ 0.5931, -0.9253, 0.3852],\n", | |
| " [-2.8199, 0.0564, -0.0479],\n", | |
| " [ 1.0666, -0.3886, -0.8085],\n", | |
| " [ 0.1084, 1.0452, 0.0571],\n", | |
| " [-0.0160, 0.5582, -1.0145]])" | |
| ] | |
| }, | |
| "execution_count": 14, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "y.add_(x)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([-1.0526, -0.9379, -0.3951, 0.0635, -0.1839])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(x[:, 1])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "x = torch.randn(4, 4)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "y = x.view(16)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "z = x.view(-1, 8)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 19, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(x.size(), y.size(), z.size())" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "x = torch.randn(1)\n", | |
| "print(x)\n", | |
| "print(x.item())" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "a = torch.ones(5)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([1., 1., 1., 1., 1.])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(a)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[1. 1. 1. 1. 1.]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "b = a.numpy()\n", | |
| "print(b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "tensor([2., 2., 2., 2., 2.])" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a.add_(1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 25, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "tensor([2., 2., 2., 2., 2.])\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(a)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[2. 2. 2. 2. 2.]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 27, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[2. 2. 2. 2. 2.]\n", | |
| "tensor([2., 2., 2., 2., 2.], dtype=torch.float64)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "import numpy as np\n", | |
| "a = np.ones(5)\n", | |
| "b = torch.from_numpy(a)\n", | |
| "np.add(a, 1, out=a)\n", | |
| "print(a)\n", | |
| "print(b)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "False" | |
| ] | |
| }, | |
| "execution_count": 28, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "torch.cuda.is_available()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.5" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment